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Background: Idiopathic pulmonary fibrosis (IPF) is a fatal and irreversible interstitial
lung disease. The specific mechanisms involved in the pathogenesis of IPF are not
fully understood, while metabolic dysregulation has recently been demonstrated
to contribute to IPF. This study aims to identify key metabolism-related genes
involved in the progression of IPF, providing new insights into the pathogenesis
of IPF.

Methods:We downloaded four datasets (GSE32537, GSE110147, GSE150910, and
GSE92592) from the Gene Expression Omnibus (GEO) database and identified
differentially expressed metabolism-related genes (DEMRGs) in lung tissues of IPF
by comprehensive analysis. Then, we performed GO, KEGG, and Reactome
enrichment analyses of the DEMRGs. Subsequently, key DEMRGs were
identified by machine-learning algorithms. Next, miRNAs regulating these key
DEMRGs were predicted by integrating the GSE32538 (IPF miRNA dataset) and the
miRWalk database. The Cytoscape software was used to visualize miRNA-mRNA
regulatory networks. In addition, the relative levels of immune cells were assessed
by the CIBERSORT algorithm, and the correlation of key DEMRGs with immune
cells was calculated. Finally, the mRNA expression of the key DEMRGs was
validated in two external independent datasets and an in vivo experiment.

Results: A total of 101 DEMRGs (51 upregulated and 50 downregulated) were
identified. Six key DEMRGs (ENPP3, ENTPD1, GPX3, PDE7B, PNMT, and POLR3H)
were further identified using two machine-learning algorithms (LASSO and SVM-
RFE). In the lung tissue of IPF patients, the expression levels of ENPP3, ENTPD1,
and PDE7B were upregulated, and the expression levels of GPX3, PNMT, and
POLR3H were downregulated. In addition, the miRNA-mRNA regulatory network
of key DEMRGswas constructed. Then, the expression levels of key DEMRGswere
validated in two independent external datasets (GSE53845 and GSE213001).
Finally, we verified the key DEMRGs in the lung tissue of bleomycin-induced
pulmonary fibrosis mice by qRT-PCR.

Conclusion: Our study identified key metabolism-related genes that are
differentially expressed in the lung tissue of IPF patients. Our study emphasizes
the critical role of metabolic dysregulation in IPF, offers potential therapeutic
targets, and provides new insights for future studies.
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1 Introduction

Idiopathic pulmonary fibrosis (IPF) is a progressive, life-
threatening, chronic interstitial lung disease of unknown etiology
(Noble et al., 2012). It is characterized by progressive scarring of the
lung parenchyma, accompanied by a continuous deterioration of
respiratory symptoms and a decline in lung function, ultimately
leading to death (Raghu et al., 2018). Approximately two to 3 years is
the median survival time for patients with IPF after diagnosis (Ley
et al., 2011). There is a higher prevalence of IPF in the elderly, and
the mean age of patients with IPF is around 65–70 years (Maher
et al., 2021). The FDA currently approves two antifibrotic drugs
(nintedanib and pirfenidone) for IPF, which only slow, not stop,
fibrosis progression (Saito et al., 2019). IPF is currently curable only
through lung transplantation (Shenderov et al., 2021). Despite
identifying several candidate biomarkers for IPF, none of these
markers have yet been translated into clinical practice (Ley et al.,
2014). Thus, there is an urgent need to explore the
pathophysiological mechanisms of IPF further and develop new
targeted therapeutic strategies.

