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Identifying pathogenic missense variants in hereditary cancer is critical to the
efforts of patient surveillance and risk-reduction strategies. For this purpose,
many different gene panels consisting of different number and/or set of genes
are available and we are particularly interested in a panel of 26 genes with a
varying degree of hereditary cancer risk consisting of ABRAXAS1, ATM, BARD1,
BLM, BRCA1, BRCA2, BRIP1, CDH1, CHEK2, EPCAM, MEN1, MLH1, MRE11, MSH2,
MSH6, MUTYH, NBN, PALB2, PMS2, PTEN, RAD50, RAD51C, RAD51D, STK11,
TP53, and XRCC2. In this study, we have compiled a collection of the missense
variations reported in any of these 26 genes. More than a thousand missense
variants were collected from ClinVar and the targeted screen of a breast cancer
cohort of 355 patients which contributed to this set with 160 novel missense
variations. We analyzed the impact of the missense variations on protein
stability by five different predictors including both sequence- (SAAF2EC and
MUpro) and structure-based (Maestro, mCSM, CUPSAT) predictors. For the
structure-based tools, we have utilized the AlphaFold (AF2) protein structures
which comprise the first structural analysis of this hereditary cancer proteins.
Our results agreed with the recent benchmarks that computed the power of
stability predictors in discriminating the pathogenic variants. Overall, we
reported a low-to-medium-level performance for the stability predictors in
discriminating pathogenic variants, except MUpro which had an AUROC of
0.534 (95% CI [0.499–0.570]). The AUROC values ranged between
0.614–0.719 for the total set and 0.596–0.682 for the set with high
AF2 confidence regions. Furthermore, our findings revealed that the
confidence score for a given variant in the AF2 structure could alone predict
pathogenicity more robustly than any of the tested stability predictors with an
AUROC of 0.852. Altogether, this study represents the first structural analysis of
the 26 hereditary cancer genes underscoring 1) the thermodynamic stability
predicted from AF2 structures as a moderate and 2) the confidence score of
AF2 as a strong descriptor for variant pathogenicity.
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1 Introduction

Functional impact of missense variations has been extensively
studied aiming to unravel sequential and/or structural patterns that
would discriminate pathogenic variants from benign variants. Apart
from sequence and structure-based features, protein stability has
also been shown to predict the pathogenicity of variants
(Gerasimavicius et al., 2020; Sanavia et al., 2020; Birolo et al.,
2021). Hitherto, many different stability predictors have been
developed (Guerois et al., 2002; Bershtein et al., 2006; Kebabci
et al., 2022) and reported to show promise in distinguishing
pathogenic variants (Gaboriau et al., 2015; Gerasimavicius et al.,
2020). Notably, the stability predictors that were reported to be
successful in pathogenicity prediction were structure-based
methods, i.e., they require an available structure in PDB. Because
not all structures are experimentally characterized or not all parts of
the polypeptide chain are resolved in a given PDB structure, we note
that these predictors are restricted to the PDB availability of the
variations.

AlphaFold (AF2), which is the artificial intelligence system
developed by DeepMind, predicts the three-dimensional structure
of a protein from its amino acid sequence (Jumper et al., 2021).
Because of its high accuracy, AF2 has undeniably changed the
domain of structural biology. More than 200 million
AF2 computed structures have been recently deposited to the
AlphaFold Protein Structure Database (AlphaFold DB, https://
alphafold.ebi.ac.uk/) (Varadi et al., 2022). Furthermore, RCSB
Protein Data Bank (RCSB PDB) has presented more than
1 million computed structural models including AF2 predictions
(Baek et al., 2021; Burley and Berman, 2021; Jumper et al., 2021;
Tunyasuvunakool et al., 2021). Evidently, AF2 offers an opportunity
to close the gap between the available sequence and structure data by
reshaping the structural databases and creating even larger databases
for computed models (Jumper et al., 2021).

Recognizing that computed structural models are not directly
derived from experimental data, we underscore that these models
should be critically evaluated prior to analysis. AF2 provides
multiple measures to assess the reliability of the predictions. One
of these measures is calculated for each residue and thus reflects the
confidence of AF2 prediction for a given amino acid position. This
confidence score is called the predicted local difference distance test
(pLDDT) score and is derived from the IDDT metric which is a
superimposition-free measure to assess the local fit between all
atoms of a model (Mariani et al., 2013). The pLDDT score
measures how well the prediction matches with the available
PDB data and the multiple sequence alignments (Jumper et al.,
2021). Thus, we note that the availability of the residue-level
confidence scores allows one to assess the quality of the
computed structure for a given variant, reflecting the potential
use of AF2 structures for investigating the missense variants.

Breast cancer is the most commonly diagnosed cancer
worldwide with an estimated 2.3 million new cases each year. It
is also the fifth leading cause of cancer mortality accounting for 6.9%
of cancer deaths (Sung et al., 2021). While 75%–80% of breast cancer
cases are usually sporadic, the rest of the cases are either familial

