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Background: Extensive research revealed copper and lncRNA can regulate

tumor progression. Additionally, cuproptosis has been proven can cause cell

death that may affect the development of tumor. However, there is little

research focused on the potential prognostic and therapeutic role of

cuproptosis-related lncRNA in OSCC patients.

Methods: Data used were for bioinformatics analyses were downloaded from

both the TCGA database and GEO database. The R software were used for

statistical analysis. Mapping was done using the tool of FigureYa.

Results: The signature consist of 7 cuproptosis-related lncRNA was identified

through lasso and Cox regression analysis and a nomogram was developed. In

addition, we performed genomic analyses including pathway enrichment

analysis and mutation analysis between two groups. It was found that OSCC

patients were prone to TP53, TTN, FAT1 and NOTCH1 mutations and a

difference of mutation analysis between the two groups was significant.

Results of TIDE analysis indicating that patients in low risk group were more

susceptible to immunotherapy. Accordingly, results of subclass mapping

analysis confirmed our findings, which revealed that patients with low

riskscore were more likely to respond to immunotherapy.

Conclusion: We have successfully identified and validated a novel prognostic

signature with a strong independent predictive capacity. And we have found

that patients with low riskscore were more susceptible to immunotherapy,

especially PD-1 inhibitor therapy.
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Background

Oral squamous cell carcinoma (OSCC) is one of the most

common tumors in head and neck with the highest degree of

malignancy, with more than 370,000 new cases diagnosed and

177,000 deaths worldwide (Sung et al., 2021). Epidemiological

studies showed that OSCC is more prevalent in men, partly due

to factors such as alcoholism and smoking (Warnakulasuriya,

2009). Despite improvements in imaging technologies, surgical

methods, radiation treatment, and chemotherapy, there has been

no significant improvement in the 5-year survival rate of OSCC

patients (Kumar et al., 2016; Zanoni et al., 2019). Worse still,

many OSCC patients still battle with the terrible side effects even

after receiving treatment, including depression, nutritional

deficiencies and damage of the patient’s appearance and

ability to complete daily activities (Parke et al., 2022).

Currently, histological characteristics are the basis for vast

majority of the clinical prediction signatures. Therefore, it is

essential to find more effective targets that accurately predict the

prognosis of OSCC in order to enhance clinical diagnosis and

patient treatment.

Copper (CU), a necessary nutrient for all living organisms,

functions as a cofactor in numerous metabolic enzymes and plays

an essential role in diverse fundamental biological processes

(Grubman and White, 2014). In recent research, it was found

that cancer patients had much higher copper levels in their blood

and tumor tissues compared to healthy controls (Blockhuys et al.,

2017). A recent study proposed a novel form of copper-induced

cell death, which is defined cuproptosis, demonstrating that

excessive intracellular copper induced proteotoxic stress leading

to cell death (Tsvetkov et al., 2022). However, there are few

research focused on the cuproptosis and its biological functions

in OSCC. Therefore, whether copper-induced cell death is

involved in the occurrence and development of OSCC is

worthy of our further study. Meanwhile, we noticed the long

noncoding RNA (lncRNA), a well-regulated gene regulator,

playing a part in various biological and cellular processes, was

closely involved in tumorigenesis and progression of various

cancers (Fatica and Bozzoni, 2014). Accordingly, a large

amount of literature suggested that lncRNA can be used to

evaluate cancer prognosis and guide clinical therapies in various

tumors including OSCC. For example, lncRNA HOXA11-AS was

highly expressed in OSCC tissues and cells compared with healthy

controls, which contributes actively to the development of OSCC

(Niu et al., 2020). Additionally, in the AKT/mTOR pathway,

lncRNA CASC9 helps promote OSCC progression by

stimulating cell proliferation and suppressing autophagy-

mediated apoptosis (Yang et al., 2019). Moreover, a novel

lncRNA ORAOV1-B that can enhance the invasion and

metastasis of OSCC by binding to Hsp90 and activating the

NF-κB-TNFα signaling loop (Luo et al., 2021). In light of the

importance of cuproptosis and lncRNAs, new approaches to

predicting the prognosis of OSCC patients may be possible.

