
Comparative mitogenomes
provide new insights into
phylogeny and taxonomy of the
subfamily Xenocyprinae
(Cypriniformes: Cyprinidae)

Zhi Zhang1*, Jiming Li2,3, Xiaodong Zhang2, Bingming Lin2 and
Jianming Chen1*
1Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, College of
Geography and Oceanography, Minjiang University, Fuzhou, China, 2Longyan Fisheries Technology
Extension Center, Longyan, China, 3Liancheng Jiming Fish Farming Company, Longyan, China

Xenocyprinae is a cyprinid subfamily that not only has a discrete geographic

distribution but also has a long history dating to the Early Miocene. However, it is

controversial whether systematic classification and some species validity of

Xenocyprinae exist, as well as its phylogenetic relationships and evolutionary

history. In the present study, we first reviewed the description and taxonomic

history of Xenocyprinae, and then the complete mitochondrial genome of

Distoechodon compressus, an endemic and locally distributed species

belonging to Xenocyprinae, was sequenced and annotated. Finally, all the

mitogenomes of Xenocyprinae were compared to reconstruct the

phylogenetic relationship and estimate the divergence time. The results

showed that the mitogenomes are similar in organization and structure with

16618–16630 bp length from 12 mitogenomes of eight species. Phylogenetic

analysis confirmed the monology of Xenocyprinae and illustrated three clades

within the Xenocyprinae to consist of ambiguous generic classification.

Plagiognathops is a valid genus located at the base of the phylogenetic tree.

The genus Xenocypris was originally monophyletic, but X. fangi was excluded.

Divergence time estimation revealed that the earliest divergence within

Xenocyprinae occurred approximately 12.1 Mya when Plagiognathops

separated from the primitive Xenocypris. The main two clades (Xenocypris

and (Distoechodon + Pseudobrama + X. fangi)) diverged 10.0 Mya. The major

divergence of Xenocyprinae species possibly occurred in the Middle to Late

Miocene and Late Pliocene, suggesting that speciation and diversifications

could be attributed to the Asian monsoon climate. This study clarifies some

controversial issues of systematics and provides essential information on the

taxonomy and phylogeny of the subfamily Xenocyprinae.
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Introduction

Xenocyprinae is a cyprinid subfamily that not only has a

discrete geographic distribution (restricted to East Asia,

especially in China) but also has a long history (its extant

genera and species became dominant and continued to

develop in the beginning of the Early Pliocene) (Chang

et al., 1996). The subfamily Xenocyprinae made it possible

to distinguish populations and species in response to both

profound and more recent historical environmental changes

in East Asia (Xiao et al., 2012). Moreover, many of the species

have been domesticated into excellent aquacultural varieties

with high economic value (Lin et al., 2021), and they could

also be used for ecological restoration of rivers to improve

water quality and control the algae bloom in freshwater

because most of them graze on benthic algae and debris

(Zhang et al., 2015). Hence, the taxonomic status, historical

evolution, and phylogeny of Xenocyprinae have become

subjects of increasing concern.

The subfamily Xenocyprinae was established by Günther

(1868) and subsequently discussed in terms of systematics and

phylogeny. With further studies on the systematic status,

different views on its classification have emerged. It

appeared to be similar to Chondrostoma because of the

sharp horny beak of the lower jaw and six main teeth of

the lower pharyngeal teeth (Chu, 1935; Yang, 1964). However,

Howes (1981) gave a contrary report because the superior

pharyngeal process handle of the basal occipital was different,

with many different signs and no overlap in distribution. Chen

et al. (1984) incorporated Hypophthalmichthyinae into

Xenocyprinae based on skeletal characteristics. The latest

version of fishes of the world also supported that

Xenocyprinae included Xenocypris, Hypophthalmichthys,

and Aristichthys. In the current classification, Fauna Sinica

is proposed to be a Xenocyprinae, including 10 species in four

genera, as a sister group to Hypophthalmichthyinae (Liu,

1998). Zhao et al. (2009) reviewed them and proposed

12 species (previously 13, but Distoechodon multispinnis

later seemed to be a subspecies of D. tumirostris) in four or

five genera, which are the current systematics of Xenocyprinae.

