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Moonlighting proteins have at least two independent functions and are widely

found in animals, plants and microorganisms. Moonlighting proteins play

important roles in signal transduction, cell growth and movement, tumor

inhibition, DNA synthesis and repair, and metabolism of biological

macromolecules. Moonlighting proteins are difficult to find through

biological experiments, so many researchers identify moonlighting proteins

through bioinformatics methods, but their accuracies are relatively low.

Therefore, we propose a new method. In this study, we select SVMProt-

188D as the feature input, and apply a model combining linear discriminant

analysis and basic classifiers inmachine learning to studymoonlighting proteins,

and perform bagging ensemble on the best-performing support vector

machine. They are identified accurately and efficiently. The model achieves

an accuracy of 93.26% and an F-sorce of 0.946 on the MPFit dataset, which is

better than the existing MEL-MP model. Meanwhile, it also achieves good

results on the other two moonlighting protein datasets.
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1 Introduction

With the continuous expansion of proteomic data and the continuous study of protein

functions by researchers, multifunctional proteins have gradually attracted people’s

attention. Among multifunctional proteins, people have found a new type of protein

that can perform multiple functions autonomously without partitioning these into

separate domains, and they are called moonlighting proteins (MPs) (Huberts et al.,

2010). Under the influence of certain specific factors, such as cell localization, cell type,

substrate or different cofactor, moonlighting proteins can switch their executive functions

(Jeffery, 1999). At present, moonlighting proteins have been found in a variety of animals,

plants and microorganisms, and a large number of studies have shown that moonlighting

proteins play an important role in organisms. They can be used as enzymes for catalytic

reactions, as well as secreted cytokines, transcription factors and DNA stabilizers.

Through the study of moonlighting proteins, it is found that they can play an
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important role in the development of new therapies for some

diseases (Jeffery, 2018). For example, moonlighting proteins can

be used as targets for active medicines in the treatment of

hepatitis B virus, cancer, and bacterial infections (Adamo

et al., 2021; Zakrzewicz and Geyer, 2022). Due to the excellent

performance of moonlighting proteins in disease treatment, the

discovery of new moonlighting proteins is of great significance

for solving many medical problems. Therefore, the prediction of

moonlighting proteins has become a hot research direction.

At present, there are several online available moonlighting

protein databases that can obtain protein sequences. Jeffery’s

laboratory manually collected some strict moonlighting proteins

from peer journals, and built a searchable and Internet-based

MoonProt database, which has been updated to MoonProt 3.0

(Chen C. et al., 2021). Luis et al. constructed a multi-functional

protein database MultitaskProtDB, designed to provide a free

online database for researchers using bioinformatics methods to

predict multifunctional proteins, and has been updated to

MultitaskProtDB-II (Franco-Serrano et al., 2018). Bo et al.

established PlantMP, the first plant moonlighting protein

database, enabling researchers to conveniently collect and

process plant-specific raw data (Su et al., 2019).

Based on these public moonlighting protein databases,

researchers have constructed several models to predict

moonlighting proteins. In 2016, Khan and Kihara et al.

developed a moonlighting protein prediction model called

MPFit, which achieved 98% accuracy when protein gene

ontology (GO) annotations were available, and 75%

accuracy using omics features when no GO annotations

were available (Khan and Kihara, 2016). In 2017, Khan

et al. proposed a new solution: they built DextMP based on

three types of textual information of proteins (title, abstracts

from literature and function description in UniProt) and

machine learning classifier, achieving 91% accuracy (Khan

et al., 2017). In 2021, Li et al. proposed a multimodal deep

ensemble learning architecture called MEL-MP. Firstly, they

extracted four sequence-based features: primary protein

sequence information, evolutionary information, physical

and chemical properties, and secondary protein structure

information; secondly, they selected a specific classifier for

each feature; finally, they applied stacked ensemble to

integrate the output of each classifier. The method showed

excellent predictive performance, which achieved an F-score

of 0.891 (Li et al., 2021). In the same year, Shirafkan et al.

constructed a new moonlighting protein dataset to identify

MPs and non-MPs through the SVMmethod of SAAC feature,

and established a well-judged scheme to detect outlier

proteins (Shirafkan et al., 2021). Liu et al. believed that an

appropriate method was needed to identify plant

moonlighting proteins, so they used the combination of

Tri-Peptide composition (TPC) and XGBoost to construct

IdentPMP, which was a plant moonlighting protein prediction

tool (Liu et al., 2021).