In this study, to understand the potential role of cuproptosis-

related lncRNA in OSCC, we systematically performed analyses

including cox regression analysis, nomogram analysis, pathway

enrichment analysis, mutation analysis and immune analysis.

Finally, a cuproptosis-related lncRNA based signature was

successfully constructed and validated, which could effectively

predict prognosis of OSCC patients. Notably, our findings

revealed that patients with low riskscore were more

susceptible to immunotherapy including PD-1 inhibitor

therapy. By taking these results into account, we will be able

to better understand the role of cuproptosis-related lncRNA in

OSCC and develop personalized treatments for each patient.

Methods

Data acquisition and preprocessing

RNA-sequencing data (row count files) and corresponding

clinical information of patients with head and neck squamous

cell carcinoma (HNSC) were downloaded from the TCGA

database (https://portal.gdc.cancer.gov) and GEO database

(https://www.ncbi.nlm.nih.gov/geo). TCGA data with

anatomic neoplasm subdivision were alveolar ridge, base of

tongue, buccal mucosa, floor of mouth, hard palate,

hypopharynx, lip, oral cavity, oral tongue, oropharynx and

tonsil (OSCC) served as the training cohort, and

GSE42743 data served as the validation cohort. All the data

were preprocessed by the following steps: standardized the

mRNA expression data, patients with well-annotated clinical

follow-up information including survival status and survival

time more 30 days were selected, merged the mRNA

expression data with the clinical information. All the

cuproptosis-related genes (n = 13) were collected from the

known literature (Tang et al., 2022).

Construction of cuproptosis-related
lncRNA prognostic signature

After preprocessing RNA-sequencing data and

corresponding clinical information, a total of 390 OSCC

patients in TCGA database were identified as a training

cohort, and a total of 206 data in GEO database were

identified as a validation cohort. Pearson’s correlation analysis

was performed to determine the correlation coefficient between

the expression of cuproptosis-related genes and the lncRNAs.

Then, lncRNAs we regarded as cuproptosis-related lncRNAs

according to the following criteria: | correlation coefficient

| >0.4 and p value less than 0.001 (p < 0.001). Next, the

lncRNAs associated with overall survival (OS, the time from

registration to death from any cause) time of OSCC patients were

identified using univariate Cox regression analysis. These
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lncRNAs were further screened using the lasso regression

analysis based on the “glmnet” R package. Following this, a

cuproptosis-related lncRNA prognostic signature was

constructed based on the cuproptosis-related lncRNAs which

were associated with OS identified by multivariate Cox regression

analysis. Importantly, the formula used to calculate the riskscore

of OSCC patients as follows:

riskscore � exp(cuproptosis

− related ln cRNAi)p∑
n

i�1
coef(ln cRNAi)

In this formula, exp (cuproptosis-related lncRNAi) indicated

the expression of these lncRNA, and coef (lncRNAi) indicated

the Cox coefficient of the these lncRNAs in the signature.

Verification of the signature and
development of the nomogram

First, we used the ‘maxstat’ R package (maximally selected rank

statistics with severe p-value approximations version: 0.7–25) to

calculate the optimal cut-off value of riskscore in both training

and validation cohort. Based on the optimal cut-off value of

riskscore, all patients were stratified into high-risk score group

and low-risk score group. In order to be close to the clinical

situation, patients with survival time less than 10 years were

selected for the further analysis. Then, the ‘survival’ R package

was used to analyze the differences in prognosis between the two

groups, and the significance of prognostic differences between the two

groups was evaluated using the log-rank test method. Next, the area

under the ROC (AUC) corresponding for 1-, 3-, and 5-years were

calculated to estimate the predictive accuracy of the signature.

