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Introduction: Severe mitral regurgitation (MR) is a mitral valve disease that can
lead to lifethreatening complications. MitraClip (MC) therapy is a percutaneous
solution for patients who cannot tolerate surgical solutions. In MC therapy, a clip is
implanted in the heart to reduce MR. To achieve optimal MC therapy, the
cardiologist needs to foresee the outcomes of different scenarios for MC
implantation, including the location of the MC. Although finite element (FE)
modeling can simulate the outcomes of different MC scenarios, it is not
suitable for clinical usage because it requires several hours to complete.

Methods: In this paper, we used machine learning (ML) to predict the outcomes of
MC therapy in less than 1 s. Two ML algorithms were used: XGBoost, which is a
decision tree model, and a feed-forward deep learning (DL) model. The MC location,
the geometrical attributes of themodels and baseline stress andMRwere the features
of the ML models, and the predictions were performed for MR and maximum von
Mises stress in the leaflets. The parameters of the ML models were determined to
achieve theminimumerrors obtainedby applying theMLmodels on the validation set.

Results: The results for the test set (not used during training) showed relative
agreement between ML predictions and ground truth FE predictions. The
accuracy of the XGBoost models were better than DL models. Mean absolute
percentage error (MAPE) for the XGBoost predictions were 0.115 and 0.231, and
the MAPE for DL predictions were 0.154 and 0.310, for MR and stress, respectively.

Discussion: TheMLmodels reduced the FE runtime from 6 hours (on average) to less
than 1 s. The accuracy of ML models can be increased by increasing the dataset size.
The resultsof this studyhave important implications for improving theoutcomesofMC
therapy by providing information about the outcomes ofMC implantation in real-time.
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Introduction

The mitral valve (MV) ensures unidirectional blood flow from the left atrium to the left
ventricle (LV). Mitral regurgitation (MR) is a pathological condition whereby the MV does
not close properly, causing blood reflux to the left atrium during contraction. This disease is
the most common cardiac valve disease in the US (Nkomo et al., 2006). Nearly four million
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people suffer from severe MR, and each year nearly 250,000 new
patients are diagnosed (St. Goar et al., 2003; Lloyd-Jones et al., 2010).
One treatment option is surgery, but nearly half of patients cannot
benefit from this option because of frailty, co-morbidities and/or LV
impaired function (St. Goar et al., 2003). Another option that can be
more suitable is MitraClip (MC) intervention whereby the
cardiologist performs a percutaneous procedure (Fann et al.,
2004). The efficacy of this intervention has been studied in
clinical trials (Mauri et al., 2013; De Bonis et al., 2015).

Currently, the success of MC intervention is largely based on the
cardiologist’s expertise. The intervention itself involves several
parameters that can be selected, such as the location and number
of MCs, the clip size, and leaflet grasping. To optimize the
intervention, the cardiologist should attempt various scenarios
with different parameters. Computational models are essential for
optimization where virtual placements can be assessed since this is
not feasible in patients.

We use physics-based modeling, based on the finite element
(FE) method, to create in silico models of the MC scenarios. FE
modeling can replicate the MR for different parameters in the MC
intervention, as reported in previous publications (Dabiri et al.,
2019a; Kamakoti et al., 2019; Caballero et al., 2020; Dabiri et al.,
2020). However, because FE simulations are time-consuming, they
are not suitable for clinical applications because the cardiologist
needs the results in real-time for each patient. Furthermore, the
optimal MC scenario cannot be directly extracted from FE results
because the relation between MC parameters and optimal outcomes
of this therapy are complex. As such, the results from FE
computations for different scenarios need to be analyzed to
determine the best option, which could increase the time
required to provide the results from FE simulations.

Machine learning (ML) has been used in cardiovascular
mechanics for different applications (Madani et al., 2018;
Madani et al., 2019; Gilbert et al., 2020; Quer et al., 2021). We
have used ML to predict LV mechanics. In particular, we used
decision tree and deep learning (DL) models to simulate
important data such as LV stress, pressure and volume, and
reduce the FE runtime from several hours to a few seconds
(Dabiri et al., 2020; Dabiri et al., 2019b).

To address the limitations of FE simulation of MC therapy, we
applied ML-based methods to obtain the outcomes of MR in real-
time. For this, we used a dataset of FE models that we created for
different MV geometries and MC locations (Dabiri et al., 2021).
There were six possible locations for the MC. A decision-tree
algorithm, eXtreme Gradient Boosting (XGBoost), as well as
feed-forward DL were used to replicate FE results in real-time,
whereby the MR and maximum leaflet stress were predicted for each
location of the MC.

