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Background: Necroptosis, a novel form of apoptosis, plays a crucial function in

the progression of colon adenocarcinoma (COAD) and is expected to be

triggered in cancer therapy for enhancing anti-tumor immunity. However,

the function of necroptosis in tumors and its relationship with the tumor

microenvironment (TME) remains largely unclear.

Methods: Necroptosis-related genes (NRGs) were collected from high-quality

literature. Using The Cancer Genome Atlas (TCGA) (https://cancergenome.nih.

gov) and the Gene Expression Omnibus (GEO) (www.ncbi.nlm.nih.gov/geo)

meta-cohorts, a robust risk model was constructed to systematically examine

the clinical value, functional status, the role of TME based on the risk model, as

also the genomic variations.

Results: A risk model containing nine NRGs, including TNF receptor-associated

factor (TRAF2), TNF receptor 1 associated via death domain (TRADD), ubiquitin

carboxyl-terminal hydrolase 21 (USP21), TNF receptor superfamily, member 6

(FAS), tumor necrosis factor receptor superfamily 10B (TNFRSF10B), mitogen-

activated protein kinase 8 (MAPK8), mixed lineage kinase domain-like (MLKL),

TNF receptor-associated factor 5 (TRAF5), and recombinant receptor-

interacting serine-threonine kinase 3 (RIPK3), was constructed. The risk

model’s stability and accuracy were demonstrated in training, as also the

validation cohorts; it was verified as an independent prognostic model for

COAD. High-risk group patients developed “cold” tumors having active tumor

proliferation and immunosuppression, while those in the low-risk group

developed “hot” tumors with active immune and cell killing functions.

Moreover, a higher number of copy number variations in the genome and

fewer somatic mutations were found in high-risk group patients. Furthermore,

higher sensitivity towards immunotherapy and chemotherapy was seen in

patients of the low-risk group.

Conclusion: A reliable risk model based on NRGs to assess patient prognosis

and guide clinical decision-making was constructed and validated. Our findings

may contribute to the understanding of necroptosis and are expected to aid

clinical management and guide precision treatment for patients with COAD.
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Introduction

Globally, colon adenocarcinoma (COAD) is the fourth most

prevalent tumor with approximately 1.1 million new diagnoses

and the fifth leading reason for cancer-associated deaths;

550,000 deaths were reported in 2018 alone (Bray et al.,

2018). Given the advancements in precision medicine,

substantial efforts have gone into refining personalized

treatment and management of COAD. In general, strategies

for treatment are largely dependent on validated prognostic

features from previous studies. Moreover, tumor pathological

staging remains a crucial determiner for the treatment and

prognosis of colorectal cancer (CRC) (Sargent et al., 2010).

However, the utility of the existing staging system is

insufficient. Hence, there is a need to discover new

biomarkers to predict patient prognoses and identify high-risk

groups that are most likely to benefit from treatment. Recently,

several developments have been in this field. For instance, Bao

et al. report that microsatellite instability (MSI) is significantly

associated with immunotherapeutic efficacy in COAD (Bao et al.,

2020). Tumor mutation burden (TMB) has also been identified as

a predictor of patient prognosis in several cancer types and is an

emerging biomarker for assessing the sensitivity to immune

checkpoint inhibitors (Chalmers et al., 2017; Samstein et al.,

2019).

Necroptosis, a new kind of programmed cell death, was first

reported in 2005 (Degterev et al., 2005). It is a genetically

programmed, lysogenic apoptosis mechanism, that is regulated

in a caspase-independent manner. It is an alternative mode of

apoptosis that overcomes resistance and triggers to enhance anti-

tumor immunity in cancer therapy (Gong et al., 2019; Tang et al.,

2020). Activation of the protein kinases, including the

recombinant receptor-interacting serine-threonine kinase 1

(RIPK1) and RIPK3, is involved in the onset of necroptosis,

followed by phosphorylation of the executioner molecule, mixed

lineage kinase domain-like (MLKL), further inducing rupture of

the cell membrane (Chan, Luz, Moriwaki; Pasparakis and

Vandenabeele, 2015; Sun et al., 2012). In cancer, necroptosis

is a double-edged sword. If, on the one hand, apoptosis is not

induced, necroptosis can provide an alternative, thereby eliciting

a strong adaptive immune response and halting tumor

progression. On the other hand, in a case where the recruited

inflammatory response molecules promote tumorigenesis and

metastasis, necroptosis may cause the tumor microenvironment

(TME) to become immunosuppressive (Gong et al., 2019). Thus,

there is a requirement to better construe the mechanisms

underlying necroptosis and their physiological and

pathological functions to address the queries on the value of

necroptosis for patient prognoses, immune regulation, and

therapy in cancer.