An increasing number of studies have recently demonstrated the
role of metabolic dysregulation in IPF. For instance, Kang et al.
reported altered glycolysis and glutamine metabolism in human
lungs with severe IPF (Kang et al., 2016). Furthermore, proteomics
studies revealed dysregulated levels of transcription factors NF-kB,
PPARγ, and c-myc in bronchoalveolar lavage fluid (BALF) from IPF
patients compared to healthy controls (Landi et al., 2014).
Interestingly, these transcription factors have been reported to
participate in numerous metabolic dysregulation mechanisms
(Kauppinen et al., 2013; Jiang et al., 2017; Botta et al., 2018). In
addition, lung fibroblasts and alveolar epithelial cells have been
observed to display profibrotic phenotypes due to dysregulated lipid
metabolism (Mamazhakypov et al., 2019). A recent review
summarized the proteins dysregulated in IPF involving the renin-
angiotensin-aldosterone system, hypoxia, oxidative stress, iron
metabolism, dysregulated lipid metabolism, and mitochondrial
alterations, highlighting the potential impact of metabolic
dysregulation in IPF (Bargagli et al., 2020). Conclusively, there is
an inescapable relationship between metabolic dysregulation and
IPF, and the search for novel metabolism-related markers can help
further understand the metabolism-related pathological molecular
mechanisms of IPF. Rectifying these metabolic alterations is
emerging as a promising new strategy for antifibrotic therapy.

Our study first analyzed GSE32537, GSE110147, GSE150910,
and GSE92592 from the Gene Expression Omnibus (GEO) database
and identified differentially expressed metabolism-related genes
(DEMRGs) in the lung tissue of IPF patients. Subsequently, we
conducted a functional enrichment analysis of DEMRGs. Then, we
used two machine-learning methods, least absolute shrinkage and
selection operator (LASSO) regression and support vector machine
recursive feature elimination (SVM-RFE), to identify six IPF
signature genes as key DEMRGs: ENPP3, ENTPD1, PDE7B,
GPX3, PNMT, and POLR3H. The expression of ENPP3,
ENTPD1, and PDE7B was significantly upregulated in IPF
patients’ lung tissue, and the expression of GPX3, PNMT, and
POLR3H was significantly downregulated. Afterward, we
predicted miRNAs regulating key DEMRGs using the miRWalk
database, combining it with the GSE32538 dataset (miRNA

microarray expression profiles of IPF) to construct a miRNA-
mRNA regulatory network. Next, the relative levels of immune
cells were assessed by the CIBERSORT algorithm, and the
correlation of key DEMRGs with immune cells was calculated.
Finally, we validated the expression patterns of six key DEMRGs
by analyzing the external independent dataset GSE53845 and
performing qRT-PCR.

2 Materials and methods

2.1 Study design

Figure 1 shows the overall flow chart of this study. First, we
performed differential expression analysis on four GEO gene
expression profile datasets to identify common differentially
expressed metabolism-related genes (DEMRGs) in IPF lung
tissues. Subsequently, we performed a functional enrichment
analysis for these common DEMRGs. Then, we identified key
DEMRGs using two machine-learning algorithms. Finally, we
constructed potential miRNA-mRNA regulatory networks for key
DEMRGs, calculated the correlation of key DEMRGs with immune
cell levels, and validated the expression of key DEMRGs in external
GEO datasets and animal models.

2.2 Gene expression profile data

Our study obtained publicly available datasets from the Gene
Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/)
database (Edgar et al., 2002). The GEO database is a public
database that stores extensive publicly available high-throughput
gene expression and other functional genomics datasets (Clough and
Barrett, 2016). All datasets downloaded in this study stored gene
expression at the mRNA level (array or high-throughput
sequencing), and samples in the dataset were obtained from the
lung tissue of IPF patients and healthy control individuals. First, we
performed a comprehensive bioinformatics analysis of GSE32537,
GSE110147, GSE150910, and GSE92592 to identify key DEMRGs.
Then, using GSE32538, we constructed a miRNA-mRNA regulatory
network of key DEMRGs. Finally, we validated the key DEMRGs in
GSE53845 and GSE213001. Table 1 provides details of all the GEO
datasets used in our study.