For MPFit and DextMP, although high accuracy can be

obtained, GO annotations and text information of protein

samples need to be provided, which is very restrictive. Other

experiments have shortcomings such as relatively low model

accuracy and low efficiency due to the complexity of the model

(Li et al., 2021; Shirafkan et al., 2021). In order to solve the above

problems, we propose a new scheme. Firstly, we extract the

SVMProt-188D feature, which contains information of protein

composition and eight physicochemical properties that are

effective in showing the properties of moonlighting proteins

(Zou et al., 2016). Secondly, linear discriminant analysis

(LDA) is used to reduce the dimensionality of the feature set

to achieve separation of positive and negative samples. Finally,

bagging ens is performed on SVM to classify moonlighting

proteins. The main contributions of this paper are as follows:

1) We propose a method combining LDA and Bagging-SVM to

classify moonlighting proteins. 2) We conduct extensive

experiments on MPFit dataset, Shirafkan’s dataset, and plant

moonlighting protein dataset, and the model achieves excellent

performance on these datasets.

2 Materials and methods

Our research is mainly divided into four parts: benchmark

dataset acquisition; feature extraction; model construction;

model evaluation. The experimental process is shown in

Figure 1. Firstly, we use MPFit as the benchmark dataset (a).

Secondly, we extract SVMProt-188D as a feature and compare

the classification results of this feature with Pse-AAC and Pse-

PSSM (b). Thirdly, we combine LDA with Bagging-SVM for

protein classification, and compare the classification results with

other base classifiers to verify the superiority of the classifier (c).

Finally, we use multiple datasets to validate our method and

compare the classification results with state-of-the-art models to

demonstrate the effectiveness of our method (d).

2.1 Benchmark dataset

In this study, we use the benchmark dataset constructed by

Khan and Kihara et al. (MPFit dataset) [9]. The dataset contains

268 MPs and 162 non-MPs. The positive examples in the dataset

are derived from 268 proteins with Uniprot ID extracted from

MoonProt database, and their biological origins are shown in

Table 1(Mani et al., 2015). Screening of suitable proteins from

four genomes of human, E. coli, yeast and mouse as negative

example of moonlighting proteins (single-function proteins).

The screening criterias are as follows: 1) target protein with at

least eight GO term annotations; 2) when clustering GO terms in

the biological process (BD) category using a semantic similarity

score threshold between 0.1 and 0.5, no more than one cluster is

obtained at each threshold; 3) there is nomore than one cluster of
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FIGURE 1
The pipeline of our experiment, (A) benchmark dataset acquisition; (B) feature extraction; (C) model construction; (D) model evaluation.

TABLE 1 Composition of the benchmark dataset.

Organism MPs Non-MPs

Number Percentage (%) Number Percentage (%)

Human 45 16.8 60 37.0

Escherichia coli 30 11.19 16 9.88

Yeast 27 10.1 34 20.9

Mouse 11 4.1 52 32.1

Other 155 57.81 0 0.0

Total 268 100 162 100
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GO terms for molecular function (MF) with semantic similarity

scores between 0.1 and 0.5. After removing non-MPs with more

than 25% similarity to MPs, 162 negative samples were obtained

(Table 1) (Khan and Kihara, 2016). This dataset has been used in

several experiments on moonlighting protein prediction and is

very authoritative in the field (Khan and Kihara, 2016; Khan

et al., 2017; Li et al., 2021; Shirafkan et al., 2021). Therefore, it is

suitable as the benchmark dataset for this study. Also, we have

conducted experiments on the state-of-the-art dataset of

Shirafkan et al. (2021).