In the present study, 33 necroptosis-related genes

(NRGs) were screened and analyzed for their patterns in

COAD using multi-omic data. Further, 10 NRGs that were

related to the prognosis were selected by Cox regression and

modeled using an iterative least absolute shrinkage and

selection operator (LASSO) regression analysis for COAD.

Moreover, we systematically assessed the accuracy and

stability of the prognostic model in both the training and

the external validation cohorts and evaluated the prognostic

model in detail for biological function, TME, and genomic

variations. Finally, we determined the prognostic predictive

ability of the model for chemotherapeutic and

immunotherapeutic responses in COAD in clinical

settings. A brief flow chart of this study was shown in

Supplementary Figure S1.

Methods

Data extraction from online databases

The clinical information and corresponding data of

transcriptomic RNA sequencing, HumanMethylation450 arrays,

copy number variation (CNV), and Mutect2 mutation, of COAD

patients, were downloaded fromTheCancerGenomeAtlas (TCGA)

database (https://cancergenome.nih.gov/). Patients with incomplete

clinical information were excluded. Thus, 432 COAD samples were

used for subsequent analyses. The raw fragments per kilobase

million (FPKM) data were normalized to transcript per million

(TPM) and used as the training cohort. We also obtained three

datasets from the Gene Expression Omnibus (GEO) database

(https://www.ncbi.nlm.nih.gov/geo/) as follows: GSE14333 from

GPL570, GSE17536 from GPL570, and GSE41258 from GPL96.

The three GEO datasets comprising of 654 COAD patients

consisted of the complete clinical information and batch

effects were eliminated by the combat function of the R package,

“sva” (Leek et al., 2012). These data were log2-transformed and

used as a validation cohort. In addition, an immunotherapy

cohort IMvigor210 was collected from http//research-pub.gene.

com/IMvigor210CoreBiologies (Mariathasan et al., 2018).

IMvigor210 contains 298 patients with uroepithelial carcinoma

treated by anti PD-L1 therapy, and the source data were

log2 normalized for assessing immunotherapeutic responses.

Finally, 33 NRGs were included from previously published high-

quality literature (Vandenabeele et al., 2010; Su et al., 2015; Gong

et al., 2019; Yan et al., 2021), as listed in Supplementary Table S1.
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Construction and validation of an NRG-
related risk model

Using the TCGA cohort, the model was trained. First, the

prognosis-related NRGs were screened using univariate Cox

regression, and, to avoid omission, those with p < 0.2 were

used in subsequent analysis. Next, using a LASSO penalized Cox

proportional risk model, the best prognostic model was identified

after a 10-rule cross-validation to determine model stability.

Assuming random sampling, 250 iterations were performed to

identify the most stable prognostic model. Finally, the most stable

prognostic model was selected to construct calculate the

RiskScore as follows:

Risk Score � ∑


iCoefficient(mRNAi) × Expression(mRNAi)

The consistency index (c-index) was computed by the R

package, “survcomp” to assess the predictive power of the

RiskScore in the validation and training cohorts; a larger

c-index indicated higher accuracy of the model (Schröder

et al., 2011). In addition, correspondingly the patients were

categorized into the high- and low-risk groups basis the

median RiskScore.

Functional enrichment analysis

Molecular markers for angiogenesis, myeloid

inflammation, epithelial-mesenchymal transition (EMT),

and other immune-related pathways were collected from

previous studies (Ayers et al., 2017; Gibbons and

Creighton, 2018; McDermott et al., 2018; Liang et al.,

2020). Molecular markers for hypoxia were obtained from

the Msigdb database (www.plob.org/tag/msigdb) (Liberzon

et al., 2011). By single-sample gene set enrichment analysis

(ssGSEA) using the R package, “gsva”, the pathway activities

of the samples were assessed. Subsequently, the gene set

enrichment analysis (GESA) was performed for the two

risk groups to identify the subtypes that were significantly

enriched in the KEGG pathways; the enrichment was

considered significant at p < 0.05.

In addition, we collected the homologous recombination

defect (HRD) scores, intratumor heterogeneity scores, and

microsatellite instability (MSI) scores of the samples as

described by Thorsson et al. (2018).

Immune infiltration analysis

The relative infiltration activities of immune cell types in each

sample were quantified using the “CIBERSORT” package in R

and the “LM22″ background expression profile (Newman et al.,

2015). The stromal and immune scores of the patients were

computed using the ESTIMATE algorithm (Yoshihara et al.,

2013).