2.3 Screening of differentially expressed
metabolism-related genes (DEMRGs)

The metabolism-related genes (MRGs) were obtained from the
Molecular Signatures database (MSigDB, https://www.gsea-msigdb.
org/gsea/msigdb) (Liberzon et al., 2011). Specifically, we first
downloaded the KEGG gene set (c2. cp.kegg.v7.5.1. symbols.gmt)
from the MSigDB, then searched for the keyword “metabolism” to
obtain metabolism-related terms, and finally we integrated the genes
within these selected metabolism-related trems, which were defined
as MRGs to be used for subsequent analysis in our study. All
metabolism-related terms and the genes within each term are
shown in Supplementary Table S1.
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GSE32537 and GSE110147 were based on the GPL6244 platform
of Affymetrix Human Gene 1.0 ST Array. We used the RMA
algorithm via the “oligo” R package for background correction
and normalization of the raw data in the two datasets.
Subsequently, differentially expressed genes were identified using
the “limma” R package. GSE150910 and GSE92592 were RNA-seq
datasets that were generated using the Illumina platform. We first
downloaded their raw gene count matrix files. Then, we performed
differential expression analysis on the gene expression matrix
normalized by the vst function of the “Deseq2” R package. An
adjusted p-value <0.05 was set as the threshold for identifying
differentially expressed genes.

After acquiring the DEMRGs from each of the four GEO
datasets, we used the Venn diagram to search for the common
upregulated DEMRGs and the common downregulated DEMRGs.
The “ggvenn” R package was applied to plot the Venn diagrams of
common DEMRGs of the four datasets.

2.4 Functional enrichment analysis of
DEMRGs

We performed an enrichment analysis of the common DEMRGs
using the Database for Annotation, Visualization and Integrated
Discovery (DAVID database, https://david.ncifcrf.gov/) (Huang da
et al., 2009; Sherman et al., 2022). We performed three categories of
enrichment analysis: Gene ontology (GO) enrichment analysis, Kyoto
Encyclopedia of Genes and Genome (KEGG) pathway enrichment
analysis, and Reactome pathway enrichment analysis. In addition, the
GO enrichment analysis includes three sections: biological process (BP),
cellular component (CC), and molecular function (MF). We
downloaded the enrichment analysis results and defined the false
discovery rate (FDR) < 0.05 as the significant enrichment threshold.
In addition, we selected the top 10 most significantly enriched terms in
each category and imported these results into the SangerBox platform to
generate dot plots for visualization (Shen et al., 2022).

FIGURE 1
The overall flow chart of this study.

TABLE 1 Details of all the GEO datasets used in this study.

Accession number Platform Samples Experiment type

GSE32537 GPL6244 119 IPF lung tissues vs 50 healthy lung tissues Array

GSE110147 GPL6244 22 IPF lung tissues vs 11 healthy lung tissues Array

GSE150910 GPL24676 103 IPF lung tissues vs 103 healthy lung tissues High throughput sequencing

GSE92592 GPL11154 20 IPF lung tissues vs 19 healthy lung tissues High throughput sequencing

GSE32538 GPL8786 106 IPF lung tissues vs 50 healthy lung tissues Array (miRNA)

GSE53845 GPL6480 40 IPF lung tissues vs 8 healthy lung tissues Array

GSE213001 GPL21290 62 IPF lung tissues vs 41 healthy lung tissues High throughput sequencing
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2.5 Screening of IPF key DEMRGs

To identify the most critical DEMRGs, we used two machine-
learning algorithms: least absolute shrinkage and selection operator
(LASSO) regression and support vector machine recursive feature
elimination (SVM-RFE). The LASSO algorithm is a regression
analysis method that minimizes regression coefficients through
successive shrinkage operations to reduce the possibility of
overfitting, thereby reducing redundancy and eliminating
uncorrelated genes from these analyses (Friedman et al., 2010).
The SVM-RFE algorithm is a method for feature selection based on
SVM that defines the minimum classification error and avoids
overfitting and thus is frequently used to select the optimal genes
(Duan et al., 2005). The LASSO and SVM-RFE algorithms were
implemented respectively by the “glmnet” package and the
“e1071”package in R software. By using the two machine-
learning algorithms, two sets of DEMRGs can be obtained, and
the overlapping genes of these two sets of DEMRGs will be identified
as the IPF key DEMRGs.