(15%–20%) or hereditary (5%–10%) that are caused by germline
variations in breast cancer associated genes (Fanale et al., 2020).
Among these genes, Breast Cancer 1 (BRCA1) and Breast Cancer 2
(BRCA2) have been reported to have variations that increase the risk
of developing breast and ovarian cancers by more than 60% basically
suggesting these variations as one of the leading causes of breast and
ovarian cancers (Gradishar et al., 2022). Nonetheless, the rate of
non-BRCA pathogenic variations was higher than those of BRCA1
or BRCA2 pathogenic variations especially in bilateral breast cancer
patients (Fanale et al., 2020). Thus, in addition to BRCA1 and
BRCA2, many other genes have been identified as susceptibility
genes for breast cancer (Angeli et al., 2020). Among these, Partner
and Localizer of BRCA2 (PALB2) has been reported to have
pathogenic variants (Xia et al., 2006). Variations in other genes
such as PTEN and TP53, which are also associated with highly
penetrant syndromes, like Cowden (PTEN) and Li-Fraumeni
(TP53), reported to increase breast cancer risk by 60% (Angeli
et al., 2020; Peleg Hasson et al., 2020; Gradishar et al., 2022). In
summary; BRCA1, BRCA2, PALB2, Serine/Threonine Kinase 11
(STK11), Tumor Protein P53 (TP53), Phosphatase and Tensin
Homolog (PTEN), and Cadherin 1 (CDH1) genes are considered
as high risk genes because of their higher odds ratio than 5 while
Ataxia-Telangiectasia Mutated (ATM), BRCA1 Associated RING
Domain 1 (BARD1), Checkpoint Kinase 2 (CHEK2),
RAD51 Paralog D (RAD51D) and Nibrin (NBN) genes are
classified as low-to-moderate risk genes (Peleg Hasson et al.,
2020). Along with these genes, many other cell-cycle and/or
DNA repair genes have been reported to have variations in
breast cancer patients (Colas et al., 2019).

Identifying pathogenic variants in high-risk individuals is
critical to the efforts of patient surveillance and use of risk-
reduction strategies. Hereditary cancer genetic panel tests
comprising different number of genes have been increasingly
applied to particularly patients with a family history of cancer
(Hu et al., 2020). With the advent of next-generation sequencing
technologies and a parallel decline in their cost, targeted sequencing
approaches, i.e., multi-gene panel tests, have been increasingly used.
In addition to the advantages of targeted gene sequencing such as
low cost and time efficiency compared with whole exome/genome
sequencing methods, the collected data from this approach has the
potential to provide insights about the mechanism of tumorigenesis
broadening our knowledge on the variation landscape of a set of risk
bearing genes (Chen et al., 2020). Despite these undeniable benefits,
certain challenges particularly related to the counseling of patients
are still present especially when the guideline information is not
conclusive such as for the variations in the low penetrance genes or
variations with an unknown significance (VUS).

Studies have recently pointed out the need to critically assess the
risk and benefits of multi-gene panel tests (Catana et al., 2019; Reid
and Pal, 2020). Especially, a high accumulation of unknown labels
that may lead to patient anxiety shadow the benefits of these tests
(Catana et al., 2019). More importantly, the selection of genes in the
panel may not necessarily depend on their risk estimates, a situation
which may result in an increase of VUS labels (Rainville and Rana,
2014). Given their earlier discovery, extensive data has been
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collected for the BRCA1/2 variations while this is not the case for
many genes in the panel (Fanale et al., 2020). The bias towards
BRCA1/BRCA2 is in fact aligned with the higher cancer risk
associated with the variants occurring in these genes (Chen et al.,
2020). Conversely, the genes with fewer number of variants such as
ATM, BARD1, CHEK2, RAD51D, and NBN are classified as low/
moderate risk breast cancer genes (Chen et al., 2020). Other
challenges in choosing the correct panel with a correct number
of genes have also been recently outlined underscoring the need for
an update of the testing and communication of its results (Reid and
Pal, 2020). Thus, choosing the correct panel test and more
importantly choosing the correct number of genes stay an
integral part of the diagnostic process.

In this study, we tested the performance of five protein
stability predictors, namely, mCSM, MAESTRO, CUPSAT,
SAAF2EC-SEQ, and MUpro, by using the AF2 computed
structures of 26 hereditary cancer associated proteins. We
initially analyzed a breast cancer cohort of 355 patients and
classified the variants spotted in this cohort according to ACMG
Guidelines (Richards et al., 2015). To further increase the number
of missense variations, we have integrated the entire ClinVar
collection (Landrum et al., 2014; Landrum et al., 2016) of
missense variants in these genes. Finally, we have analyzed the
structural stability of each variant in this integrated dataset by
five stability predictors and assessed the power of the stability
scores in pathogenicity prediction. Our results showed 1) an
unbalanced distribution of the pathogenicity labels of missense
variants in both the breast cancer cohort and the ClinVar set, 2) a
moderate performance of the stability predictors in
discriminating the pathogenic variants and 3) a novel pattern
obtained from the AF2 structures with a high pathogenicity
prediction power.

2 Materials and methods

2.1 Study cohort

A total of 355 breast cancer patients above the age of 18 were
included in the study. Patient characteristics such as age, age of
onset, sex, histological subtype, expression status of estrogen
receptor (ER), progesterone receptor (PR), human epidermal
growth factor receptor (HER2) were retrospectively collected.
This study was approved by the Ethics Committee of Acibadem
Mehmet Ali Aydinlar University in accordance with the Helsinki
Declaration (Protocol No: 2020-21/07).