2.2 Feature extraction

Feature extraction is a crucial step in the process of

identifying proteins. This process is the conversion of the

amino acid sequence of a protein into discrete data of a certain

length, and the representation of a sample of the protein by

features composed of discrete data. At present, a variety of

features have been used in the study of protein classification,

such as amino acid composition, positional information,

physicochemical properties, evolutionary information and

secondary structure. Pse-AAC, SVMProt-188D and Pse-

PSSM reflect positional information, physicochemical

properties and evolutionary information respectively, which

is important for protein recognition. Therefore, we choose

these three features as the feature vectors of this study. The

details are as follows.

2.2.1 Pse-AAC
Since the amino acid composition does not take into account

the influence of sequence order information, the researchers

propose the feature of pseudo-amino acids (Pse-AAC). The

feature combines regular amino acid composition (frequency

of occurrence of 20 amino acids) with a set of discrete sequence

correlation factors, which are primarily used to address the

problem that sequence information cannot be directly

incorporated into the prediction algorithm due to different

lengths of amino acid sequences (Chou, 2001; Ding et al.,

2009; Tang et al., 2016; Awais et al., 2021). The specific

descriptions are as follows.

X � [x1/x20, x20+1/x20+λ]T

Where X represents Pse-AAC, x1 to x20 represent the regular

amino acid composition, and x20+1 to x20+λ represent the

information of sequence order. xi in X is expressed as follows.

xi �

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

fi∑20

j�1fj + ω∑λ

k�1θk
(1≤ i≤ 20)

ωθi−20∑20

j�1fj + ω∑λ

k�1θk
(20 + 1≤ i≤ 20 + λ)

Where fi is the frequency of occurrence of the 20 amino

acids, θk is the k-layer sequence correlation factor, and ω is the

weighting factor for sequence order effects, ω = 0.05 in our

study. The λ components can be defined by the user at will

(Yan et al., 2020). In this experiment, hydrophilic,

hydrophobic, mass, pK1, pK2, pI, rigidity, flexibility, and

irreplaceability are added, resulting in a 65-dimensional

feature vector.

2.2.2 SVMProt-188D
The SVMProt-188D includes the frequency of 20 amino

acids (i.e., “ACDEFGHIKLMNPQRSTVWY”) and eight

physical and chemical properties (hydrophobicity, normalized

van der Waals volume, polarity, polarizability, charge, secondary

structure, solvent accessibility, and surface tension) (Cai et al.,

2003). The details are shown in Table 2, and will be introduced

separately below.

The frequency of 20 amino acids can be calculated by the

following formula:

Fi � Ni

L
, (i � A,C,D, . . . , Y)

WhereNi is the number of amino acid type i, and L is the length

of a protein sequence.

Eight physicochemical properties are studied on the

composition, transition, and distribution of amino acids, and

each property is divided into three groups (Dubchak et al., 1995;

Wang et al., 2017; Xiong et al., 2018; Zou et al., 2019).

2.2.2.1 Composition

Taking the hydrophobicity attribute as an example,

“RKEDQN” is polar, “GASTPHY” is neutral, and

“CVLIMFW” is hydrophobic. The frequency of each group

can be expressed as:

Ci � Ni

L
, i ∈ {polar, neutral, hydrophobic}

2.2.2.2 Transition

The transition from polar group to neutral group is the

frequency of polar residue following neutral residue or neutral

residue following polar residue. The transition between

neutral group and hydrophobic group, and the transition

between hydrophobic group and polar group have similar

definitions. It can be expressed by the following formula:

T(i1, i2) � N(i1, i2) +N(i2, i1)
L − 1

,

(i1, i2) ∈ {(polar, neutral), (neutral, hydrophobic), (hydrophobic, polar)}

2.2.2.3 Distribution

The distribution represents the position of the first, 25%, 50%,

75%, and last of each group category in the amino acid sequence.
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2.2.3 Pse-PSSM
Inspired by Pse-AAC signatures, and combining with

evolutionary information, Chou et al. proposed a new

signature, Pse-PSSM (Chou and Shen, 2007; Wang et al.,

2020). The original PSSM profile PPSSM was generated by

running the position-specific iterative basic local alignment

search tool (PSI-BLAST) against Uniref50 database, and

setting the E-value to 0.001 for 3 iterations (Ding et al., 2014).