2.6 Construction of miRNA-mRNA
regulatory networks for key DEMRGs

We intend to investigate further the miRNAs that regulate
these key DEMRGs, so we first performed a differential
expression analysis of GSE32538 (IPF miRNA expression
profile microarray) to obtain differentially expressed miRNAs
(DEmiRNAs). The significance threshold was set at an adjusted
p-value <0.05. Since the IDs of the miRNAs in this dataset were
derived from an older version of miRBase, we updated the
miRNA IDs using the miEAA 2.0 database (Kern et al., 2020).
Subsequently, we predicted miRNAs that interacted with key
DEMRGs using the miRWalk database (http://mirwalk.umm.
uni-heidelberg.de/) (Sticht et al., 2018). If a DEmiRNA was
present in the predicted miRNAs from miRWalk, it would be
included in the final miRNA-mRNA regulatory network.
Therefore, the upregulated DEmiRNAs were then intersected
with the predicted miRNAs that interact with downregulated key
DEMRGs, while the downregulated DEmiRNAs were intersected
with the predicted miRNAs that interact with upregulated key
DEMRGs. Finally, we visualized the miRNA-mRNA regulatory
network in the Cytoscape software (v 3.9.1) (Shannon et al.,
2003).

2.7 Immune infiltration analysis

We assessed the relative content of immune cells of each sample
in the GSE32537 dataset using the CIBERSORT algorithm in R
software (Newman et al., 2015). The CIBERSORT algorithm
calculates the relative expression of 22 immune cells based on the
“LM22”matrix downloaded from the CIBERSORT portal (http://
cibersort.stanford.edu/). First, we evaluated the relative expression
of immune cells in all samples and plotted a histogram of immune
cell content for each sample. Subsequently, we compared the content
of each immune cell between IPF patients and healthy controls and
plotted a boxplot for visualization. The Shapiro-Wilk test was

performed to examine the normality of data, and the t-test or
Mann-Whitney Wilcoxon test was used to conduct comparisons
between groups based on the results of normality test
(Supplementary Table S2). Finally, we calculated the correlation
between 6 key DEMRGs and M2 macrophage content in 119 IPF
patients. All results were visualized using the “ggplot2” R package.

2.8 Validation of key DEMRGs in
independent external datasets

To improve the confidence of the results, we validated the
expression of key DEMRGs in two independent external datasets
(GSE53845 and GSE213001). We compared the mRNA expression
levels of the key DEMRGs between IPF patients and control groups.
We performed the Shapiro-Wilk test to check the normality of the
data before making comparisons between groups. Based on the
normality results (Supplementary Table S3, S4), we used the t-test or
the Mann-Whitney Wilcoxon test to compare differences between
groups. A p-value of <0.05 was considered statistically significant.
Gene expression comparisons between groups were analyzed and
visualized using the “ggplot2” package in R software (Wickham,
2016).

2.9 Construction of IPF animal models

The animal study was approved by the Laboratory Animal
Welfare Ethics Committee of Central South University. Mice of
the C57BL/6 strain (Adult male, 20 ± 2 g) were purchased from
Hunan SJA Laboratory Animal Co., Ltd. (Hunan, China). Mice were
housed in pathogen-free conditions with a 12 h dark/light cycle and
were given access to food and water without restriction.

TABLE 2 qRT-PCR primer sequences.

Gene Primer sequence (5’→ 3′)

ENPP3 F: CAGCAACGGTGAAAGCAAAT

R: CTGATGTAGTCCCTGTGGTAAAG

PDE7B F: ACTCTGTTGTGTCACCTCTTC

R: GGTTGTGACCGTGGTAATCT

ENTPD1 F: AACTGTCCACCGAACTGATAC

R: CCGATTGTTCGCTTTCCATTC

PNMT F: GGGACGGGTTCTCATTGATATT

R: CTGACGGTTGACTTCCAAGAA

POLR3H F: CCAGGGCCTCTTTCATGTT

R: CTGCTCTGCCACCAGTATTT

GPX3 F: CCTTTTAAGCAGTATGCAGGCA

R: CAAGCCAAATGGCCCAAGTT

GAPDH F: GAGCATCTCCCTCACAATTC

R: GGGTGCAGCGAACTTTAT
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Single tracheal instillation of bleomycin (BLM) was applied to
construct the pulmonary fibrosis model (Moeller et al., 2008). Mice
were randomly divided into two groups: 1) Sham group (n = 6):

intra-tracheal instillation of 50 µL saline alone; 2) BLM group (n =
6): intra-tracheal instillation of 50 µL saline containing BLM
(5 mg/kg). Before surgery, mice were anesthetized by