Molecular evidence of the subfamily Xenocyprinae is

consistent with the results of previous studies (He et al.,

2004; Tang et al., 2013), and the two main clusters and the

genus Xenocyprioides are at the base of the phylogenetic trees.

Furthermore, Xenocyprioides was established by Chen (1982)

in Guangxi Province, China, but it is similar to Danioninae in

morphological characteristics (Liu, 1998) and not closely

related to other genera of Xenocyprinae based on

phylogenetic analyses (Fang et al., 2009; Xiao et al., 2012)

and differences in habitats and habits. Therefore,

Xenocyprioides were not included in the present study.

Based on the results of the aforementioned molecular

studies, there is still ambiguity regarding the phylogenetic

positions and evolutionary history of some species, and the

systematic questions have not been adequately answered after

decades of discussion. For example, the genus status of D.

hupeinensis remains controversial. Based on its morphology,

early development, and substitution of pharyngeal teeth, Shan

(1998) proposed the movement of D. hupeinensis from

Distoechodon to Xenocypris and renamed it as X.

hupeinensis. Phylogenetic analysis from mitochondrial

evidence supports this point of view (Zhang et al., 2022).

However, the current taxonomic characteristics between

genera of Xenocyprinae were in accordance with the

number of rows of lower pharyngeal teeth and folds of the

pelvic fin base still supported it as the Distoechodon genus

(Liu, 1998). Another controversy is whether Plagiognathops is

a valid genus. Based on the three rows of pharyngeal teeth, X.

microlepis was classified into the genus Xenocypris (Liu, 1998).

However, Zhao et al. (2009) reclassified it as Plagiognathops

because the lateral line scales were more than 70. Both views

are supported by different morphological evidence and

phylogenetic studies based on different molecular markers

that show different topologies (He et al., 2004; Xiao et al.,

2012; Zhang et al., 2022). Moreover, it is still debated whether

D. compressus is a valid species in both morphological and

molecular studies (support as a valid species: Yang, 1964; Cao

and Meng, 1992; Liu, 2002a; Liu et al., 2021; Zhao et al., 2009;

seem as just a subspecies: Bănărescu, 1970; He et al., 1989; Liu,

1998; Xiao et al., 2012). Although there is growing evidence to

support the validity of D. compressus (Lin et al., 2020; Chen

et al., 2021), there are no systematic characteristics or methods

for classification, and even common molecular markers

cannot distinguish it from its related species (D.

tumirostris) (Zhang et al., 2022). Therefore, the direct aim

of this study was to understand the validity of D. compressus

and to further identify the variation in mitogenomes within

Xenocyprinae.

Mitochondrial DNA (mtDNA) is a closed-circular

molecule found in most animals and is independent of the

nuclear genome. Animal mtDNA is generally small (15–20 kb)

and contains 37 genes, 13 protein-coding genes (PCGs),

22 tRNAs, and 2 rRNAs (Macey et al., 1997; Satoh et al.,

2016; Kobayashi et al., 2021). Mitochondria play an essential

role in oxidative phosphorylation, which is essential for the

production of ATP and a variety of other biochemical

functions (Chaban et al., 2014). Mitochondrial DNA has

the advantages of matrilineal inheritance and evolutionary

conservation and has been used as a genetic marker to detect

genetic differentiation and molecular evolution in population

genetics (Avise, 2000; Miya and Nishida, 2015). Notably, the

complete mtDNA genome has been proven to be more

informative at deep phylogenetic levels (Kong et al., 2020;