Further, we conducted univariate and multivariate Cox regression

analyses to investigate whether the riskscore could serve as an

independent prognostic factor for OSCC patients. Finally, a

nomogram was established based on the riskscore and different

clinical factors (including age, gender, grade and stage), and the

calibration curve for 1-, 3-, and 5 years were plotted to assess the

utility of the nomogram.

Pathway enrichment analysis and
mutation analysis

On the one hand, positive immunotherapy-related signatures

were gathered from the known literature, and enrichment scores

were quantified using ‘GSVA’ R package (Hu et al., 2021). On the

other hand, hallmark gene set (https://www.gsea-msigdb.org/

gsea/downloads.jsp) was also selected to employ correlation

analysis with riskscore. In addition, gene set enrichment

analysis (GSEA) was conducted using the ‘ClusterProfiler’ R

package with curated gene sets, ontology gene sets and

oncogenic signature gene sets as reference sets. Then, somatic

mutation data of all tumors from cBioPortal database (https://

www.cbioportal.org/datasets) were gathered to compare

differences of tumor mutation burden (TMB) values between

OSCC patients and patients with other tumors. Finally, genes

with more than 10 mutations and p < 0.05 between the two

groups were considered mutation-differential genes, and

interaction effect analysis was performed among these

mutation-differential genes using ‘maftools’ R package.

Exploration of immune features and
prediction for immunotherapy

Based on the expression profile, we used the ‘ssGSEA’R package

to calculate scores of 35 immune infiltrating signatures for each

sample. Then, correlation analyses were performed between the

expression of each signature lncRNA and 22 immune cells. Immune

scores, stromal scores and estimate scores was calculated using

‘estimate’ R package. Further, differential expression analysis of

50 immune-checkpoint–relevant genes was conduct between the

two groups. Importantly, immunotherapeutic response was

predicted by tumor immune dysfunction and exclusion (TIDE)

algorithms, that patients with TIDE score >0 were regarded not be

susceptible to immunotherapy, and patients with TIDE

score <0 were regarded be susceptible to immunotherapy (Jiang

et al., 2018). Moreover, subclass mapping algorithm was applied to

determine the appropriateness of patients between two risk groups

for CTLA-4 inhibitor therapy or PD-1 inhibitor therapy (Hoshida

et al., 2007). Finally, the pharmacy medicine response of subtype

samples was also predicted based on the largest public

FIGURE 1
The flow chart of our study.
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pharmacogenomics database [Pharmaceutical Sensitivity Genomics

in Cancer (GDSC), https://www.cancerrxgene.org/].

Statistical analysis

All the R packages used were based on the R software

(version 4.0.2). Statistical significance for comparisons

between two groups was compared using Wilcox test, and

continuous variables were compared using Wilcoxon rank-

sum test. All p values were set as two-sided, and a p value <
0.05 was regarded as statistically significant.

Results

Data processing and identification of
cuproptosis-related lncRNAs

The flow chart of our study was shown in Figure 1. After

normalizing the expression data and excluding clinical data with

missing survival information, a total of 390 OSCC patients in

TCGA were assigned into the training cohort and 206 OSCC

patients in GSE42743 were assigned into the validation cohort. A

total of 13 cuproptosis-related genes were collected from the

known literature. Finally, based on co-expression analysis using

pearson’s correlation algorithm with the criteria |Cor| > 0.5 and

p < 0.001, 917 cuproptosis-related lncRNAs were identified and

were listed in Supplementary Table S1.