2.2 Next-generation sequencing and
bioinformatics analysis

Blood samples were collected in EDTA containing tubes.
Genomic DNA was isolated with QIAamp DNA Mini QIAcube
kit (QIAGEN, Germany) according to the manufacturer’s
instructions. DNA concentrations were measured with the
QubitTM Fluorometric Quantitation system (Thermo Fisher
Scientific) using Qubit HS DNA Assay kit (Thermo Scientific,
US). DNA libraries were obtained using the BRCA Hereditary

Cancer MASTR Plus, Multiplicom (Agilent, United States) kit.
Variant screening on 26 risk carrying genes for hereditary
cancers like breast, ovarian and colorectal cancer (ABRAXAS1,
ATM, BARD1, BLM, BRCA1, BRCA2, BRIP1, CDH1, CHEK2,
EPCAM, MEN1, MLH1, MRE11, MSH2, MSH6, MUTYH, NBN,
PALB2, PMS2, PTEN, RAD50, RAD51C, RAD51D, STK11, TP53,
and XRCC2) has been performed by this kit which contained five
multiplex PCR primer pools. 10 ng of DNA per primer pool was
used for multiplex PCR amplification, followed by barcode ligation
and purification with Agentcourt AMPureXP reagent (Beckman
Coulter, Beverly, MA, United States). Quantity and quality of
prepared libraries were assessed by QubitTM Fluorometric
Quantitation system (Thermo Fisher Scientific). For library
preparation 4 ng DNA was used. After libraries were prepared,
sequence analysis was performed with Illumina MiSeq
instrument using MiSeq Reagent v3 kit (Illumina, US). All
sequencing data were submitted to Sequence Read Archive (SRA)
(https://www.ncbi.nlm.nih.gov/sra/PRJNA895859).

Bioinformatics analysis was performed using the software
Sophia Genetics DDM (Sophia Genetics v4.2). GRCh37/hg19 was
used as the reference genome. During variant calling, a minimum
sequence coverage depth and variant fraction parameters were set to
30x and 20%, respectively. Variants were classified according to the
ACMGGuidelines (Richards et al., 2015) using databases of ClinVar
(Landrum et al., 2014), BRCAExchange, OMIM®, dbSNP (v.155),
gnomAD (v2.1.1), in silico pathogenicity classifiers of
MutationTaster (Schwarz et al., 2010), SIFT (Ng and Henikoff,
2003), PolyPhen-2 (Adzhubei et al., 2013), REVEL (Ioannidis
et al., 2016). All variants with minor allele frequency (MAF2) of
less than 1% in gnomAD database were considered.

2.3 Compilation of missense variants from
ClinVar database

ClinVar database (DB) (Landrum et al., 2014) as of 10/08/
2022 was queried to collect the pathogenic and benign variants
observed in the 26 genes. Variants that were linked to a pathological
condition containing any of the keywords “cancer”, “tumor”,
“tumour” were collected. From this list, the missense variations
with at least a 2-star review score were compiled as the ClinVar set.
The missense variants from the current cohort were merged with the
ClinVar set and the resulting list of variants were screened by using
five different protein stability predictor tools (See supplementary
information).

2.4 AlphaFold predictions

Model structures for 24 of the 26 proteins encoded by the
genes under study were deposited in the webserver of AlphaFold-
EBI structure database (https://alphafold.ebi.ac.uk). The
structures of ATM and BRCA2 were not included in the
webserver due to their larger size than 2700 amino acids (aas)
but in the proteome collections. Thus, ATM and
BRCA2 structures were collected from the human proteome
collection (UP000005640). The structures of both proteins
were predicted in sequential rounds resulting in overlapping
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partial structures that were labeled as F1, F2, . . . Fn accordingly.
For instance, BRCA2 structure (3,418 aas) was predicted in
twelve sequential rounds resulting in twelve overlapping
structures (F1, F2, . . . , F12). These partial BRCA2 structures
were 1,400 aas in length and had at least 1,200 aa-long overlaps
with the structures preceding them in the series. The F1 structure
of BRCA2 covered the amino acids between the 1st and 1400th
positions, while the F2 structure covered the region
encompassing the residues from the 201th to 1600th positions
resulting in an overlapping prediction for the region between
201-1,400. The last prediction (F12) was 1218-aa in length and
covered the final region between the positions of 2201 and 3,418.
The same scheme applying to the ATM structure (3,056 aas)
resulted in 10 overlapping structures. To get the full-length
structures, the structures of F1, F6, and F12 for BRCA2 and
F1, F5 and F10 for ATM were utilized which showed at least
200 aas overlap with each other. The overlaps were used to
structurally align two sequential structures with each other
and then one of the overlaps was removed. Then the separate
chains were linked to each other by amide bonds generating the
full-length structure for both ATM and BRCA2.
Superimposition, overlap removal and model joining were
performed by Chimera UCSF (Pettersen et al., 2004). During
model joining, the confidence scores for AF2 predictions
(pLDDT) were kept in the B-factor column of the pdb file.

2.5 Prediction of protein stability

Five different predictors, namely, mCSM (Pires et al., 2014),
MAESTRO (Laimer et al., 2015), CUPSAT (Parthiban et al.,
2006), SAAF2EC-SEQ (Li et al., 2021) and MUpro (Cheng
et al., 2006), were used to predict the impact of variations on
protein stability. These predictors use either sequence or
structure as an input (Table 1). Among these tools, SAAF2EC-
SEQ and MUpro were sequence-based predictors while mCSM,
MAESTRO and CUPSAT used 3D structures as input. For
structure-based methods, AF2 structures were used for all
proteins. These predictors, except Maestro, compute the
folding free energy change due to a mutation (ΔΔG) by
subtracting the folding free energy of the mutant (ΔGmutant)
from the folding free energy of the native form (ΔGnative)
(Kebabci et al., 2022). Maestro uses a sign convention that
labels stabilizing mutations with a negative ΔΔG sign whereas
other predictors label stabilizing mutations with a positive sign.

For consistency, the sign of Maestro scores was reversed to label
stabilizing mutations with a positive sign and destabilizing
mutations with a negative sign.