FIGURE 2
Identification of DEMRGs in IPF. (A)Heatmap of DEMRGs in GSE32537 (203 upregulated and 336 downregulated DEMRGs). (B)Heatmap of DEMRGs
in GSE110147 (279 upregulated and 402 downregulated DEMRGs). (C) Heatmap of DEMRGs in GSE150910 (263 upregulated and 231 downregulated
DEMRGs). (D) Heatmap of DEMRGs in GSE92592 (267 upregulated and 211 downregulated DEMRGs). (E) The Venn diagram identified fifty-one
commonly upregulated DEMRGs. (F) The Venn diagram identified fifty commonly downregulated DEMRGs.
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intraperitoneal injection of 1% sodium pentobarbital (50 mg/kg). All
mice were euthanized 2 weeks after surgery, and their lung tissue
was harvested.

2.10 Validation of key DEMRGs by qRT-PCR

Total RNA was extracted from lung tissue using TRIzol
reagent (Invitrogen, Carlsbad, CA, United States), and qRT-
PCR was performed using the ABI ViiA 7 real-time PCR system.
GAPDH mRNA was used as an internal control for the key
DEMRGs, and the relative fold differences were calculated using
the 2−ΔΔCT method. Triplicates of all experiments were
performed. Table 2 presents the qRT-PCR primer sequences
utilized in our study.

Relative expression levels of the key DEMRGs were plotted in a
barplot using the GraphPad Prism 8 software. Based on the
normality results calculated by Shapiro-Wilk (Supplementary
Table S5), the differences between groups were calculated using
the t-test or Mann-Whitney Wilcoxon test, and p-values <0.05 were
considered statistically significant.

3 Results

3.1 Identification of differentially expressed
metabolism-related genes (DEMRGs)

We obtained 949 uniqueMRGs throughMSigDB. Subsequently,
we performed differential expression analysis on lung tissue samples
from IPF patients and healthy control individuals from four GEO
datasets (GSE32537, GSE110147, GSE150910, and GSE92592), and
thus obtained the differentially expressed MRGs (DEMRGs)
between IPF patients and healthy controls in each dataset. As a
result, in GSE32537, GSE110147, GSE150910, and GSE92592, we
detected 203, 279, 263, and 267 upregulated DEMRGs, respectively.
In addition, we identified 336, 402, 231, and 211 DEMRGs that were
downregulated in GSE32537, GSE110147, GSE150910, and
GSE92592. The heat map shows the distribution of DEMRGs in
the four datasets (Figures 2A–D). The red part of the heat map
indicates the upregulated DEMRGs in IPF lung tissues, while the
green part indicates the downregulated DEMRGs in IPF lung tissues.
The Venn diagram shows that there were 51 common upregulated
DEMRGs and 50 common downregulated DEMRGs in the four

FIGURE 3
Functional enrichment analysis of DEMRGs. The dot size indicates the number of DEMRGs enriched to the corresponding term, and the dot color
indicates the enrichment significance of the corresponding term. (A) The top 10 significantly enriched terms for Gene ontology biological process. (B) The
top 10 significantly enriched terms for Gene ontology cellular component (C) The top 10 significantly enriched terms for Gene ontology molecular
function. (D) The top 10 significantly enriched terms for the KEGG pathway. (E) The top 10 significantly enriched terms for the Reactome pathway.
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datasets (Figures 2E,F). These 101 common DEMRGs were used for
subsequent analysis.