Cuproptosis-related lncRNA based
prognostic signature

Figure 2A showed the results of the co-expression analysis

between cuproptosis-related genes and lncRNAs. Then, univariate

Cox regression proportional hazards analysis was performed on

these cuproptosis-related lncRNAs, among which 24 lncRNAs

associated with OS with p < 0.01 were screened (Supplementary

Table S2), and Figure 2B showed the 14 lncRNAs with the lowest p

value. Furthermore, 24 OS-related lncRNAs extracted were

performed lasso cox regression analysis after 1,000 iterations for

further selection (Figures 2C,D). As shown in Figure 2E, we

constructed a prognostic signature consist of 7 cuproptosis-

FIGURE 2
Identification of cuproptosis-related lncRNA based prognostic signature. Notes: (A) Correlation analysis between the expression of
cuproptosis-related genes and the lncRNAs. (B) Univariate cox regression analysis of cuproptosis-related lncRNAs. (C,D) Lasso regression analysis
screened 24 cuproptosis-related lncRNAs (E) Forest plot of 7 prognostic lncRNAs identified by multivariate cox regression analysis (F) Kaplan-Meier
survival curves of signature lncRNAs in OSCC.
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related lncRNAs in the training cohort including AC090587.2,

C6orf99, AL513190.1, AC010894.2, AC099850.4, RPL23AP7,

AC098484.2, and coefficients for each signature lncRNA were

obtained using multivariate Cox regression analysis

(Supplementary Table S3). For each prognostic lncRNA, we also

conducted kaplan-meier (K-M) survival analysis to compare the OS

time between the groups with high and low expression (Figure 2F).

Evaluation and verification of the
prognostic signature

Based on the ‘maxstat’ R package (Maximally selected rank

statistics with several p-value parity Version: 0.7–25), the optimal

cut-off values of riskscore calculated were 1.212793 in training

group and 1.23567 in validation group. Based on this, patients

FIGURE 3
Identification of cuproptosis-related lncRNA based prognostic signature. Notes: (A,B) Kaplan-Meier curve analysis of the signature between
two groups in both training cohort and validation cohort. (C,D) In the risk plot, themortality rate of patients dramatically increased with an increase in
riskcore. (E,F) Time-dependent ROC curve analysis of 1-,3- and 5 years in both training cohort and validation cohort. (G,H) Univariate and
multivariate cox regression analysis of between the riskscore and clinical features of the signature. (I)Differential expression analysis of riskscore
in patients with different treatments status.
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were divided into high and low groups, and the ‘Survival’ R

package was further used to analyze the difference in prognosis

between the two groups. To compare prognosis between groups

based on samples, the log-rank test was applied in patients with

survival time less than 10 years, and a significant difference in

prognosis was finally observed in both training cohort

(Figure 3A; HR = 2.38 (1.75–3.24), p = 1.3e−08) and

validation cohort (Figure 3B; HR = 1.92, p = 8.6e−e),

indicating that riskscore may predict the prognosis of OSCC

patients. In tandem with the increase in riskcore, the mortality

rate of patients also increased dramatically both in training

cohort (Figure 3C) and validation cohort (Figure 3D).

Furthermore, the time-dependent AUC values were calculated

to assess the predictive sensitivity and specificity of the signature.

Results showed that the AUC value corresponding for 1-, 3-, and

5-years were 0.68, 0.69, and 0.69 in the training cohort

(Figure 3E) and 0.64, 0.54, and 0.95 in the validation cohort

(Figure 3F). In addition, univariate and multivariate Cox

regression analyses were performed to investigate whether the

riskscore could serve as an independent prognostic factor.

Univariate Cox regression showed that stage (p = 7.85e−05)

and riskscore (p = 1.21e−13) were associated with the prognosis

(Figure 3G). However, the multivariate Cox regression analysis

revealed that only the riskscore rather than other clinical factors

such as alcoholism and smoking remained being predictive for

the prognosis (Figure 3H). More remarkably, we found that no

difference in riskscore between patients in the treated and

untreated groups, suggesting that riskscore was independent

of whether patients have received treatments (Figure 3I).

Development of the riskscore based
nomogram

Based on ‘rms’ and ‘nomogramEx’ R packages, a riskscore-

based nomogram was established with other clinical factors

including age, gender, grade, stage (Figure 4A). C-index was

calculated using bootstrap method with 1000 resamples to assess

the utility of the nomogram, fromwhich we obtained the C-index

of the nomogram was 0.635. In addition, calibration curves for

FIGURE 4
Development and Validation of a riskscore based nomogram. Notes: (A) A riskscore based nomogram was constructed based on riskscore and
clinical characteristics of OSCC. (B–D) Calibration curves of the nomogram for the estimation of survival rates at 1-(B), 3-(C) and 5 years(D).
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predicting the probability of 1-, 3- and 5-years for OSCC patients

were plotted (Figures 4B–D).