Landscape of genomic variation between
the two groups

The total number of mutations in the samples was calculated

to assess the differences in the mutation burdens between the

high- and low-risk groups. Genes with a minimum number of

mutations >30 were further identified using the “maftools” R

package, and differences in mutation frequencies between two

risk groups were contrasted by the chi-square test and visualized

using the “maftools” package (Mayakonda et al., 2018). The CNV

data were processed using Gistic (version: 2.0) to identify

amplifications (value >0.3) and deletions (value < -0.3) at

genetic loci using a threshold of 0.3; finally, the CNV

landscape was visualized using the R package, Circos.

Assessment of the clinical significance of
the risk model

Using the pRRophetic package, we predicted the sensitivity of

patients to four first-line COAD drugs (5-FU, cisplatin,

paclitaxel, and doxorubicin) in the training and validation

cohorts and estimated the half-maximal inhibitory

concentration (IC50) values by ridge regression; the smaller

was the IC50 value, the greater was the sensitivity to the

drugs (Geeleher et al., 2014). The potential therapeutic targets

were the differentially expressed genes (DEGs) in the two risk

groups, and the CMap database (https://clue.io/) was used to

identify the putative molecules which could target the DEGs

(Subramanian et al., 2017). The top 150 upregulated and

downregulated DEGs were queried for their corresponding

possible small molecule compounds. Subsequently, an

unsupervised subclass mapping algorithm (https://cloud.

genepattern.org/gp/) and a webtool (http://tide.dfci.harvard.

edu) (Jiang et al., 2018) and were used to assess the

immunotherapeutic responses. Finally, the predictive utility of

the RiskScore was verified in an immunotherapy cohort.

Bioinformatics and statistical analyses

The R (version: 4.04) software was used for all statistical

analyses and graph plotting. The Wilcoxon test was used to

compute the differences between the two groups and compare

them. To generate survival curves, the Kaplan-Meier plotter was

used and statistically significant differences were assessed by the

log-rank test. Time-dependent receiver operating characteristic

curves (tROC) were plotted using the R package, “survivalROC”.

Using the “survival” package in R, the univariate andmultivariate
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FIGURE 1
Genomicmapping of NRGs inCOAD patients. (A). Heatmap showing genomic changes and hazard ratios of NRGs in TCGA-COADcohort; from
left to right: correlation betweenmutation and CNV frequencies for NRGs, modifications in DNAmethylation and expression of NRGs, univariate Cox
regression analysis showing risk ratios for NRGs; *p < 0.05, **p < 0.01, ***p < 0.001; (B). Circle plot demonstrating CNV events in NRGs on
chromosomes; (C). Summary of CNV events in NRGs in TCGA-COAD cohort; (D). Oncoplot showing the mutational mapping of NRGs; (E).
String PPI network of NRGs; (F). Correlation network of NRGs.
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Cox regression analyses were performed. Additionally, the “rms”

package was used to construct the nomogram and plot the

calibration curves. The decision curve analysis (DCA) was

performed using the DCA package (Vickers et al., 2008).

Unless stated otherwise, the two-tailed p < 0.05 was regarded

as statistically significant.