Wang et al., 2021) and is useful in recovering internal nodes

with high statistical support compared to partial mtDNA

genes (Yu et al., 2022). With rapid advances in sequencing
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technologies, complete mitogenome sequences are becoming

available, providing abundant data on comparative analyses of

mitogenomes and phylogenetic reconstruction (Shi et al.,

2018). From single conservative protein-coding genes, such

as Cox1 and Cyt b, to multi-gene combination, phylogenetic

studies have entered the omics era based on complete

mitochondrial genomes or even the whole genomes

(Ellegren, 2014; Koepfli et al., 2015). Phylogenetic analyses

based on mitogenome sequences often result in better

resolution than analyses that use few gene sequences

(Bleidorn et al., 2009; Kobayashi et al., 2021). At present,

except D. compressus and D. hupeinensis, the complete

mitochondrial genomes of other species of the subfamily

Xenocyprinae have been reported (Saitoh et al., 2006; He

et al., 2008; Liu et al., 2014; Hu et al., 2015a, 2015b; Xu

et al., 2019; Xue et al., 2019; Liu et al., 2021). The same

phylogenetic results were analyzed by complete

mitogenomes, and X. fangi clustered with the genus

Distoechodon (Liu et al., 2021). Hence, the phylogenetic

relationships and speciation within the subfamily

Xenocyprinae need further discussion.

In the present study, we systematically reviewed the

description and taxonomic history of the subfamily

Xenocyprinae (in Abstract). We then sequenced the complete

mitogenome ofD. compressus and compared the mitogenomes of

Xenocyprinae to reconstruct the phylogenetic relationship and

estimate divergence time among the subfamily Xenocyprinae.

The aim of this study was to understand the phylogenetic

relationships and evolutionary history of the subfamily

Xenocyprinae, confirm the genus classification and the validity

of D. compressus, and provide references for the systematics of

cyprinid fish.

Materials and methods

Sampling, DNA extraction, polymerase
chain reaction, and sequencing

Specimens were collected using gill nets from a tributary of

the Ting River (116.62°E, 25.35°N) in Liancheng County,

Fujian Province, China, from April to July 2021. Thirty

specimens were identified following Zhao et al. (2009).

Muscle tissues were preserved in 95% ethanol and stored at

the Institute of Oceanology, Minjiang University. Total

genomic DNA was extracted using the salt extraction

method (Aljanabi and Martinez, 1997). The complete

mitochondrial genome of D. compressus was amplified

based on the two-step process (six universal primers and

six specific primers described in Supplementary Table S1).

Polymerase chain reaction (PCR) amplification was carried

out in a 20 μL reaction following Zhang et al. (2021). The PCR

products were examined using electrophoresis on a 1.0% TAE

agarose gel and sequenced by Sangon Biotech (Shanghai,

China).

Annotation, gene order, and genomic
structure analyses

The overlapping fragments were assembled into a linear

mitochondrial DNA sequence using SeqMan (DNASTAR),

and the assembled sequences were manually checked (Jin and

Sun, 2018). The complete mitochondrial genome sequences of

Xenocyprinae species included all the Xenocyprinae fish that

have been reported so far, representing four genera (species

and accession numbers are listed in Table 1), except for

Xenocyprioides. The complete mitochondrial genome

sequences were downloaded from the GenBank with their

features and structures. All the sequences were annotated

using the MITOS web server (Bernt et al., 2013) and

determined in MitoFish (http://mitofish.aori.utokyo.ac.jp/)

to compare the genomic structure and gene order (Sato

et al., 2018). Transferred RNA genes and their secondary

structures were predicted using the tRNAscan SE web

server (http://lowelab.ucsc.edu/tRNAscan-SE/) (Lowe and

Chan, 2016). The composition of amino acids, nucleotide

bases, and relative synonymous codon usage (RSCU) was

calculated using MEGA X software (Kumar et al., 2018).

Variable sites among the sequences were also detected

using MEGA software. Nucleotide composition skew was

calculated using the following formulas: AT-skew =

(A—T)/(A + T) and GC-skew = (G—C)/(G + C) (Perna

and Kocher 1995).