Pathway enrichment and tumor mutation
burden

Each patient was assigned an enrichment score based on the

known immunotherapy-related signatures and hallmark gene set

using ‘GSVA’ R package. Then the result of correlation analysis

between these signatures and riskscore showed that the riskscore

was positively correlated with almost all of these

immunotherapy-related positive signatures (Figure 5A). To

further clarify the roles of biological processes and pathways

in OSCC patient prognosis, we choose curated gene sets,

ontology gene sets and oncogenic signature gene sets as

reference sets to conduct GSEA analysis between two groups

(Figures 5B–G). Meanwhile, somatic mutation data of all tumors

from TCGA were gathered and we found that level of TMB value

in OSCC patients was relatively higher compared with other

most tumors (Figure 6A). Furthermore, the mutational

landscapes of both high-risk group and low-risk groups were

visualized, from which we can observe that patients in both high-

risk group and low-risk groups were prone to TP53, TTN,

FAT1 and NOTCH1 mutations (Figures 6B,C). Moreover,

genes with more than 10 mutations and p < 0.05 between the

two groups were considered differentially mutated genes.

Analysis of mutation difference between two risk groups was

performed, and results revealed that USP34, ASXL3, LRRTM1,

TPTE, PIK3CA, ATRX, CACNA1C, DSP and KMT2E were

FIGURE 5
Pathway enrichment analysis of the signature. (A) Correlation analysis between riskscore and the enrichment scores of immunotherapy-
predicted pathways as well as hallmark gene signatures. (B,C) Using curated gene sets, GSEA analysis was performed between two risk groups. (D,E)
Using ontology gene sets, GSEA analysis was performed between two risk groups. (F, G) Using oncogenic signature gene sets, GSEA analysis was
performed between two risk groups.
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differentially mutated genes in low-risk group while TP53,

AJUBA, CDKN2A and NEB were differentially mutated genes

in high-risk group (Figure 6D). In addition, interaction effects

were observed among mutations of these genes (Figure 6E).

Immunity exploration and
immunotherapy response prediction

The ‘ssGSEA’ R package was firstly performed to quantify

scores of 35 immune infiltrating signatures including immune cells

and immune functions for each patient, from which significant

differences were observed between the two groups (Figures 7A,B).

Then correlation analyses were also conducted between the

expression of each signature lncRNA and 22 immune cells

(Figures 7C–I). Meanwhile, the ‘ESTIMATE’ R package was

performed to calculate the immune scores, stromal scores and

estimate scores for each patient, and we all these scores were higher

in patients with low riskscore compared with patients with high

riskscore (Figures 8A–C). Given that immune checkpoint inhibitor

therapy has shown important clinical advances in different tumors,

the distribution of 50 immune-checkpoint–relevant genes between

the two groups was presented in Figure 8D. In addition, analysis of

correlations revealed that riskscore correlated negatively with

CTLA4 and PD-1 expression (Figure 8E). Notably, tumor

immune dysfunction and exclusion, a novel algorithm used to

predict the likelihood of response to immunotherapy, was

performed to explore the association between the risk

stratifications and the effect of immunotherapy. The

distribution of TIDE scores in OSCC patient was shown in

FIGURE 6
Tumormutational analysis of the signature. Notes: (A)Distribution of TMB values of all tumors in TCGA database. (B,C)Mutational landscapes of
both high-risk group and low-risk groups. (D, E) Forest plot of differentially mutated genes in patients between two risk groups.
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Figure 9A. Following, the results of TIDE analysis showed that