TABLE 1 Protein stability predictors used in this study.

Name Input Sign convention References

mCSM Structure ΔΔG< 0.0 destabilizing Pires et al. (2014)

aMaestro Structure ΔΔG< 0.0 stabilizing Laimer et al. (2015)

CUPSAT Structure ΔΔG< 0.0 destabilizing Parthiban et al. (2006)

SAAF2EC-SEQ Sequence ΔΔG< 0.0 destabilizing Li et al. (2021)

MUpro Sequence ΔΔG< 0.0 destabilizing Cheng et al. (2006)

aScores from Maestro were reversed to ensure the same sign convention that produces a negative sign for stabilizing mutations and a positive sign for destabilizing mutations.

FIGURE 1
Distribution of variant characteristics collected from a cohort of
355 breast cancer patients. (A) shows the distributions of two groups:
any type of variation detected and not detected in any of 26 genes; (B)
shows distribution of the number of variants for each patient;
(C–F) show the distribution of variants according to novelty, type,
clinical significance and gene, respectively.
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3 Results and discussion

3.1 Clinical significance distributions differed
across missense and truncating variations

A total of 355 breast cancer patients were screened by a
multigene panel of 26 cancer susceptibility genes. 237 patients
(66.2%) were identified to carry at least one variation while
118 of the patients (33.8%) did not show any variations other
than polymorphisms (Figure 1A). Patients that carry none of
hormone receptors of ER, PR and HER2 are classified as “triple-
negative,” which is an important molecular characteristic of breast
cancer because of its close association with the prognosis of the
disease (Brouckaert et al., 2012). The patients’ characteristics listed
in Table 2 did not show different distributions between variant-
detected and–not detected groups.

Mostly, one variant was observed per patient, enumerating a
total of 397 variations in 237 patients (Figure 1B). After the removal
of duplicated variations, 256 unique variants remained for this
cohort. This non-redundant set was analyzed based on the
novelty (Figure 1C), the type (Figure 1D), the clinical significance
(Figure 1E) and the gene of variants (Figure 1F). Of 256 unique
variants, 179 have not been reported in ClinVar while the remaining
79 were found in the database. A large fraction of variants
corresponding to 74% were missense variations while 26% of
them were truncating type such as nonsense, frame-shift or splice
site alterations (Figure 1D). Missense variants showed a dominance
of VUS labels while truncated variants were mostly pathogenic

(Figure 1E). Distribution of the variants across genes were also
different with respect to variation types (Figure 1F). Particularly,
variants of ATM, BRCA1, BRCA2, and RAD50 were largely missense
while BRCAs showed a high number of truncated variations. Some
of the genes such as EPCAM, TP53, XRCC, PTEN and STK11 were
not reported to have any missense variations in this cohort
(Figure 1F).

The collected variants from the cohort analyzed in this study
reflected the dominance of VUS label in the missense variations.
However, the truncated variations had mostly pathogenic labels.
This observation is in line with the notion that the truncating
alterations are expected to perturb the protein structure and
function more than single amino acid changes (DeBoever et al.,
2018). Thus, molecular understanding of the pathogenic effect of
single amino acid variations is expected to be a more complex task
than understanding that of truncated variations. This paradigm
reflects the importance of identification of novel pattern(s) to link
missense variations to any functional outcome. To this end, here we
aimed to scrutinize all the variations in the 26 genes by assessing
their AF2 structural stability.

3.2 ClinVar collection of variations from
26 genes showed unbalanced distributions

Despite being a relatively large patient cohort, the total number
of missense variations spotted by the 26-gene panel was 190. Due to
108 variants of unknown of significance (VUS), the number of

TABLE 2 Patient characteristics.

Not detected (118) Detected (237) Total (355)

median/n range/% median/n range/% pa median/n range/%

age 46 31–77 47 31–78 0.752 47 31–78

age of onset 40 0–70 41 25–71 0.876 41 0–71

sex F 118 100.0% 234 98.7% 0.554 352 99.2%

M 0 0.0% 3 1.3% 3 0.8%

histological Ductal 111 96.5% 219 95.2% 0.805 330 95.7%

subtypes Lobular 4 3.5% 11 4.8% 15 4.3%

triple No 94 80.3% 184 79.7% 0.764 278 79.9%

negative Yes 23 19.7% 47 20.3% 70 20.1%

ER no 40 34.2% 63 27.3% 0.237 103 29.6%

yes 77 65.8% 168 72.7% 245 70.4%

PR no 54 46.6% 89 38.7% 0.228 143 41.3%

yes 62 53.4% 141 61.3% 203 58.7%

HER2 no 91 79.8% 181 80.1% 0.607 272 80.0%

yes 23 20.2% 45 19.9% 68 20.0%

family
history

no 17 15.6% 45 20.2% 0.298 62 18.5%

yes 92 84.4% 178 79.8% 274 81.5%

aNon-parametric tests were used to compare variables across variant-detected and -not detected groups. For continuous variables, Wilcoxon rank-sum test and for categorical variables Chi-

square test were used.
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missense variations with known labels were further reduced
(Figure 1E-missense). To increase the number of variations in
the 26 genes, all missense cancer variants that were spotted in
any of the 26 genes were collected from ClinVar resulting in a
total of 31,253 missense variations associated with cancer. We have
eliminated the variations with conflicting labels or from single
submitters (review score = 1) for the sake of the reliability, the
process which almost halved the number of variants (Figure 2A).
Removal of the variations with an unknown clinical significance led
to a collection of variations with known labels (Figure 2B). As such
only 9% (1,457/16,572) of the missense variations in ClinVar had a
known clinical significance label of benign or pathogenic. This
finding implied that contrary to a vast number of depositions to
ClinVar DB regarding the 26 hereditary cancer genes, only a small

portion (5%) could be reliably annotated with a known label. Parallel
to the observation from the ClinVar collection, our variants
collected from the breast cancer cohort also showed a large
fraction of VUS labels in the missense group (Figure 1E).
Overall, ClinVar were reported to contain 1,457 missense
variations in the 26 genes of hereditary breast cancer with at
least 2-star annotation scores. The final set of variants having
806 neutral and 651 pathogenic labels showed a moderately
balanced distribution of the pathogenicity classes.