Phylogenetic analysis

Phylogenetic analyses were reconstructed using maximum

likelihood (ML) and Bayesian inference (BI) methods, based

on concatenated nucleotide sequences of 13 PCGs from

12 individuals belonging to the subfamily Xenocyprinae,

with C. carpio, H. molitrix, and A. nobilis as outgroups.

The best-fit partition model of nucleotide evolution of

PCGs was identified using PartitionFinder v2 (Lanfear

et al., 2012) in the PhyloSuite platform (Zhang et al., 2020),

and it was GTR + I + G according to the Akaike information

criterion (Bozdogan 1987). ML and BI analyses were

performed using MrBayes v3.2.7 and RaxML

v8.2.12 programs following their manuals, respectively

(Ronquist et al., 2012; Stamatakis 2014). Bootstrap ML

analysis was implemented under the GTRGAMMAI model,

and 1000 replications were used to evaluate the bootstrap

support values and search for the best ML tree. BI analysis was

run as two simultaneous Markov chain Monte Carlo (MCMC)

chains for 10 million generations, with sampling of every
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1000 generations, using a burn-in rate of 25%. Phylogenetic

trees were visualized through the online tool Interactive Tree

Of Life v5 (iTOL, https://itol.embl.de/) (Letunic and Bork

2021).

Divergence time estimation

Divergence time among the subfamilies was estimated using

the amino acid sequences of 13 PCGs with a relaxed clock log-

normal model in BEAST v.1.10 (Drummond and Rambaut,

2007). A model of the Yule process was selected for the tree

prior. To estimate the divergence time calibration, two

calibration points were used as priors for the divergence time

of the corresponding splits. The most recent common ancestor of

Xenocyprinae is dated to 15 million years ago (Mya), as described

by Chang et al. (1996) and Chen et al. (2005). Also, the 18.80Mya

point calibration was set as the divergence time of

Hypophthalmichthyinae from cyprinids (Wang et al., 2012).

The final Markov chain was run twice for 100 million

generations, with sampling of every 10,000 generations. The

first 10% of generations were discarded as burn-in, according

to the convergence of chains checked using Tracer v. 1.7, and the

ESS values of all parameters were above 200. Themaximum clade

credibility tree was generated using TreeAnnotator v. 2.4.1 (part

of the Beast package) and visualized in the iTOL web tool.

Results and Discussion

Mitogenome structure and organization

In the present study, the complete mitogenome of D.

compressus was successfully sequenced and annotated. It was

deposited in the GenBank under accession number OM994436.

All the reported mitogenomes of Xenocyprinaewere compared to

analyze the similarities and differences in structure and

organization between the sequences. The mitogenomes of nine

xenocyprinid fish, ranging from 16623 bp to 16630 bp length,

have 2511 variable sites, where 698 variable sites are singletons

among them. The gene content and order were as expected for a

typical vertebrate mitogenome which comprises 13 PCGs,

22 tRNA genes, 2 rRNA genes, and 1 non-coding control

region. More than half of the genes were encoded on the

heavy (H-) strand: 9 PCGs and 14 tRNAs (Figure 1). The bias

toward high AT content (55.8%–58.8%) is consistent with

general findings in teleost mitogenomes (Sharma et al., 2020;

Sun et al., 2021; Yu et al., 2021). The average nucleotide

composition of all sequences is A (31.2%), T (25.5%), G

(16.2%), and C (27.1%). For the complete mitogenomes, AT-

skew was all positive, ranging from 0.075 (P. simoni) to 0.106 (D.

compressus and D. tumirostris), and GC-skew was slightly

negative (−0.24 ~ −0.26) (Table 1).

Protein-coding genes

Similar to other vertebrates, ATG is the regular initiation

codon in almost all PCGs, except for Cox1, which uses GTG.