patients with low riskscore had a lower TIDE score and Exclusion

score, suggesting that patients with low riskscore may be more

susceptible to immunotherapy (Figure 9B). And we can see that

there were 25.40% patients with low riskscore responded to

immunotherapy while only 14.81% patients with high riskscore

responded to immunotherapy (Figure 9C). To verify our results,

subclass mapping analysis was also performed to determine the

appropriateness of patients between two risk groups for

immunotherapy. As expected, PD-1 checkpoint therapy has

been shown to be more beneficial for patients with low

riskscore (Figure 9D). Finally, based on GDSC database, we

calculated the IC50 of 179 drugs to identify drugs whose

sensitivity differs between two risk groups using R ‘oncoPredict’

package (Supplementary Table S4), and the top eight drugs with

the most significant sensitivity differences were shown in

Figure 9E.

Disscussion

Globally, well known for the high likelihood of progression

and metastasis, head and neck tumors still pose the greatest risk

of death from OSCC (Sieviläinen et al., 2019). In one hand, while

diagnostic and therapeutic advances have made OSCC more

detectable, the 5-year survival rate still remains at about 40–50%

(Kumar et al., 2016). In another hand, after surgery, oral

squamous cell carcinoma commonly recurs or invades the

oral cavity because of its anatomical structure, that seriously

affects the clinical outcomes of OSCC patients (Wong and

Wiesenfeld, 2018). Recently, research revealed that in addition

to dysregulate copper homeostasis triggering cytotoxicity, altered

intracellular copper levels may affect cancer development and

progression (Babak and Ahn, 2021). Meanwhile, a novel cell

death pathway defined as cuproptosis has been proven can cause

toxic protein stress and cell death by binding copper with

FIGURE 7
Immune infiltrating signatures of the signature. Notes: (A,B)Differential expression analysis of immune cells and immune functions between the
two groups. (C–I) Correlation analysis between the expression of each signature lncRNA and 22 immune cells.
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lipoylated components of the tricarboxylic acid (TCA) cycle

(Tsvetkov et al., 2022). By constructing the 4NQO oral

carcinogenesis model, a research found a significant metabolic

transformation characterized by an increase in glycolysis and a

shortfall in the TCA cycle (Ge et al., 2021). In addition,

accumulating evidence showed that the prognosis in patients

with OSCC are significantly correlated with lncRNA molecular

subtype. Our study firstly developed and validated a novel

cuproptosis-related lncRNA based signature that can

effectively indicate the prognosis of OSCC patients and

immunotherapy response.

In this study, data from TCGA database was chosen as the

training cohort and data from GSE42743 was chosen as the

verification group. We first identified 917 cuproptosis-related

lncRNAs on the basis of co-expression analysis. Using the

univariate cox analysis, 24 cuproptosis-related lncRNAs linked

closely to prognoses of OSCC patients were identified. Then a

prognostic signature consists of 7 lncRNAs including

AC090587.2, C6orf99, AL513190.1, AC010894.2, AC099850.4,

RPL23AP7, AC098484.2 was constructed. Accurately predicting

HNSCC outcomes and developing new therapeutic targets can be

achieved with AC090587.2 and AL513190.1 (Zhou et al., 2022).

There is evidence that C6orf99 is involved in diverse biological

processes including spermatogenesis and development of

spermatogonia that plays a key role in male infertility (Omolaoye

et al., 2022). Moreover, the prognostic prediction of patients with

HNSCC may also be affected by AC010894.2, which may serve as a

potential therapeutic target (Lu et al., 2022). In addition, a study

revealed that AC099850.4 may serve an important role in the

tumorigenesis and progression of hepatocellular carcinoma (Qu

et al., 2022). And there were few literatures has been reported about

the other 2 lncRNAs. Based on the optimal cut-off values of riskscore

calculated by the ‘maxstat’ R package, all OSCC patients were

classified into high-risk group and low-risk group. Furthermore,

FIGURE 8
Significant difference of immunity features between two groups. Notes: (A–C) Patients with low riskscore had higher immune scores, stromal
scores and estimate scores compared with patients with high riskscore. (D) Differences in expression of 50 common immune-checkpoint–relevant
genes between two the groups. (E) Correlations analysis showed that riskscore negatively correlated with CTLA4 and PD-1 expression.
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the results from risk analyses, survival analyses, and 1-, 3-, and 5-