Figure 2C shows that the small portion with known labels was
dominated by a few genes. In fact, the total number of missense
variations did not add up to 10 for more than half of the genes, while
it did not reach up to 50 for 19 of 26 genes. Particularly; the missense
variations from the genes ATM, BRCAs, MLH1, MSH2, PTEN, and
TP53 were over-represented in ClinVar. Strikingly, the under-
represented genes in the missense variations with either benign
or pathogenic labels were also under-represented within the VUS
labels (Figure 2D). For instance, missense variations from the
ABRAXAS1, BLM, EPCAM, MEN1, and XRCC2 genes were
extremely scarce regardless of their clinical significance. The least
frequent of all was ABRAXAS1 which binds to BRCA1 and form a
complex essential for DNA damage response (Wang et al., 2007).
Although the pathogenic/likely pathogenic variants in this
ABRAXAS1 gene are associated with an elevated risk of breast
cancer (Akbari et al., 2009; Solyom et al., 2012), extremely few
missense variations were observed for this protein (Figures 2D,E).
We reported an unbalanced distribution of pathogenicity classes of
the missense variations in ClinVar. Particularly, the known labels
were much less than the unknown labels. Furthermore, the
variations tended to occur in a few genes rather than having an
even distribution across all 26 genes. Overall, we have collected the
ClinVar variants with known labels and combined with the variants
from our breast cancer cohort. The resulting set was used for the
stability prediction.

3.3 Acquiring the full-length structures of
26 hereditary cancer proteins

To investigate the structural impact of the missense
variations identified in 26 genes, we have utilized the
structures predicted by AlphaFold (AF2) (Jumper et al., 2021).
One reason for choosing the AF2 predicted structures over
experimental ones is that the latter are not available for some
of the proteins in the panel (Table 3). Second is that although
some proteins have more than one experimental structures in
PDB such as p53, some does not. Among these 26 proteins, only
MEN1 was characterized with a full-length structure while the
rest of proteins have missing and/or unmodeled regions in their
structures. Notwithstanding the full-length structure advantage
provided by AF2, these structures have the potential to be
inaccurate or partially accurate and thus they should not be
blindly accepted. To distinguish accurate predictions from
inaccurate ones, we traced the per residue confidence score
(pLDDT) of each variant.

Because the full-length structure of almost all human proteins
can be conveniently acquired from the AF2 DB, we have utilized
AF2 structures for the proteins of this gene panel (Table 3).

FIGURE 2
Missense variations from 26 genes in ClinVar. (A) shows the
distributions based on annotation scores. (B) shows the distribution of
clinical significance labels of the variants with at least 2 review scores.
(C) shows the gene-distribution of benign and pathogenic
variants from (B) First tick marks the frequency value of 5. (D) shows
the distribution of VUS labels across genes.
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However, we encountered a particular challenge in acquiring the
full-length AF2 structures of ATM and BRCA2. These two
proteins are relatively larger than other 24 proteins whose
structures were readily available from the webserver of
AF2 DB. On the other hand, ATM and BRCA2 structures
were obtained as a part of human proteome collection
(Table 3). Rather than a single structure file, more than a few
structure files representing the partial overlapping structures
were available for these two proteins. To acquire the full-
length structure, we have iteratively superimposed the
overlapping region in the structures and joined the models.
For the ATM, we utilized the F1, F7 and F10 structures
(Figure 3A). These structures had a high global pLDDT scores
of 85.710, 87.455 and 82.515 respectively, implying that the
predictions corresponding the partial fragments of ATM were
accurate. By two rounds of superimposing the overlapping parts

of the structures; F1 to F7 and F7 to F10; we were able to obtain
the full-length structure of ATM. Particularly, F1 and
F7 structures had an overlap of 200 aas and their
superimposition led to a small root mean square displacement
(RMSD) (Figure 3A) for the overlap region suggesting a
continuum for the ATM prediction. Similarly, the
superimposition of F7 and F10 structures which had a longer
overlap (1,000 aas) resulted in a small RMSD change between the
structures (Figure 3A). Because the structure of ATM has already
been characterized (Baretic et al., 2017; Stakyte et al., 2021;
Warren and Pavletich, 2022), AF2 is expected to accurately
predict the ATM structure. RMSD analyses of the predicted
ATM structures of F7 and F10 against the crystal structure
showed well-matching coordinates (Figures 3B,C). Thus, we
were able to acquire the full-length structure of ATM by
iteratively aligning the overlaps in the partial structures. The

TABLE 3 Summary of experimental and AF2 structures of 26 genes.