PPSSM � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
E1→1 / E1→20

..

.
1 ..

.

EL→1 / EL→20

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Where Ei→j represents the score of the amino acid residue at

the i-th position of the protein sequence being changed to amino

acid residue type j during the evolutionary process, L is the length

of the protein sequence, k from 1 to 20 indicate the 20 natural

amino acid types. Implement the following standardised

procedures:

Ei→j �
E0
i → j − 1

20∑20
k�1E

0
i → k������������������������

1
20∑20

u�1(E0
i → j − 1

20∑20
k�1E

0
i → k)2√

In order to make the dimension size of the PSSM descriptors

consistent, the following operations are performed:

PPSSM � [E1, E2,/, E20]T

Ej � 1
L
∑L
i�1
Ei→j

Where Ej is the average score of the i-th amino acid in the

protein sequence P over the course of biological evolution. In

order to preserve sequence order information, the concept of

pseudo-amino acid composition is used to obtain the final 40-

dimensional Pse-PSSM by considering the correlation between

two amino acids Ei→j.

Pξ
Pse−PSSM � [E1, E2,/, E20, G

ξ
1, G

ξ
2,/, Gξ

20]T

Gξ
j �

1
L − ξ

∑L−ξ
i�1

[Ei → j − E(i+ξ) → j]2

2.3 Feature selection

Linear discriminant analysis (LDA) is a feature selection

technique (Arjmandi and Pooyan, 2012; Xie et al., 2018; Yang

et al., 2020; Chen Y. et al., 2021). It can effectively reduce the

feature dimension and reduce the error caused by redundant data.

The idea of LDA is to project samples from high-dimensional space

onto low-dimensional space where the distance between samples of

the same category is minimized and the distance between samples of

different categories is maximized, thus making the samples more

easily distinguishable and obtaining better classification results.

Therefore, this study uses LDA for dimensionality reduction. The

diagram of LDA applied to a binary classification algorithm is shown

in Figure 2.

2.3.1 The linear discriminant analysis process is
as follows

Suppose we have N protein samples which can be denoted as

{(x1, y1), (x2, y2),/, (xn, yn)}, where xi is the features of the

protein sample and yi is the label of the protein sample,

yi ∈ (0, 1) . Our aim is to find a projection line W such that

the projection Y � WTxi of sample xi on the line minimizes the

intra-class distance and maximizes the inter-class distance.

Firstly, calculate the mean vector for each class:

μj �
1
Nj

∑
x∈Xj

x(j � 0, 1)
WhereNj is the number of samples of class j andXj is the set of

samples of class j, μj is the mean vector of the j-th class of samples.

Then, calculate the within-class scatter matrix SW:

SW � ∑
0

+∑
1

� ∑
x∈X0

(x − μ0)(x − μ0)T + ∑
x∈X1

(x − μ1)(x − μ1)T

TABLE 2 Eight physical and chemical properties of the 188-dimensions.

Attribute Division

hydrophobicity Polar:RKEDQN Neutral:GASTPHY Hydrophobicity:CVLIMFW

Normalized van der waals volume Small:GASCTPD Medium:NVEQIL Large:MHKFRYW

polarity Low:LIFWCMVY Medium:PATGS High:HQRKNED

polarizability Low:GASDT Medium:GPNVEQIL High:KMHFRYW

charge Positive:KR Neutral:ANCQGHILMFPSTWYV Negative:DE

Secondary structure Helix:EALMQKRH Strand:VIYCWFT Coil:GNPSD

Solvent accessibility Buried:ALFCGIVW Exposed:RKQEND Intermediate:MPSTHY

Surface tension Large:GQDNAHR Medium:KTSEC Small:ILMFPWYV
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Where∑j is the covariance matrix of samples of class j (strict lack

of covariance matrix of the numerator), expressed by the

following formula:

∑
j

� ∑
x∈Xj

(x − μj)(x − μj)T(j � 0, 1)
Calculating the between-class scatter matrix SB:

SB � (μ0 − μ1)(μ0 − μ1)T
Finally, the optimization objective is:

arg max J(W) � WTSBW

WTSWW

Simplify the above formula to get the target projection

line Wp:

Wp � arg max{WTSBW

WTSWW
} � S−1W(μ0 − μ1)

The original set of samples is projected onto the one-

dimensional space W to obtain the 1-dimensional feature

vector after dimensionality reduction (Chen Y. et al., 2021).

2.4 Classifier

In the experiments, we use six popular base classifiers,

including K-nearest-neighbor (KNN) (Deng et al., 2016),

Decision Tree (DT) (Safavian and Landgrebe, 1991),

Multilayer Perceptrons (MLP) (Lee et al., 2020), Random

Forests (RF) (Breiman, 2001), XGBoost (Chen et al., 2016;

Chen et al., 2020) and Support Vector Machine (SVM).

Experimental parameters for all classifiers can be found in

Supplementary Table S1. After evaluation on the benchmark

dataset, the support vector machine works best, and can avoid

overfitting when the number of samples is small (Gong et al.,

2021). Through bagging ensemble of SVM, the model

performance is further improved.

SVM is a type of supervised learning proposed by Vladimir

Vapnik and is widely used in machine learning, computer vision

and data mining, such as image recognition, text classification

and protein sequence classification (Zhao et al., 2015; Ding et al.,

2017; Manavalan et al., 2018; Zhang et al., 2019). In binary

classification problems, the main idea of SVM is to find a

segmentation hyperplane that maximizes the distance of the

segmentation hyperplane from the nearest point. Given a

training sample xi ∈ RP, i = 1, . . . , n, and a vector y ∈ {0, 1}n,

FIGURE 2
The diagram of LDA applied to a binary classification algorithm.
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our goal is to find w ∈ RP and b ∈ R for a given prediction

sign(wTϕ(x) + b) that predicts correctly for most samples. In

this experiment, we use the SVC algorithm for classification and

set the kernel function to linear function and the penalty

parameter C to 1.0.

Bagging is a common ensemble learning method that

integrates the prediction results of multiple base classifiers

into the final strong classifier prediction result. Its integration

strategy is to obtain training subsets by sampling from the

original sample set, and each training subset trains a model.

Finally, the classification results of samples are obtained by

voting strategy (Breiman, 1996; Zaman and Hirose, 2008).

2.5 Performance assessment

We used these indicators to evaluate the performance of the

experiment: accuracy (ACC), Precision, Recall, F-score and AUC

(area of ROC curve) (Wei et al., 2017; Shan et al., 2019; Basith

et al., 2020; Zhang et al., 2020; Wang et al., 2021). These

evaluation indicators are the results of the confusion matrix

calculation obtained from the experiment, and the calculation

formulas are as follows:

ACC � TP + TN

TP + TN + FP + FN

Precision � TP

TP + FP

Recall � TP

TP + FN

F − score � 2
1

Precision + 1
Recall

� 2pPrecisionpRecall
Precision + Recall

Where TP represents the number of correctly predicted MPs, TN

represents the number of correctly predicted non-MPs, FP

represents the number of incorrectly predicted MPs as non-

MPs, and FN represents the number of incorrectly predicted

non-MPs as MPs.