Results

Landscape of genomic variations in NRGs
in COAD patients

First, we summarized the multi-omic profile of NRGs in

TCGA-COAD patients (Figure 1A), whereby, a low frequency of

mutations in NRGs but a wide range of CNVs, especially in

tumor necrosis factor receptor superfamily 10B (TNFRSF10B),

Z-DNA-binding protein 1 (ZBP1), and tumor necrosis factor

receptor superfamily 10A (TNFRSF10A), were observed, which

suggested that CNVs may exert a dominant effect in NRG

regulation relative to gene mutations. In addition, DNA

methylation also played a dominant role in the regulation of

NRGs, especially in NADPH oxidase 1 (NOX1), ZBP1,

TNFSF10, TNF receptor-associated factor 5 (TRAF5), and Fas

ligand (FASLG). Moreover, three genes, including ubiquitin

carboxyl-terminal hydrolase 21 (USP21), TRAF2, and TNF

receptor 1 associated via death domain (TRADD), were

identified as significant risk factors. Figure 1B demonstrates

the CNV profile of NRGs on chromosomes. Next, we

summarized the mutation profile of NRGs (Figure 1C) and

observed that caspase 8 (CASP8), OTU domain-containing

protein 7B (OTUD7B), and toll/interleukin-1 receptor

domain-containing adapter molecule (TICAM1) were the

three genes having the highest mutation frequency. Moreover,

the most common mutation was missense; single nucleotide

point mutation was the most common mutation type, very

often resulting in the change in residue from cytosine to

thymine. The waterfall diagram in Figure 1D shows the

mutation profile of NRGs in patients. We then queried the

NRGs for constructing the protein-protein interaction

network using the STRING database (string-db.org) and

(Figure 1E) obtained BIRC2 and BIRC3 as the hub genes at a

confidence level of 0.9. Finally, we mapped the correlation

network of NRGs, most of which were closely related, and

thus, only the pairs with p < 0.0001 are shown (Figure 1F).

Construction of the NRG-related risk
model

A total of 10 NRGs were identified as candidate genes in the

model, including TRAF2, TRADD, USP21, FAS, MLKL,

TNFRSF10B, MAPK8, TRAF5, RIPK3, and NOX1, with a

threshold of p < 0.2, and the specific Cox results are listed in

Supplementary Table S2. After 250 iterations in LASSO regression,

we found that the model comprising nine genes, including TRAF2,

TRADD, USP21, FAS, MLKL, TNFRSF10B, MAPK8, TRAF5, and

RIPK3, was the most stable. This model had good accuracy in both

the training and validation cohorts (TCGA: 0.6406; GEO: 0.6241)

(Figure 2A). In addition, the model was constructed according to an

optimal λ value of 0.007033 (Figure 2B), and the RiskScore was

evaluated using the formula for RiskScore, with LASSO coefficients

for the model genes listed in Supplementary Table S3. The patients

were categorized based on themedian RiskScore into high- and low-

risk groups. In addition, survival analysis suggested that relative to

those in the low-risk group, in the high-risk group, the patients had a

significantly lower rate of survival (Figure 2C; p = 0.00011).

Figure 1D shows the distribution of RiskScore and gene

expression in TCGA cohort. Additionally, the tROC analysis

showed that RiskScore was the best predictor in addition to

staging (Figure 1E). Specifically, the 1-, 3-, 5-, and 8-years AUCs

for themodel were 0.64, 0.66, 0.67, and 0.68, respectively (Figure 1F).

We also assessed the predictive utility of the model in the validation

cohort, along with survival analysis, which suggested significantly

worse survival in the high-risk group (Supplementary Figure S2A,

p < 0.0001). Supplementary Figure S2B shows the model RiskScore

distribution in the GEO cohort. The 1-, 3-, 5-, and 8-years AUCs

were 0.63, 0.65, 0.66, and 0.66, respectively, for the model in the

validation set (Supplementary Figure S2C).

Assessment of the predictive
independence of the risk model

First, the relationship between RiskScore and clinical parameters

and patient prognoses was evaluated by univariate and multivariate

Cox regression analyses. The results of the univariate Cox regression

analysis suggested that the RiskScore (hazard ratio [HR] = 3.285, p <
0.001), TNM stage (HR = 2.280, p< 0.001), and age (HR = 1.019, p =

0.0353) in the training cohort were significantly associated with

patient prognosis (Figure 3A); RiskScore (HR = 3.588, p < 0.001),

TNM stage (HR = 2.829, p < 0.001), and gender (Female versus

male; HR = 0.742, p = 0.0174) in the validation cohort were

significantly associated with patient prognosis (Figure 3A). The

results of the multivariate Cox regression analysis suggested that

after correction for clinical characteristics, the RiskScore remained

an independent prognostic factor for the overall survival (OS) of

patients (TCGA:HR= 2.408, p< 0.001; GEO:HR= 2.315, p< 0.001)
(Figure 3B). Hence, the RiskScore could serve as a prognosticmarker

for OS in COAD patients. In addition, we constructed a nomogram

to better quantify the risk assessment of COADpatients (Figure 3C).

The correction curve of the nomogram indicated good stability

Figure 3Dand accuracy (Figure 3D). Moreover, the tROC analysis

showed that the nomogram was the best predictor relative to the

clinical characteristics (Figure 3E). We then performed a DCA for

the nomogram to assess its decision benefit and the results showed
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FIGURE 2
Construction of the NRGs-related risk model. (A). Screening of the best LASSO model; left: frequency of different gene combinations in the
LASSOCox regressionmodel, right: c-index of the best model in TCGA and GEO cohorts; (B). LASSOCox regressionmodel to identify the top robust
nine-genemarker having an optimal λ value of 0.007033; (C). KM survival curves for the high- and low-risk groups in TCGA cohort. (D). Survival status
of patients and expressionofmodel genes in TCGAcohort; (E). tROC curves of riskmodels and clinical characteristics in TCGA cohort; (F). 1-, 3-, 5-,
and 8-years ROC curves for the RiskScore in TCGA cohort.
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that the nomogram was useful for risk assessment of patients with

COAD at 1-, 3-, and 5-years (Figure 3G).