year time-dependent ROC analyses between two risk groups well

supported the effectiveness of the signature. And univariate and

multivariate Cox regression analyses between riskscore and different

clinical factors also revealed that the riskscore could serve as an

independent prognostic factor for OSCC patients. Next, based on

the risk score and other clinical factors, we developed a nomogram

for clinicians, and in 3-, 5-, and 8-year calibration analyses, the

nomogram could provide individualized, accurate survival

prediction results.

Through GSEA and mutation burden analysis, we delved

further into the underlying biological difference between the two

groups. The results of correlation analysis showed that the

riskscore were positively correlated with most

FIGURE 9
Immunotherapeutic response prediction and screening of potential drugs. Notes: (A) Distribution of TIDE score of each OSCC patient. (B)
Patients in low risk group have a lower level of TIDE score, Dysfunction score and Exclusion score. (C) Immunotherapy has a higher success rate with
low-risk patients. (D) The subclassmapping analysis showed that low-risk patients weremore likely to benefit fromPD-1 inhibitor therapy. (E) The top
eight drugs with the maximum log2FC values and the minimum p values in GDSC database.
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immunotherapy-related pathways. In the meantime, we choose

curated gene sets, ontology gene sets and oncogenic signature

gene sets as reference sets to conduct GSEA analysis, and results

suggested that most immune-related pathways were mainly

enriched in patients with low riskscore. In addition, we found

that patients in both high-risk group and low-risk groups were

prone to TP53, TTN, FAT1 and NOTCH1 mutations, and

USP34, ASXL3, LRRTM1, TPTE, PIK3CA, ATRX,

CACNA1C, DSP and KMT2E were differentially mutated

genes in low-risk group while TP53, AJUBA, CDKN2A and

NEB were differentially mutated genes in high-risk group.

Importantly, we analyzed the landscape of immune cells and

related immune function pathways between two groups, and we

found that the expression immune infiltrating signatures were

higher in patients with low riskscore. We also analyzed the

difference of expression of 50 immune-checkpoint–relevant genes

between the two groups. The results showed that patients in low risk

group had a higher expression of most checkpoint–relevant genes,

including PDCD1 and CTLA4, which has been reported as a

predictive biomarker in cancer immunotherapy (Patel and

Kurzrock, 2015). In addition, TIDE analysis showed that patients

in low risk group were more susceptible to immunotherapy than

patients in high risk group. Correspondingly, the same results were

confirmed in subclass mapping algorithm, which demonstrated that

patients in low risk group rather than in high risk group were more

likely to benefit from PD-1 checkpoint therapy.

In the present work, a cuproptosis-related lncRNA based

prognostic signature was successfully constructed and validated

with superior predictive precision of prognosis and therapy for

patients with OSCC. However, there were still several limitations

in our research. Firstly, since our study only included individuals

fromWestern populations, our study may have some population

and genomic bias. Secondly, our prognostic signature was

validated in only GSE42743 data. Though we identified some

novel lncRNAs related to cuproptosis that have not been

previously reported in OSCC, which may serve as a critical

reference for later research, our work is an exploratory

analysis for the lack of other external cohorts including the

signature lncRNA expression data to validate our findings.

Finally, further functional experiments need to be performed

to investigate the potential molecular mechanisms between

cuproptosis-related lncRNAs and the signature.

Conclusion

In conclusion, we systematically performed bioinformatics

analysis to explore the biological functions and prognostic value

of cuproptosis-related lncRNAs in OSCC patients. We

constructed and validated a novel cuproptosis-related lncRNA

based prognostic signature, and possible immune-related

mechanism underlies this signature were identified. Lastly,

and most importantly, all the results in our study indicated

that patients with low riskscore were more susceptible to

immunotherapy, especially PD-1 inhibitor therapy.
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