However, many PCGs were not terminated with TAG or TAA

but possessed an incomplete stop codon (six or seven genes),

which was more than most of the mitogenomes of teleosts (Sun

et al., 2021; Yu et al., 2021; Zhang et al., 2021). This can be

corrected by posttranscriptional polyadenylation (Jondeung

et al., 2007; Shi et al., 2018). Ranging from 11422 to

11429 bp, there was a slightly positive AT-skew (0.005–0.039)

and negative GC-skew (−0.26 ~ −0.29) (Table 1). This is

consistent with the bias of using A rather than T in the PCGs

of most teleosts, suggesting that there was no unique selective

pressure or processes of the xenocyprinid species detected in

TABLE 1 Comparison of size and base composition of mitogenomes.

Species Length A +
T
content

AT-
skew

GC-
skew

PCGs
AT-
skew

PCGs
GC-
skew

CR
size

Reference/GenBank
accession
number

Distoechodon
tumirostris

16620 56.8 0.106 −0.26 0.039 −0.29 937 DQ026431, He et al. (2008); NC011208

Distoechodon
compressus

16621 56.8 0.106 −0.26 0.039 −0.29 937 In this study

Xenocypris fangi 16619 56.8 0.104 −0.26 0.035 −0.28 935 MW366639, Liu et al. (2021)

Xenocypris argentea 16629 56.5 0.104 −0.26 0.032 −0.29 934 AP009059, Saitoh et al. (2006)

Xenocypris davidi 16630 56.7 0.104 −0.25 0.032 −0.29 935 KF039718, Liu et al. (2014); MN264265, Xu et al.
(2019)

Xenocypris yunnanensis 16630 56.7 0.104 −0.26 0.032 −0.29 934 KY993905, Xu et al. (2019)

Plagiognathops
microlepis

16623 56.8 0.097 −0.24 0.025 −0.27 938 KF383387, Hu et al. (2015a)

Pseudobrama simoni 16618 56.8 0.075 −0.24 0.005 −0.26 939 KF537571, Hu et al. (2015b)
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several fish (Yu et al., 2021; Zhang et al., 2021). Amino acid codon

usage of 11 mitogenomes was assessed by relative synonymous

codon usage (RSCU) values. Leucine 2 (Leu2), threonine (Thr),

and proline (Pro) were the most frequently translated amino

acids, whereas glutamine (Glu) and aspartate (Asp) were the least

used amino acids. CUA (Leu), AUU (Ile), and AAU (Asn) were

codons commonly used in Xenocyprinae mitogenomes. The

over-usage of A and T at the third position indicates the

possibility of genome bias, optimal selection of tRNA, or

DNA repair efficiency, referring to other teleosts (Fischer

et al., 2013; Zhang et al., 2021).

Non-coding genes

The sizes of the 22 tRNA genes ranged from 68 bp to 76 bp,

which comprised 9.4% of the complete mitogenomes. Most

secondary structures of tRNAs were recovered as ordinal clover-

leaf structures (21 of the 22 tRNAs), which included the amino acid-

accepting stem (AAS), dihydrouridine stem and loop (DSL),

anticodon stem and loop (ASL), thymidine stem and loop (TSL),

and variable stem and loop (VSL). However, tRNASer (AGN) lacks

the DHU arm, which is commonly observed in many metazoan

mitogenomes (Frazen-Abel and Hagerman, 2008; Watanabe et al.,

2014). The two rRNA genes were separated by tRNAVal, with

lengths of 961–964 bp and 1688–1693 bp. Similarly, a strong AT-

bias was also detected in rRNAs, with a strongly positive AT-skew

(0.253–0.269) and a slightly negative GC-skew (−0.06 ~ −0.08).