Functional enrichment analysis of the risk
model

The correlation between RiskScore and some typical

biological pathways was assessed. The heat map shows the

relationship between RiskScore, activities of the biological

pathways, and clinical characteristics (Figure 4A). The

RiskScore showed a positive association with angiogenesis and

a negative association with hypoxia and certain immune-related

pathways (e.g., APC co-stimulation, CCR, Type II interferon

response, and myeloid immunity) (Figure 4B). Consistently, we

observed that angiogenesis was markedly elevated in the high-

risk group, whereas hypoxia and certain immune-related

pathways (e.g., APC co-stimulation, myeloid immunity, CCR,

FIGURE 3
Validation of the NRG-related risk model. (A). Univariate Cox regression analysis for OS in TCGA and GEO cohorts; (B). Multivariate Cox
regression analysis for OS in TCGA and GEO cohorts; (C). Nomogram based on NRG-related risk model; (D). Calibration curves for the nomogram;
(E). Clinical characteristics and tROC curves for the nomogram; (F). 1-, 3-, and 5-years DCA curves for the nomogram.

Frontiers in Genetics frontiersin.org07

Yang et al. 10.3389/fgene.2022.965799

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.965799


FIGURE 4
Functional analysis of the NRG-related risk model. (A). Heat map showing the correlation between RiskScore, activities of biological pathways,
and clinical characteristics; (B). Correlation analysis between RiskScore and biological pathways; (C). Box plots showing the differences in activities of
the biological pathways between the high-risk and low-risk groups; (D). GSEA enrichment plot showing the four pathways of interest in the high-risk
group; (E). GSEA enrichment plot showing the 5 pathways of interest in the low-risk group.
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FIGURE 5
Immune landscape of the NRG-related risk model. (A). Heatmap showing the correlation between RiskScore, EstimateScore, the abundance of
immune cell infiltration, immune checkpoint expression, and clinical characteristics; (B). From top to bottom: correlation analysis between RiskScore
and EstimateScore, immune cell infiltration abundance, and immune checkpoint expression; (C). Box plot showing the differences in the abundances
of immune cell infiltrations between the high-risk and low-risk groups; (D). Box plot showing the differences in EsimateScore between the high-
risk and low-risk groups; (E). Box plot showing the differences in immune checkpoint expressions between the high-risk and low-risk groups; (F).
Correlation between RiskScore and HRD scores; (G). Correlation between RiskScore and MSI scores; (H). Correlation between RiskScore and
intratumor heterogeneity scores. *p < 0.05; **p < 0.01; ***p < 0.001.
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and Type II interferon response) were substantially upregulated

in the low-risk group (Figure 4C). GSEA showed that the RNA

polymerase and spliceosome signaling pathways were markedly

enhanced in the high-risk group, whereas P53, apoptosis, and

transforming growth factor-beta signaling pathways were

substantially upregulated in the low-risk group (Figure 4D). In

summary, these results suggested active cell proliferation and

tumor angiogenesis in the high-risk group. Immune

hyperfunction characterized the low-risk group.

Immune landscape of the risk model

The correlation between RiskScore and the immune

landscape was assessed in further detail. The heat map

shows the association between RiskScore, EstimateScore,

the abundance of immune infiltration cell types, typical

immune checkpoints (including CTLA-4, TIM-3, PD-1,

LAG-3, PD-L1, and PD-L2), and clinical characteristics

(Figure 5A). The corresponding correlation analysis is

shown on the right of the heat map (Figure 5B). The

immune score was significantly positively correlated with

the Riskscore. Moreover, the box plot indicated that the

immune score was markedly up-regulated in the low-risk

group, while the tumor purity significantly ascended in the

high-risk group (Figure 5C). Although the correlation analysis

showed a significant positive association of LAG-3 and PD-1

with RiskScore, the box plot indicated that LAG-3 and PD-1

were not significantly elevated in the high-risk group,

however, the remaining four immune checkpoints were

markedly elevated in the low-risk group (Figure 5D). The

box plot shows an enhanced abundance of follicular helper

T cells, Tregs, CD8 T cells, M0 macrophages, and activated

NKT cells, in the high-risk group, while in the low-risk group,

resting CD4 memory T cells, acidic granulocytes, neutrophils,

and resting dendritic cells, were elevated (Figure 5E).