3.2 Gene ontology, KEGG pathway, and
reactome pathway enrichment analysis

We performed a functional enrichment analysis of these
101 common DEMRGs through the DAVID database. Figure 3
shows the top 10 significantly enriched GO, KEGG, and Reactome
pathway terms. The dot size indicates the number ofDEMRGs enriched
to the corresponding term, and the dot color indicates the enrichment
significance of the corresponding term. In the BP category of the GO
enrichment analysis, DEMRGs were mainly enriched in items such as
“xenobiotic metabolic process”, “inositol phosphate
dephosphorylation”, and “phosphatidylinositol dephosphorylation”
(Figure 3A). In the CC category of the GO enrichment analysis,
these genes were mainly enriched in items such as “cytosol”,
“mitochondrial matrix”, and “endoplasmic reticulum membrane”
(Figure 3B). In the MF category of the GO enrichment analysis,
these genes were mainly enriched in items such as “oxidoreductase
activity”, “phosphorus-oxygen lyase activity”, and “ATP binding”
(Figure 3C). KEGG analysis showed that DEMRGs were likely
related to “metabolic pathways”, “purine metabolism”, and
“nucleotide metabolism” (Figure 3D). Reactome analysis indicated
that DEMRGs were significantly enriched in “metabolism”,
“biological oxidations”, and “metabolism of nucleotides” (Figure 3E).

3.3 Identification of IPF key DEMRGs

In order to identify key DEMRGs, the LASSO regression analysis
was used to screen the gene signatures for the 101 common
DEMRGs (Figure 4A), yielding 23 gene signatures. Furthermore,
ten gene signatures were obtained using the SVM-RFE for the
101 common DEMRGs (Figure 4B). Finally, the Venn diagram
showed that there were six overlapping DEMRGs (ENPP3,
ENTPD1, GPX3, PDE7B, PNMT, and POLR3H) among the
23 genes identified by LASSO and the ten genes identified by
SVM-RFE, and thus these six overlapping DEMRGs were defined
as key DEMRGs (Figure 4C).

3.4 Identification of miRNA-mRNA
regulatory networks of key DEMRGs

After updating the miRNA IDs by the miEAA 2.0 database,
we identified 59 upregulated miRNAs and 103 downregulated
miRNAs in IPF from the GSE32538 dataset (Figure 5A). Using
the miRWalk database, we identified 1,295 miRNAs predicted to
interact with the upregulated key DEMRGs (ENPP3, ENTPD1,
and PDE7B), and they had 42 overlapping miRNAs with the
103 downregulated DEmiRNAs (Figure 5B). In addition,
1,103 miRNAs predicted to interact with the downregulated
key DEMRGs (GPX3, PNMT, and POLR3H) were identified
through the miRWalk database, and they had 18 overlapping

FIGURE 4
Identification of IPF key DEMRGs by using twomachine-learning algorithms. (A) Twenty-three gene signatures were extracted via LASSO regression.
(B) Ten gene signatures were extracted via SVM-RFE. (C) The Venn diagram identified six overlapping DEMRGs shared by LASSO and SVM-RFE. Therefore,
the six overlapping DEMRGs were identified as key DEMRGs.
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miRNAs with the 59 upregulated DEmiRNAs (Figure 5B). Except
for PNMT, all other key DEMRGs have interactions with one or
more overlapping miRNAs. Ultimately, a miRNA-mRNA
regulatory network of 60 DEmiRNAs and 5 DEMRGs was
constructed by Cytoscape software, with red representing
upregulation and green representing downregulation
(Figure 5C).

3.5 Immune infiltration features of IPF

Figure 6A presents the distribution of immune cells in the lung
tissue of 119 IPF patients and 50 healthy controls in the

GSE32537 dataset. The relative levels of many immune cells differed
significantly between IPF and controls (Figure 6B). We focused on
M2 macrophages because they contribute to the fibrotic phenotype
exacerbation (Wynn and Vannella, 2016). A significant increase in
M2 macrophages was found in the lung tissue of patients with IPF
(Figure 6B). In addition, we calculated the correlation between the
expression levels of six key DEMRGs and the expression levels of
M2 macrophages. To minimize the false positive rate, correlation
analysis was conducted on only 119 IPF patients. Figure 6C
indicates that M2 macrophage expression was positively correlated
with the expression level of ENPP3 (R = 0.28, p = 0.0023). Therefore,
ENPP3 might be potentially associated with increased levels of
M2 macrophages in the IPF process.