The length of the CR ranged from 930 to 938 bp, with a

significantly higher A + T content (65.5%) and relatively low AT-

skew (0.0046). The control region contains three domains: a

termination-associated sequence (TAS), central conserved

domain (CD), and conserved sequence block (CSB). The

identified conserved sequences also exist in other

Cypriniformes (Liu, 2002b; Xiao and Zhang, 2000; Shi et al.,

2018). Miya and Nishida (2015) proposed that CR plays a crucial

FIGURE 1
Mitogenomic map of the mitogenomes of Xenocyprinae species.
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role in the initiation and regulation of transcription and

replication. The TAS may terminate the synthesis of the heavy

strand (Fischer et al., 2013), and the central conserved domains

(CSB-F, CSB-E, and CSB-D) are thought to be associated with the

positioning of RNA polymerase for both priming replication and

transcription (Castresana, 2000). All the conserved blocks may

maintain the function of the control region. We found that

CSB2 was the most conserved. However, some domains (such

as CSB-E) experienced rapid evolution 5 to 10 times that of the

complete mtDNA. In this study, the variation in CR may be an

important marker for distinguishing different species of

Xenocyprinae.

Genetic distance and variation in
mitochondrial sequences

The pairwise genetic distances ranged from 0.002 (X. davidi

and X. argentea) to 0.104 (P. microlepis and P. simoni) with an

average of 0.064 ± 0.029 (Table 2). In the present study, the

variation sites between the two Distoechodon species were only

0.28% of the complete mitogenomes, far less than other intra-

species studies. However, morphological differences between

these two Distoechodon species have been widely reported

(Cao and Meng, 1992; Zhao et al., 2009; Lin, 2020; Chen

et al., 2021). The amount of nucleotide variation in the

mitogenomes that can be used to distinguish species or genera

levels is still not clarified. The main differences in nucleotide

composition included two parts. First, the length of each part

showed three differences in 16s rRNA, ND2, and the gaps after

ND2. The length of the 16 S rRNA ranged from 1688 bp to

1693 bp. ND2, X. davidi, X. argentea, and X. yunnanensis had a

complete stop codon (TAA), whereas the remaining sequences

had an incomplete stop codon (T++). Six nucleotides were

identified between ND2 and tRNATrp in X. davidi, X. argentea,

and X. yunnanensis more than others. Hence, these two

differences can be used as loci to distinguish Xenocypris from

other genera. In addition, we examined the number and

percentage of variation in all PCGs. ND2 and ND4 were the

most conserved PCGs, with variation sites accounting for 5%.

Alternatively, the variation sites of ND1, ATP6, ND3, ND5, and

ND6 exceeded 20% among the nine xenocyprinid fish. CR also

showed a high variation within less than 1 kb sequence, but most

of the variation sites were concentrated in the CD and CSB

domains.

Phylogenetic relationship and updated
classification of the subfamily
Xenocyprinae

Phylogenetic trees were constructed using the BI and ML

methods, based on concatenated nucleotide sequences of

13 PCGs. The phylogenetic trees exhibited a congruent topology

according to both methods. As shown in Figure 2, the subfamily

Xenocyprinae was monophyletic within Cyprinidae corroborating

the result of previous studies on the phylogeny of Cyprinidae (Saitoh

et al., 2006; Wang et al., 2007; He et al., 2008; Yang et al., 2015; Tao

et al., 2019; Cheng et al., 2022). Within the subfamily Xenocyprinae,

there were three clades representing different genera and their

phylogenetic relationships. Plagiognathops was located at the base

of the phylogenetic tree with a pairwise genetic distance of more

than 0.08 between all the other xenocyprinid fish, which are

completely different from those of previous studies based on

partial mitochondrial genes (He et al., 2004; Xiao et al., 2012;

Cheng et al., 2022). For the remaining two clades, it mainly

consisted of genera Xenocypris and (Distoechodon +

Pseudobrama). X. fangi is closely related to Distoechodon with a

genetic distance of less than 0.02. We suspect that sampling or

sequencing in Liu et al. (2021) contributed to this unusual result. All

previous phylogenetic analyses using partial mtDNA genes revealed

that X. fangi clustered to the Xenocypris clade (He et al., 2004; Xiao

et al., 2012; Zhang et al., 2022).Therefore,more sequences ofX. fangi

are needed to understand their accurate phylogenetic position.