Gene name Uniprot ID Length (aa) Number of PDB structures AF2 prediction Global pLDDT (median)

ABRAXAS1 Q6UWZ7 409 4 AF2 DB 89.01

ATM Q13315 3,056 10 Human proteome 85.88a

BARD1 Q99728 777 10 AF2 DB 75.84

BLM P54132 1,417 13 AF2 DB 44.02

BRCA1 P38398 1863 30 AF2 DB 30.66

BRCA2 P51587 3,418 6 Human proteome 32.615a

BRIP1 Q9BX63 1,249 3 AF2 DB 80.57

CDH1 P12830 882 20 AF2 DB 89.695

CHEK2 O96017 543 38 AF2 DB 88.74

EPCAM P16422 314 2 AF2 DB 93.435

MEN1 O00255 615 39 AF2 DB 96.32

MLH1 P40692 756 7 AF2 DB 89.36

MRE11 P49959 708 1 AF2 DB 87.92

MSH2 P43246 934 9 AF2 DB 88.03

MSH6 P52701 1,360 7 AF2 DB 88.285

MUTYH Q9UIF7 546 2 AF2 DB 92.835

NBN O60934 754 2 AF2 DB 59.985

PALB2 Q86YC2 1,186 2 AF2 DB 37.15

PMS2 P54278 862 8 AF2 DB 84.82

PTEN P60484 403 10 AF2 DB 95.99

RAD50 Q92878 1,312 1 AF2 DB 82.765

RAD51C O43502 376 0 AF2 DB 92.625

RAD51D O75771 328 1 AF2 DB 93.095

STK11 Q15831 433 3 AF2 DB 94.02

TP53 P04637 393 243 AF2 DB 91.36

XRCC2 O43543 280 0 AF2 DB 94.24

aThree predictions were combined and the global pLDDT for those three structures were as follows for ATMS: 85.71, 87.455, 82.515 and for BRCA2: 31.725,28.81,83.48.
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resulting full-length ATM structure was confirmed to have a high
global confidence score (Table 3).

For the BRCA2, iterative superimposition failed due to its
extensive disorder in its structure. Although the length of the
overlaps was maximized by recruiting all twelve partial structures
to superimposition, the final structure was not a well-fitted one.
Given the extensive disorder in the structure of BRCA2, we failed
to align structures. Thus, we have predicted three non-
overlapping partial structures of BRCA2 in three rounds by
using ColabFold (Mirdita et al., 2022). The predicted
structures were joined end-to-end to generate the full-length
structure of BRCA2 (Figure 3D). We have also used the
confidence score of AF2 to assess the reliability of this
structure globally and locally. The full-length structure of
BRCA2 led a low global confidence score (Table 3). However,
when we inspected the scores for the individual predictions, we
noted that the third structure corresponding to the C-terminus
had a high global score implying that C-terminal region is a

reliable prediction. As we colored the full-length prediction of
BRCA2 structure, essentially the disordered regions were
observed to have low pLDDT scores while the regions with a
defined secondary structure had higher scores (Figure 3D). We
also note that the AF2 predicted structures of two proteins,
namely, RAD51C and XRCC2, whose structures were not
experimentally studied, showed high global confidence score
(Figures 3E, F).

The case of BRCA2 was a clear confirmation of why
AF2 structures cannot be blindly trusted yet BRCA2 was not the
sole example. For example, p53, whose structure has been
extensively studied resulting in 243 experimental PDB structures
(Table 3), has not been ever captured in full-length due to its
intrinsically disordered poly-proline rich N-terminus (Wells
et al., 2008). Furthermore, we stressed that the AF2 predicted
structures of BRCA1, BLM and PALB2 had lower global pLDDT
scores than 50, implying low confidence for their overall structure.
In summary, AF2 predictions have certainly provided advantages,

FIGURE 3
AF2 predictions of the full-length structures. (A) shows the pairwise superimposition of the overlapped AF2 predictions. RMSD change in theCa trace
were shown and the paired number of atoms were given in parenthesis. (B) shows the superimposition of the crystal structure of the C-terminus of ATM
(PDB ID: 7ni6). (C) shows the full-length structure of ATM colored according to the confidence score pLDDT. (D) shows the full-length structure of
BRCA2 colored based on confidence of the prediction. (E) and (F) show the AF2 structures of RAD51C and XRCC2 respectively colored according to
per-residue confidence scores (pLDDT) (Jumper et al., 2021). Heatmap insets show the predicted aligned error (PAE) of the predictions which shows
positional error of each residue pair (Mariani et al., 2013; Jumper et al., 2021).
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one of which is the availability of almost any human protein
structure at its full-length. In our study we have utilized the
confidence score of the variant positions to discriminate between
the reliable and unreliable predictions.

3.4 Protein Stability Predictors Moderately
Predicted Pathogenicity

We integrated the variant set obtained from the breast cancer
cohort and ClinVar to construct the final dataset which extensively
represent cancer-associated variants in the 26 genes with a known
labels and with at least 2-star annotation score. For annotation of
clinical significance labels, we have followed the latest ACMG
Guidelines for the variants from our breast cancer variants that
were not previously reported in ClinVar, (Richards et al., 2015). For
the common variants that appeared both in ClinVar and our cohort,
we did not report any conflicts between the ACMG guideline-based

and ClinVar labels and confirmed the match between our and
ClinVar labels for the common set. By eliminating the redundant
variations and inconsistencies such as mismatch in the variant and
Uniprot positions, 1,201 unique missense variations were collected
(See supplementary information).