FIGURE 5
Identification of miRNA-mRNA regulatory networks of Key DEMRGs. (A) Heatmap of DEmiRNAs in GSE32538 (59 upregulated and
103 downregulated DEmiRNAs). (B) Venn diagram showing the intersectingmiRNAs between DEmiRNAs and the predictedmiRNAs. (C) Themetabolism-
related miRNA-mRNA regulatory network contained 60 DEmiRNAs and 5 DEMRGs. Red nodes represent upregulated key DEMRGs or DEmiRNAs in IPF
lung tissue, and green nodes represent downregulated key DEMRGs or DEmiRNAs in IPF lung tissue.
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3.6 Key DEMRGs exhibited the same
expression pattern in the external datasets

We compared the expression levels of six key DEMRGs in IPF
patients and controls in two independent external datasets
(GSE53845 and GSE213001). According to the results, ENPP3,
ENTPD1, and PDE7B were significantly upregulated in the lung
tissues of IPF patients (Figure 7), while GPX3, PNMT, and POLR3H
were significantly downregulated (Figure 7). These results were in
accordance with those in the previous four datasets.

3.7 Validation of the key DEMRGs by
qRT-PCR

According to the results of qRT-PCR, the expression levels of
ENPP3, PDE7B, and ENTPD1 were elevated, while the expression
levels of PNMT, GPX3, and POLR3H were decreased in the lung
tissues of bleomycin-induced pulmonary fibrosis mice compared
with the sham group (Figure 8). The results of qRT-PCR remained
consistent with the bioinformatics analysis; therefore, these key
DEMRGs may play an essential role in the progression of IPF.

FIGURE 6
Immune cell infiltration in IPF. (A)Histogramof the proportion of each type of immune cell in the lung tissue of 119 IPF patients and 50 controls in the
GSE32537 dataset. (B) Boxplot of the relative expression of each immune cell subtype between the IPF patients and healthy controls. (C)M2macrophage
expression was positively correlated with the expression level of ENPP3. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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4 Discussion

Our study aims to identify key metabolism-related genes of IPF.
First, we performed the differential analysis of the four GEO public
datasets (GSE32537, GSE110147, GSE150910, and GSE92592) and
integrated metabolism-related genes from the MSigDB dataset,
resulting in 51 DEMRGs that were commonly upregulated and
50 DEMRGs that were commonly downregulated in the four IPF
datasets. Subsequently, we performed functional enrichment analysis
on these 101 DEMRGs, and the results indicated that these genes were
involved in various metabolism-related terms. Then, two machine-
learning algorithms were utilized to screen the key DEMRGs,
resulting in six genes (ENPP3, ENTPD1, PDE7B, GPX3, PNMT, and
POLR3H) as key DEMRGs. We further combined the miRNA
expression profile dataset of IPF and the predicting results of the
miRWalk database to construct the miRNA-mRNA network
regulating the key DEMRGs. Next, we performed an immune
infiltration analysis and identified an elevated M2 macrophage level

in IPF patients, which reflects the enhanced M2 polarization-mediated
fibrosis phenotype. In addition, the mRNA expression of the key
DEMRGs was validated in two external independent datasets
(GSE53845 and GSE213001). Finally, the gene expression pattern was
validated by qRT-PCR, demonstrating that the key DEMRGs might
have potentially significant roles in IPF.

The immune cell infiltration results showed increased levels of
M2 macrophages in the lung tissue of IPF patients. As the most
abundant immune cells in the lung (approximately 70%),
macrophages play a critical role in pulmonary fibrosis-related airway
remodeling (Cai et al., 2014). Activatedmacrophages are usually divided
into two categories, M1 macrophages (pro-inflammatory) and
M2 macrophages (anti-inflammatory/pro-fibrotic) (Vasse et al.,
2021). The ENPP3 and ENTPD1 encoded products can hydrolyze
ATP. Thus the elevated levels of ENPP3 and ENTPD1 observed in our
study lead to a decreased ATP level. Extracellular ATP increases the
global inflammation level (Cauwels et al., 2014). Besides, we identified
that the M2 macrophage expression was positively correlated with the

FIGURE 7
The expression levels of six key DEMRGs were validated in two independent external datasets (GSE53845 and GSE213001): ENPP3, ENTPD1, and
PDE7B were significantly upregulated in IPF lung tissue (p < 0.05), while GPX3, PNMT, and POLR3H were significantly downregulated in IPF lung tissue
(p < 0.05).
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expression level of ENPP3. Taken together, we have reason to believe
that ENPP3 and ENTPD1 may play a role in macrophages. The
enhanced macrophage M2 polarization might be partly through the
upregulation of ENPP3 and ENTPD1, leading to a decrease in ATP
levels, which produces an anti-inflammatory and pro-fibrotic
phenotype and ultimately exacerbates IPF. However, the specific
mechanism needs to be validated in further studies.