The current results clarified some controversies in the

systematics of the subfamily Xenocyprinae. All of the

aforementioned results support the validity of genus

Plagiognathops. The key characteristics of Plagiognathops are

TABLE 2 Pairwise genetic distance between each two species within Xenocyprinae.

Species Dc Dt Xf Xa Xd Xy Pm

Distoechodon compressus

Distoechodon tumirostris 0.0028

Xenocypris fangi 0.0209 0.0205

Xenocypris argentea 0.0672 0.0664 0.067

Xenocypris davidi 0.0672 0.0664 0.0669 0.0024

Xenocypris yunnanensis 0.0668 0.0658 0.0663 0.0126 0.011

Plagiognathops microlepis 0.0844 0.0838 0.0844 0.0809 0.0807 0.0811

Pseudobrama simoni 0.0832 0.0829 0.0842 0.0873 0.0871 0.0864 0.1039
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lateral line scales of less than 50 and gill rakers on the first gill arch of

more than 100 (Zhao et al., 2009). Second, strong evidence supports

the validity of D. compressus. Previous studies based on partial

mitochondrial markers could not accurately distinguish D.

compressus and D. tumirostris (Cheng et al., 2022; Zhang et al.,

2022). In the present study, using complete mitogenomes, the two

species could be separated from each other by phylogenetic analysis.

Although the genetic distance between the two species is very low,

we also found the main variation between twoDistoechodon species

in Cox1 and ND5 genes, so that species classification can be

identified by specific loci.

Divergence time estimation

The two clusters (Xenocypris and (Distoechodon +

Pseudobrama)) diverged 10.0 Mya (95% CI: 7.4–12.6 Mya)

(Figure 3). The divergence time in this study was earlier than

that of previous studies on cyprinid fish, which were based on

nuclear recombination activating gene 2 and the

mitochondrial 16 S rRNA and cytochrome b genes

(6.7 Mya, Wang et al., 2012) but later than that reported

for East Asian opsariichthyin-xenocyprinin-cultrin fish

(14.4 Mya) by Cheng et al. (2022). Plagiognathops was

FIGURE 2
Phylogenetic relationship within the subfamily Xenocyprinae using BI and ML methods based on the 13 PCGs. Note: All the support values for
the ML/Bayesian method are 1.00 or 100 so that it is not labeled at the nodes in the figure.

FIGURE 3
Divergence time estimation of Xenocyprinae utilized two fossil clocks in BEAST based on the best-scoring maximum-likelihood tree. Note:
Node bars show 95% CIs of the divergence time estimate.
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reconfirmed as a valid genus and began to diverge from

Xenocypris and Distoechodon approximately 12.1 Mya. The

two Distoechodon species (D. compressus and D. tumirostris)

separated from each other 0.6 Mya and were still at an early

stage of differentiation. Xenoprinins, as an important part of

East Asian freshwater fish, were recently shown to be related

to monsoon-driven climatic conditions and formation of river

and river–lake environments in East Asia (Cheng et al., 2022).

With a close relationship to the Tibetan Plateau uplift from

25 to 20 Mya (Xiao et al., 2012), the Asian monsoon climate

was rebuilt in the Early Neogene (23 Mya) (Guo et al., 2002;

Favre et al., 2015). The East Asian monsoon was further

strengthened in the late Early Miocene, from the Middle

Miocene (approximately 15–13 Mya) to the Late Miocene

(approximately 10–7 Mya), and the Middle Pliocene

(approximately 3.5 Mya) (Clift et al., 2008). In this study,

the major radiation of Xenocyprinae species possibly occurred

in the Middle to Late Miocene and Late Pliocene, which also

confirmed that Xenocyprinae fish were the vital case of Asian

monsoon climate resulting in speciation and diversification.
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