This dataset was analyzed by five different protein stability
predictors, namely, Maestro, mCSM, SAAF2EC, MUpro, and
CUPSAT. Two of these predictors, SAAF2EC and MUpro
utilized sequence information while the rest of the tools
required three dimensional structures for which
AF2 structures was recruited. We have plotted receiver
operating characteristic (ROC) curves to analyze whether and
how the predicted ΔΔG scores discriminate pathogenic variants
from benign variants (Figure 4A). Area under ROC curve
(AUROC) is a robust metric for assessment of classification
performance, particularly for the skewed datasets (Jeni et al.,
2013). According to AUROC calculations, mCSM and SAAF2EC
that were followed by Maestro and CUPSAT showed a medium-

FIGURE 4
Performance of protein stability tools and two characteristics of AF2 structures. (A) ROC curve and (B) correlation analyses of ΔΔG predictors
(pathogenic: 445, benign: 647).

TABLE 4 Area under ROC curve of scores from five stability predictors and two structural features.

Total (P: 445, B: 647) pLDDT≥50 (P: 410, B: 294)

ROCAUC 95% CI p ROCAUC 95% CI p

Maestro 0.650 0.616–0.684 <0.001 0.613 0.572–0.655 <0.001

mCSM 0.719 0.687–0.752 <0.001 0.666 0.626–0.705 <0.001

SAAF2EC(s) 0.711 0.679–0.742 <0.001 0.682 0.642–0.722 <0.001

MUpro(s) 0.534 0.499–0.570 0.055 0.528 0.485–0.570 0.207

CUPSAT 0.614 0.578–0.649 <0.001 0.596 0.554–0.638 <0.001

pLDDT 0.852 0.789–0.845 <0.001 0.762 0.727–0.797 <0.001

rASA 0.817 0.830–0.874 <0.001 0.765 0.729–0.801 <0.001
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level performance in variant classification (Table 4). Less
accessible positions were included in this subset by using the
relative accessible surface area (rASA) threshold value of 0.7. In
other words, low pLDDT-scored regions were removed to
analyze the confident regions. We noted a slight reduction in
the performance of the stability predictors for these low
accessible and high pLDDT-scored regions (Figures 4A, B;
Table 4). Because of the close association of structural
disorder and AF confidence scores (Necci et al., 2021; Ruff
and Pappu, 2021), the interdomain and/or termini regions,
which are likely to be disordered, are expected to have lower
pLDDT scores than those of the domain regions. Thus, we
consider that the second analysis involving the variants with
higher pLDDT scores (Table 4) was likely to cover the variants
located in the domain regions rather than the interdomain and/or
termini regions.

Protein stability prediction is an important task contributing
not only to our understanding of protein folding but also to the
prioritization of variations (Gerasimavicius et al., 2020; Sanavia
et al., 2020; Birolo et al., 2021). A recent study that recruited a
large dataset of missense mutations which were not exclusive to
cancer variants has analyzed the performance of 13 different
structure-based stability predictors and reported a moderate level
performance of pathogenicity prediction (Gerasimavicius et al.,
2020). Particularly, the performance of the ΔΔG predictors,
except MUpro, were comparable with the performance of the
tools tested in this study. Another benchmark showed a higher
AUROC for a stability predictor for discriminating only the
MLH1 variants in Lynch syndrome (Parthiban et al., 2006).
Surprisingly, the classification performance of CUPSAT and
mCSM was higher on the variants of these 26 proteins
(Figure 4A) than on a general dataset comprising a larger
number of proteins (Gerasimavicius et al., 2020). Non-
etheless, ΔΔG scores were reported to have a low-to-medium
level of capacity to discriminate pathogenic variants (Figure 4A;
Table 3). One plausible explanation behind a general low
performance of ΔΔG prediction would be likely the alternative
mechanisms driving the cancer pathogenicity other than protein
destabilization/stabilization (Gerasimavicius et al., 2020).
Affected protein-protein interactions (PPI) is an example of
an alternative mechanism. The BRCA1 is a tumor suppressor
protein that forms a multimeric complex known as the BRCA1-
associated genome surveillance complex (BASC) (Wang et al.,
2000). Similarly, BRCA2 protein controls the binding of the
recombinase RAD51 to the DNA double-strand breaks via the
formation of a BRCA1-PALB2-BRCA2 complex. It consists of a
helical domain, three oligonucleotide binding domains, and a
tower domain that allow BRCA2 to the recruitment of both
single-stranded DNA and double-stranded DNA (Xia et al.,
2006; Buisson et al., 2010). Furthermore, BRCA2 interacts
with proteins that were coded by some of the genes in this
panel such as PALB2 (Xia et al., 2006) and p53 (Marmorstein
et al., 1998). PALB2 also interacts with the single-strand DNA
and the recombinase RAD51D to stimulate strand invasion
throughout the homologous recombination process (Angeli
et al., 2020). Moreover, BRCA1 interacting protein C-terminal
helicase 1 (BRIP1) gene encodes a protein that directly interacts
with BRCT domain of BRCA1 to repair damaged DNA

(Bershtein et al., 2006). This network of PPI within these
proteins readily suggests that missense variations could render
a pathogenic impact through affecting the complex interactions
without altering the structural stability of the free form.

Another point is that, pathogenic variations were generally
considered destabilizing variations. While this assertion holds for
a large number of cases and also is reflected by the negative
correlation between labels and ΔΔG scores (Figure 4B), some
exceptions have also been covered (Tokuriki et al., 2008; Nishi
et al., 2013; Stefl et al., 2013). Among these, one well-known example
is the H101Q variant of CLIC2 protein which stabilizes the
membrane protein in turn leading to a loss-of-function
pathogenic variation (Witham et al., 2011). From this
perspective, our results showing a low-to-medium level
performance of ΔΔG predictions in discriminating pathogenic
variants is reasonable and in agreement with the performance
(Gerasimavicius et al., 2020). To reach a higher performance, we
emphasize the necessity of a higher level of information for the
variant positions such as their closeness to the PPI binding interfaces
or the degree of flexibility/rigidity introduced by mutation. Thus, a
pathogenic mutation that affects the protein-protein interactions
without exerting any effect on the structural stability could be
covered by the predictions (Nishi et al., 2013).