Although the high-risk group appears to have increased

cell-killing activity, the significantly higher Treg infiltration

herein can suppress the immune responses (Tanaka and

Sakaguchi, 2017; Knochelmann et al., 2018). These findings

further suggested that the immunological function was active

in the low-risk group but was suppressed in the high-risk

group. We then assessed two indicators associated with

tumor-specific antigens, including HRD and MSI scores.

The results showed that RiskScore was significantly

negatively related to the HRD and MSI scores and that

both of these were significantly high in the low-risk group

(Figures 5F,G), which suggested that there were greater

chromosomal instability alterations and tumor-specific

neoantigens in the low-risk group (Ganesh et al., 2019; Eso

et al., 2020; Shi et al., 2021). Finally, a significantly positive

association was found between intratumor heterogeneity

score and RiskScore; the former was also markedly greater

in the high-risk group (Figure 5H), hinting at the tumor

complexity and the tendency for malignancy in the high-

risk group.

Correlation between riskscore and
genomic variation

Several recent reports indicate that TMB correlates with

immunotherapeutic responses, as somatic mutations may

generate more potentially mutation-derived antigens that are

recognized by the immune system, and such a recognition of the

antigen-containing mutant peptides by the immune system can

activate immune functions and enhance anti-tumor immunity

(Matsushita et al., 2012; Rizvi et al., 2015; Chan et al., 2019).

Given the clinical significance of TMB, the correlation between

TMB and RiskScore was examined. A significantly negative

association between TMB and RiskScore (correlation = -0.11,

p = 0.031) was found; the TMB in the low-risk group was

significantly high (Figure 6A). We further compared the

mutation frequencies of the frequently mutated genes in the

two groups. The Forestplot showed that TP53 and APC were

significantly more commonly mutated in the high-risk group,

whereas PIK3CA, FAT3, FAT4, and LRP1B were more

commonly mutated in the low-risk group (Figure 6B). The

landscape of the top 20 driving mutant genes was shown in

Figure 6C. As CNV causes chromosomal variations too, we

further evaluated the correlation between the RiskScore and

CNV. Higher CNV events were observed in the high-risk

group (Figure 6D) relative to the low-risk group (Figure 6E).

The box plots showed a significant increase in both deletion and

amplification events in the high-risk group (Figures 6F,G).

Role of the risk model in guiding clinical
decision-making

The sensitivity of the patients to COAD chemotherapeutic

agents in training and validation cohorts was evaluated and

the findings suggested that patients in the low-risk group of

TCGA cohort were more sensitive to 5-FU, paclitaxel, and

cisplatin (Figure 7A). Patients in the low-risk group of the

validation cohort were more sensitive to 5-FU, cisplatin, and

Doxorubicin (Supplementary Figure S3A). Overall, a higher

sensitivity to chemotherapy was seen in the patients in the

low-risk group. Next, the DEGs were queried in the Clue

database for identifying small molecule drugs, and as shown in

the waterfall diagram, 41 potential small molecule drugs, and

their corresponding target 33 biological pathways were

identified (Figure 7B). Following previous results that

suggest the potential of risk models for guiding

immunotherapy, we assessed the patient response rates to

immunotherapy using the Tumor Immune Dysfunction and
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FIGURE 6
Landscape of genomic variations for NRG-related risk model. (A) Correlation between RiskScore and TMB; (B). Forest plot showing genes with
significant mutational differences between the high-risk and low-risk groups; (C). Oncoplot showing significantly mutated genes between the high-
risk and low-risk groups; (D). Circle plot showing theCNV landscape in the high-risk group; (E). Circle plot showing the CNV landscape in the low-risk
group; (F). Box plot showing the differences in the number of chromosomal deletions between the high-risk and low-risk groups; (G). Box plots
showing the differences in the number of chromosome amplifications between the high-risk and low-risk groups.
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Exclusion (TIDE) algorithm (tide.nki.nl), which showed that

those in the low-risk group in TCGA cohort had a greater

chance of responding to immunotherapy (p = 0.024,

Figure 7C). Similar results were found in the GEO cohort,

wherein patients in the low-risk group had a greater

probability of responding to immunotherapy (p = 0.005,

Supplementary Figure S3B). Subsequently, the subclass

mapping results suggested that patients in the low-risk

group of both TCGA and GEO cohorts were more sensitive

to anti-PD1 therapy (TCGA: false discovery rate [FDR] = 0.048,

GEO: FDR = 0.035) (Figure 7D; Supplementary Figure S3C).