3 Results and discussion

3.1 Performance evaluation of different
feature extraction

To ensure the accuracy of the experimental results, the 10-

fold cross-validation (i.e., The training samples are divided into

ten folds, nine of which are adopted for training, one of which is

adopted for testing. The process repeats 10 times and the average

value is taken as the final result.) is applied on the benchmark

dataset. To select suitable input data, Pse-AAC, SVMProt-188D

and Pse-PSSM are experimented with multiple classifiers

respectively (Table 3). It is clear from the table that the

SVMProt-188D performs best on all indicators, with the most

accuracy rates exceeding 90% (Figure 3). In contrast, Pse-AAC

and Pse-PSSM don’t perform as well as SVMProt-188D. From

this, we hypothesize that: On the one hand, MPs can change their

functions under certain conditions, such as substrate

concentration or cofactor change, and there are great

differences in physicochemical properties between them and

non-MPs; on the other hand, SVMProt-188D is a linear

feature of the protein, which can be easily identified by the

classifier after LDA.

3.2 Performance evaluation of different
classifiers

Six classifiers from scikit-learn are used in this study for

comparison experiments, namely KNN, DT, MLP, RF,

XGBoost, and SVM. From the data, SVM obtains an

accuracy rate of 92.7907%, which is the highest accuracy

rate. Despite the unbalanced benchmark dataset used in this

experiment, with 268 positive and 162 negative samples, the

classifier achieves high scores of 0.943, 0.942 and 0.925 on the

three metrics of percision, F-score and AUC (Figure 4). The

MLP is second only to the SVM and also achieves high scores in

various metrics. Of these, surprisingly, DT obtains the highest

recall value, 0.946. Because we use accuracy as the main metric,

SVM is the most suitable classifier for this experiment.

Furthermore, we compare this model with the model

without LDA (Figure 5). From the figure, we can observe

that the LDA dimensionality reduction method has greatly

improved the experimental results, proving that it is very

effective in the identification of MPs.

3.3 Comparison of Bagging-SVM and
single SVM

The above experiments prove that the combination of

SVMProt-188D and support vector machine has the best

effect. Based on the excellent performance of bagging

ensemble algorithm in the field of machine learning, we use

bagging to integrate SVM and verify the classification

performance of the integrated model (Chen and

Association for Computing Machinery, 2018; Kaur et al.,

2019; Raihan-Al-Masud and Mondal, 2020). The results are

shown in Table 4 (The experimental results of bagging

integration with all classifiers can be obtained from the

Supplementary Figures S1, S2). As can be seen from the

table, ACC, Precision, Recall, F-score and AUC all

improved, which indicates that Bagging-SVM is effective

for the classification of moonlighting proteins. Bagging-

SVM can reduce the error caused by a single support

vector machine to the experimental results, improving the

stability of the model, and have stronger convincing.
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3.4 Comparison with other methods

We compare with the more current MP classification models,

including Khan’s MPFit (Khan and Kihara, 2016), Li’s MEL-MP(Li

et al., 2021) and Shirafkan’s method (Shirafkan et al., 2021). The

results of the comparison are shown in Table 5 (Where ’*’ is for data

not given in the comparison papers). The experimental results for all

three models above are obtained with the MPFit dataset, mostly

using 10-fold cross-validation. Therefore, they are very suitable for

comparison with our model. As can be observed from the table, our

TABLE 3 The results of 10-fold cross-validation using a variety of classifiers and hybrid features.

Feature Method ACC (%) Precision Recall F-score AUC

Pse-AAC KNN 87.4419 0.885 0.923 0.901 0.863

DT 87.2093 0.892 0.909 0.898 0.865

MLP 88.8372 0.898 0.931 0.912 0.878

RF 85.3488 0.883 0.887 0.883 0.847

XGB 86.0465 0.891 0.891 0.888 0.856

SVM 87.907 0.9 0.913 0.904 0.872

SVMProt-188D KNN 91.3953 0.919 0.944 0.931 0.906

DT 91.1628 0.918 0.946 0.929 0.906

MLP 92.5581 0.939 0.941 0.939 0.922

RF 89.3023 0.917 0.911 0.912 0.891

XGB 89.5349 0.92 0.911 0.914 0.893

SVM 92.7907 0.943 0.942 0.942 0.925

Pse-PSSM KNN 85.8514 0.886 0.886 0.884 0.848

DT 84.4189 0.884 0.868 0.872 0.839

MLP 86.5116 0.917 0.868 0.888 0.869

RF 82.5581 0.858 0.862 0.858 0.815

XGB 84.186 0.869 0.883 0.873 0.833

SVM 87.6744 0.921 0.883 0.898 0.879

FIGURE 3
The accuracy of different features in each classifier.
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model outperforms the other prediction methods on all the