GPX3 encodes glutathione peroxidase 3, which is expressedmainly in
the lung and kidney (Lubos et al., 2011). Recent studies have shown a
strong link between reactive oxygen species and fibrosis (Richter and
Kietzmann, 2016). NADPH oxidase 4-derived ROS has been reported to
regulate TGF-beta1-induced myofibroblast differentiation, extracellular
matrix production, and contractility. A recent study uncovered a
therapeutic effect of ROS-responsive liposomes in IPF, further
suggesting the significance of anti-oxidative stress in IPF treatment (Liu
et al., 2022). Our study shows that GPX3 expression levels are decreased in
IPF lung tissue, which leads to increased levels of oxidative stress and thus
exacerbates the fibrotic phenotype. Therefore, GPX3 is expected to be a
potential novel target for the anti-oxidative stress treatment of IPF.

PDE7B encodes a phosphodiesterase that hydrolyzes cAMP and
downregulates its signaling effects (Sasaki et al., 2000). In addition, the
products of PNMT increase adrenaline production, and activation of
adrenoceptors increases cAMP synthesis (Torphy, 1994; Martin et al.,
2001). The decrease in cAMP results in a reduction of PKA activity and
an increase in PFK activity, leading to increased F2,6BP levels. In
response to the rise in F2,6BP levels, gluconeogenesis is suppressed,
and glycolysis is stimulated (Pernicova and Korbonits, 2014). The
increasing cellular cAMP level inhibits pulmonary fibroblast
proliferation and collagen synthesis (Liu et al., 2004). In addition,
glycolysis is increased early and sustainably during myofibroblast
differentiation (Xie et al., 2015). The glucose transporter protein 1-
dependent glycolytic phenotype was significantly increased in the lungs
of aged mice, which was essential for pulmonary fibrosis (Cho et al.,
2017). Actually, β-adrenergic agonists/cAMP play a key role in IPF, and
β-adrenergic receptor agonists/cAMP have been shown to have

beneficial effects on alveolar injury, including protection from
epithelial and endothelial cell damage, restoration of alveolar fluid
clearance, and reduction of fibrotic remodeling (Sriram et al., 2021).
Overall, the upregulation of PDE7B and downregulation of PNMT in the
lung tissues of IPF patients identified in our studymight conjointly result
in decreased β2-AR agonist/cAMP levels, decreased PKA activity, and
enhanced glycolysis, which induced excessive collagen production and
fibrosis formation.

The advantage of this study is that we have identified key
metabolism-related genes that are commonly differentially
expressed in IPF lung tissue using multiple bioinformatics
approaches and validation in animal models. These genes may be
a potential focus for future research on IPF metabolic disorders.
However, several shortcomings of our study need to be
acknowledged. First, the general profile of the IPF population
cohort and the healthy control population cohort in the original
dataset was not identical; for example, the mean age of the case
group in the original study of GSE32537 was 62.6 years, whereas the
mean age of the control group was 47.5 years. Therefore, it is unclear
whether these differential gene expressions could be influenced by
age. Nevertheless, our findings were obtained based on the analysis
and validation of multiple datasets, thus minimizing the effect of
potential confounding factors. The second limitation of this study is
that although the identified key DEMRGs are commonly
differentially expressed in IPF lung tissues, the specific degree of
their impact on IPF needs to be clarified. Therefore, it will be
important to interpret the findings with caution until they are
validated by functional experimental research, despite the fact
that they were based on reliable bioinformatics data.

5 Conclusion

Overall, through a comprehensive analysis of public datasets and
experimental validation, we identified keymetabolism-related genes that
are differentially expressed in the lung tissue of IPF patients. Our study
emphasizes the critical role of metabolic dysregulation in IPF, offers
potential therapeutic targets, and provides new insights for future studies.
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