Finally, we computed the RiskScore in a well-established

immunotherapy cohort, which showed significantly worse

survival in the high-risk group (p = 0.023, Figure 7E). The

RiskScore was significantly higher in patients who did not

respond to immunotherapy (Figure 7F). We then evaluated

the relationship of TMB and neoantigens with RiskScore in the

immunotherapy cohort, which showed a negative correlation of

the RiskScore with TMB and neoantigen count; both TMB and

neoantigen count were significantly elevated in the low-risk

group (Figures 7G,H). These results confirmed that this risk

model may be a powerful tool for guiding immunotherapy

selection for patients with COAD.

Discussion

In the present study, based on NRGs, a prognostic model

for COAD patients was constructed using a robust LASSO

algorithm, followed by an in-depth analysis of the prognostic

model for function, immune microenvironment, genomic

variations, and clinical therapies. We examined the putative

biological functions of NRGs in COAD patients. We

confirmed the suitability and accuracy of the constructed

prognostic model for predicting survival in COAD patients

in both cohorts. Functional analysis suggested that patients in

FIGURE 7
Role of the NRG-related risk model in guiding clinical treatment and decision-making. (A). Box plot showing predicted IC50 values for four
commonly used drugs in the high-risk and low-risk groups; (B). Oncoplot showing the small molecule compounds, wherein the horizontal axis
represents the name of the small molecule inhibitor and the vertical axis represents the biological pathway targeted by the corresponding small
molecule inhibitor; (C). TIDE algorithm for predicting responses to immunotherapy between the high-risk and low-risk groups; (D). Subclass
mapping for predicting sensitivity to PD1 and CTLA4 treatment in patients belonging to the high-risk and low-risk groups; (E). KM survival curves for
the high-risk and low-risk groups in the IMvigor 210 cohort; (F). Box plot showing the differences in RiskScore between patients in the treatment-
responsive and non-responsive groups of the IMvigor 210 cohort; (G). Correlation between RiskScore and TMB in the IMvigor210 cohort; (H).
Correlation between RiskScore and neoantigens in the IMvigor 210 cohort.
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the high-risk group had active cell proliferation and tumor

angiogenesis, while immune hyperfunction was a

characteristic of the low-risk group. Additionally, immune

microenvironment analysis also demonstrated better

immunogenicity in COAD patients with low RiskScores.

Analysis of genomic variations suggested that TP53 and

APC had higher mutation counts in the high-risk

group. Moreover, chromosomal amplification and deletion

events were also significantly higher in the high-risk

group. For clinical settings, we determined that in the low-

risk group, the patients were more sensitive to COAD

chemotherapeutic agents. Finally, we predicted better

immunotherapeutic response in COAD patients with low

RiskScores using TIDE and subclass mapping algorithms;

these were validated in an external immunotherapy cohort.

Apoptosis is strongly associated with cancer progression,

metastasis, and treatment response. Inhibiting apoptosis

enhances tumor metastasis and resistance of malignant cells

against chemotherapy (Su et al., 2015; Strasser and Vaux,

2020). Ferroptosis, pyroptosis, and necroptosis are emerging

forms of apoptosis. As most tumors are innately resistant to

apoptosis, the induction of apoptosis mechanisms is emerging

as a new strategy for cancer treatment (Tang et al., 2020). The

predictive values of pyroptosis and ferroptosis for the

prognoses of COAD patients have been demonstrated (Nie

et al., 2021; Zhuang et al., 2021). In the present study, wherein,

necroptosis as the non-apoptotic program cell death

mechanism was focused on, we found that USP21, TRAF2,

and TRADD were significant risk factors for COAD.

Moreover, the NRG-based risk model showed excellent

predictive abilities in both the training and external

validation cohorts; a markedly low survival rate was found

in the high-risk group.

The association of the risk model and biological pathways

was analyzed to examine the functional biology underlying the

survival differences. We found that angiogenic activity was

significantly higher in the high-risk group. Previous studies

report that active angiogenesis is critical for tumor growth and

metastasis and is substantially associated with suppression of

immune function; inhibition of angiogenesis is also a

promising therapeutic strategy for impeding tumor growth

(Sharma et al., 2001; Motz and Coukos, 2011; Welti et al.,

2013). However, immune-related pathways, such as cell

killing, CCR, antigen presentation, interferon response, and

myeloid immunity were found to be more active in the low-

risk group, which suggested that antigen presentation, anti-

tumor immunity, and cell killing were more potent in the low-

risk group (Luo et al., 2017; McGranahan et al., 2017; Miar

et al., 2020). The above findings suggested that tumor growth

and treatment resistance in the high-risk group resulted in

significantly poorer survival of patients in the high-risk group;

while the low-risk group exhibited strong anti-tumor

immunity.