Overall, our study revealed that the stability predictors showed a
similar level pathogenicity prediction performance with
AF2 predicted structures compared with the performance of the
predictors with the experimental structures. A recent study allocated
more than 100,000 mutations and analyzed the performance
difference of stability predictors with respect to the source of the
structure (Akdel et al., 2022). They showed that predictions based on
AF2 structures produced a comparable level accuracy to those based
on experimental structures while predictions using homology
models showed a substantial decrease in accuracy for the
templates with low sequence identity. Thus, taken together with
the results of the recent study (Akdel et al., 2022), our results have
further confirmed that stability predictions based on AF structures
had a comparable performance of pathogenicity classification with
that based on experimental structures.

3.5 AF2 confidence scores affected the
consistency of stability predictors

Regardless of the fact that ΔΔG predictions may not fully
account for all pathogenicity mechanisms, the ΔΔG predictors
are expected to produce consistent results with each other. To
assess the consistency of the ΔΔG predictors, we have cross-
correlated their scores for the total set as well as for the subset
with high pLDDT scores (Figure 5). The cross-correlation
analysis affirmed a large variation in the ΔΔG scores of
different predictors. We reported a moderate level of
correlation between the scores of top two performers, mCSM
and SAAF2EC. On the other hand, the rest of the tools did not
produce correlated scores (Figure 5). Notably, MUpro, which
showed no performance in Figures 4A, B, produced correlated
scores with SAAF2EC and mCSM. Contrary to the MUpro case,
CUPSAT, which showed a low level of performance in
discriminating the pathogenic variants, produced scores that
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were not correlated with any of the predictors (Figure 5).
Furthermore, as we inspected the variants with higher pLDDT
scores than 50, we noted a change in the cross-correlation of the
Maestro’s scores for the benign variants (Figure 5). Essentially,
the correlations between the scores of Maestro and the other tools
were slightly improved for the benign variants with high pLDDT
scores while the correlations were not affected for the pathogenic

variants (Figure 5). This observation suggested that the
consistency of predictions was ameliorated for the subset with
high confidence scores. More importantly, because this
improvement was only spotted in the benign variants but not
in the pathogenic variants, this finding also implied a distinction
in the pLDDT score distributions of benign versus pathogenic
variants.

FIGURE 5
Cross-correlation of stability predictors for the total set and for the regions with high confidence (pLDDT high).

FIGURE 6
Performance of pathogenicity prediction of two characteristics of AF2 structures. (A) ROC curve and (B) correlation analyses of pLDDT and rASA
values of the variants in the AF2 structures and (C) pLDDT vs rASA scatter plot and (D) pLDDT distributions (benign: green, pathogenic: red).
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3.6 Benign and pathogenic variations
showed distinct distributions of
AF2 confidence scores

Finally, we have reported a surprising performance of the
AF2 confidence scores in discriminating the pathogenic variants
(Figure 6). Essentially, both AUC based (Figure 6A) and correlation
based performances (Figure 6B) of the pLDDT scores and rASA
values were reported to be good predictors for cancer pathogenicity.
As the confidence score of the variation increases or the solvent
accessibility of the variant position decreases, we observed a higher
number of pathogenic variants (Figure 6C). This novel finding
suggests that AF2 structures could be used to extract robust
features such as pLDDT scores that would contribute to the
future studies of machine learning models for pathogenicity
prediction. The close relationship between the confidence score
of AF2 predictions and pathogenicity would open new doors for
one to assess the risk of missense variations.

Our results showed that pathogenic variants tend to position
at locations that were more confidently predicted by AF
(Figure 6C). The power of the AF confidence scores in
predicting the pathogenicity of missense variants was, to some
extent, unsurprising, particularly considering the close
association of structural disorder and pLDDT score (Necci
et al., 2021; Ruff and Pappu, 2021). Despite this partly
predictable outcome, our results hold an advancement to the
current literature by addressing the extent and strength of the
association between variant pathogenicity and the AF confidence
scores through a dataset of more than 1,000 variants.
Additionally, we also reported distinct pLDDT distributions
from the benign and pathogenic variants (Figure 6D). While
pathogenic variants were exclusively spotted at the positions with
high confidence scores, benign variants were mostly found at the
positions that have either very low or very high pLDDT scores.
Overall, our results revealed a partly predictable but novel link
between the AF confidence scores and pathogenicity.

Recently, the power of the AF2 computed structures in
predicting stability changes was analyzed by addressing the
correlation between the experimental ΔΔG and the change in
pLDDT scores (Pak et al., 2021; Buel and Walters, 2022). Both
studies agreed on the incapacity of AF2, particularly the change
in pLDDT scores upon mutation, in predicting the change in
protein stability. In fact, this conclusion could be partly
explained by the suggestion of AF2 developers not to use
AF2 for the prediction of mutant structures. Given these
studies, we note that while the confidence scores of
AF2 prediction have a meaningful impact on pathogenicity
prediction, the same is not true for stability predictions.
Furthermore, other predictors than pLDDT scores were
reported to predict variant pathogenicity by using position-
specific scoring matrices (PSSMs) or structural features
(Andreotti et al., 2010; Woodard et al., 2021). For the
analyzed set, we reported the AF2 confidence scores showed a

similar performance to these known sequential and structural
features.
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