remaining evaluation indicators except for the AUC. In

particular, the F-score of 0.946 is 5.4% higher than the second

highest, MEL-MP (F-score = 0.892).

3.5 Performance on other MPs datasets

To verify that our model can effectively classify moonlighting

proteins, we obtain a state-of-the-art moonlighting protein

dataset from Shirafkan’s paper, which includes 215 positive

samples and 136 negative samples (Shirafkan et al., 2021).

Similarly, feature extraction is performed on this dataset to

obtain SVMProt-188D features, and then, using 10-fold cross-

validation, classification is performed on our model. In order to

verify the generalization ability of our model, MPFit dataset is

used as the training set and Shirafkan’s dataset is used as the

independent testing set to conduct the experiment again. The

experimental results are shown in Table 6. Method 1 is the result

of 10-fold cross-validation, and method 2 is the result of

independent testing. On this dataset, we still obtain an

accuracy rate higher than 91%, and the other four indicators

also achieve high scores, proving that our model has a strong

generalization ability.

To verify that the model can effectively classify plant

moonlighting proteins, we obtain the Uniprot ID of the

plant moonlighting protein dataset from Liu et al. and

obtain protein sequences from the corresponding databases

according to the UniprotID (Liu et al., 2021). In order to

compare with IdentPMP, 10-fold cross-validation is used on

the same dataset, and the experimental results are shown in

Figure 6. On the dataset of plant MP, the accuracy of 94.9692%

is obtained by 10-fold cross-validation, far exceeding

IdentPMP in F-score and AUC.

FIGURE 4
ROC curves of different classifiers on SVMProt-188D.
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4 Conclusion

In this paper, we propose a method for identifyingmoonlighting

proteins based on bagging-SVM ensemble learning classifier. Firstly,

feature extraction is carried out on the collected benchmark dataset,

and after comparison, SVMprot-188D is selected. Then, we use the

feature selection method of LDA to reduce the dimension of the

FIGURE 5
The performance of the model after and before the implementation of LDA.

TABLE 4 The results of Bagging-SVM and Single SVM.

Method ACC (%) Precision Recall F-score AUC

SVM 92.7907 0.943 0.942 0.942 0.925

Bagging_SVM 93.2558 0.944 0.949 0.946 0.928

TABLE 5 Comparison with other methods.

Method ACC (%) Precision Recall F-score AUC

MPFit 75 * * 0.784 *

MEL-MP * 0.895 0.893 0.892 0.947

Shirafkan’s 81.7 0.813 * 0.802 0.806

Our 92.7907 0.943 0.942 0.942 0.925

TABLE 6 The results of other dataset on our model.

Method ACC (%) Precision Recall F-score AUC

Method1 91.1746 0.91 0.949 0.929 0.901

Method2 91.4530 0.907 0.958 0.932 0.902

FIGURE 6
The performance of the plant MPs dataset on our model.
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feature. Finally, the Bagging-SVM ensemble learning algorithm is

used to construct the prediction model. The experimental results

show that our model achieves good results in various indicators and

is superior to the current advancedmodels. In order to prove that our

model has strong generalization ability, we also use the dataset in

Shirafkan’s paper to conduct experiments, and the accuracy rate has

exceeded 91%. In addition, plant MPs are found to be equally

applicable to our method, which is a great improvement

compared with the previous experimental method. However, the

depth of machine learning model is relatively shallow. In the future,

we will try to use deep learning model to identify MPs, and hope to

make new breakthroughs in this field.
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