As TME and immune activity are strongly associated with

cancer treatment and prognosis (Bruni et al., 2020; Riera-

Domingo et al., 2020), we assessed the differences in TME

and immune activity between the risk groups. Notably, the

low-risk group had higher immune scores and immune

checkpoint activity, which suggested that the low-risk group

was relatively immunocompetent. Although patients in the

high-risk group appeared to have higher cell-killing activity,

such as by NK cells and CD8 T cells, significantly elevated

Tregs could suppress the immune responses in the high-risk

group, thereby leading to immune escape (Tanaka and

Sakaguchi, 2017; Knochelmann et al., 2018). In contrast,

dendritic cells, acidic granulocytes, resting CD4 memory

T cells, and neutrophils showed elevated abundance in the

low-risk group, which suggested that patients in the low-risk

group had a greater capacity for antigen-presentation and

intrinsic immunity (Wculek et al., 2020). The above findings

suggested that in the high-risk group, the patients developed

immunosuppressed ‘cold’ tumors with a weaker anti-tumor

response, leading to poorer prognoses. In contrast, patients in

the low-risk group developed immunocompromised ‘hot’

tumors, leading to better prognoses.

TMB is a biomarker of immunotherapeutic response. In

general, higher TMB predicts greater benefit from

immunotherapy, but there is variability in its prognostic

role in different tumors (Chalmers et al., 2017; Liu et al.,

2019). Higher TMB in the low-risk group was found in the

present study. Additionally, the mutation frequencies of

TP53 and APC were markedly greater in the high-risk

group, whereas those of PIK3CA, FAT3, FAT4, and LRP1B

were higher in the low-risk group. Considering that the low-

risk group has a robust immune function, indeed, patients in

the low-risk group seemed to benefit more from

immunotherapy. We also analyzed the pattern of CNVs in

TCGA-COAD cohort and found that patients in the high-risk

group had greater chromosomal amplification and deletion

events. Studies show that somatic structural rearrangements

in chromosomes actively drive oncogenesis and lead to greater

tumor heterogeneity and chemoresistance (Stephens et al.,

2009; Stephens et al., 2011; Waddell et al., 2015). These results

suggested that patients in the low-risk group may be more

sensitive to immunotherapy and chemotherapy than those in

the high-risk group.

Many studies have shown that bioinformatics has amazing

prospects in dealing with genomic variation, TME, and precision

therapy (Jiang et al., 2020; Wang et al., 2021; Jiang et al., 2022; Yu

et al., 2022). As previous results strongly suggested higher

sensitivity to treatment among patients in the low-risk group,

we finally analyzed the sensitivity of COAD patients in both

groups towards chemotherapy and immunotherapy. In both

cohorts, we confirmed that patients in the low-risk group

were more sensitive to cisplatin and 5-FU. In addition, TIDE

and subclass mapping algorithms also predicted that patients in
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the low-risk group were more sensitive to PD1 immunotherapy.

We confirmed greater sensitivity to PD-L1 treatment and a

longer survival time in the low-risk group using an external

immunotherapy cohort. This may be because these patients had

elevated TMB and neoantigen counts. In conclusion, these results

affirmed that the risk model constructed in this study was a

powerful tool and may have implications in guiding the

treatment of patients with COAD.

There are certain limitations to the present study. First, due

to the paucity of data, we only considered inter-patient

heterogeneity and not intratumoral heterogeneity. Second,

although we have used certain algorithms to determine the

accuracy of this risk model in predicting the sensitivity of

patients to chemotherapy and immunotherapy, further

validation in prospective cohort studies and clinical data is

required. Finally, in vitro and in vivo experiments are

necessary to confirm the specific biological functions of NRGs

in COAD.

In summary, this study pioneered the construction of the

NRG-based risk model and identified high- and low-risk

patients, showing heterogeneity in functional status,

immune microenvironment, genomic variants, and clinical

outcomes. In addition, the constructed risk model can be

applied to predict the sensitivity of COAD patients toward

immunotherapy and chemotherapy. Overall, these results are

expected to advance the understanding of necroptosis, clinical

management, and precise treatment options for patients

with COAD.
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