Materials and methods

Data generation

The details of the database generation have been described
elsewhere (Dabiri et al., 2021). In brief, our database was created
from MV geometries obtained from different resources, including
echocardiography patients’ data, morphological data from the

literature (Krawczyk-Ożóg et al., 2017), and principal component
analysis (PCA). The respective patient images were obtained in
accordance with University of California San Francisco Institutional
Review Board (number 19-27738). The database provides MR for
different MC locations included data from 181 geometries. There
were seven scenarios for each geometry, without MC and six
locations for the MC. The original dataset was split into training
and test sets. The test set was data from eight geometries
(56 models), which were not used in the training.

Decision tree predictions

We used XGBoost to predict the outcomes of MC therapy,
specifically the MR and leaflet stresses, for different scenarios.
XGBoost is a decision-tree algorithm that uses a sequence of
weak decision trees to make predictions (Dabiri et al., 2019b; Sun
et al., 2018). The tree decision-making process of this algorithm has
been illustrated in the literature (Chen and Guestrin, 2016). The
features of the model included the geometrical parameters of the
leaflets and the location of the MC (Figure 1), as well as baseline MR
and baseline maximum von Mises leaflet stress. MR or maximum
leaflet von Mises stress was the output.

We used a cross-validation technique during training the ML
model (Refaeilzadeh et al., 2009; Chicco, 2017). In this technique, the
training set was divided into n = 3 folds, and each fold was used for
validation of the training results, which was based on the other n-1
folds. For this purpose, we used three hyper parameters: learning
rate, maximum depth, and number of estimators. For each hyper
parameter, several values were used (Table 1). The XGBoost analysis
was conducted by the cross-validation algorithm to obtain the hyper

FIGURE 1
The approximate locations of the landmark points used during
morphing (right), and the FE model (left). There were six locations
along the leaflet edges where the MC can be placed. The FE model
included the mitral valve, the chords, the LV, and blood particles.
The features of theMLmodels were: XP1, XP2, YP3, YP4, XP5, ZP5, XP6, and
ZP6 where P1 to P6 are landmark points. The image on the right is from
Abaqus (2021, https://www.3ds.com/products-services/simulia/
products/abaqus/). Horos (3.3.6, https://horosproject.org/) and
ImageJ (1.53e, https://imagej.nih.gov/ij/) were used to create the
figure on the right.
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parameters with best results. The cross validation was implemented
using the GridSearchCV algorithm in sklearn. model_selection
library.

DL model

A feed-forward DL model was used for MR and stress predictions.
The DL model was composed of several hidden layers, the number of
which was changed to improve model performance. The first layer, the
input layer, corresponds to the attributes of the data, namely, the
geometrical specification of landmark points and the location index
(1–6) for the MC as well as baseline MR and maximum von Mises
leaflet stress. The output layer corresponded to either MR or the
maximum leaflet von Mises stress. The number of hidden layers
and the number of neurons in each layer were altered based on the
validation set error analysis. The L1 loss function and Adam optimizer
were used to compute the error between predicted and ground truth
outputs, and to calculate the updated weights. Advantages of Adam
optimizer include computational efficiency, memory requirement, and
convenient implementation (Kingma and Ba, 2015). We used the
Pytorch library for DL computations (Paszke et al., 2017).

Both XGBoost and DL computations were performed on Google
Colaboratory platform, using Python programming language and
related libraries. Graphical processing units (GPUs) were used for
DL computations. To investigate model performance during
training, mean absolute error (MAE) was used, which is the
average of the difference between FE and predicted outputs. To
assess the accuracy of the predictions, the mean absolute error
(MAPE) was utilized. Using the test dataset, the MAPE was
computed as follows:

MAPE � 1
nsamples

∑nsamples−1
i�0

yi − ŷi

∣∣∣∣
∣∣∣∣

max ∈, yi

∣∣∣∣
∣∣∣∣( )

where ∈ is “an arbitrary small yet strictly positive number”, nsamples is
number of samples, and yi and ŷi are the FE and predicted MR,
respectively (Scikit-learnv.1.0.1 documentation).

Results

The FE models provided the MR and leaflet stresses. The
average runtime to complete an FE model was approximately 6 h
(Table 2). The FE computations did not converge for all models;
when there were FEs with excessive distortion, the model failed to
converge. After the FE computations were completed,
postprocessing of the results provided different parameters.
We focused on MR and leaflet stress as they are important
factors for MC therapy.

The XGBoost algorithm predicted the results for MR and
maximum leaflet stress (Figures 2–4). A sample tree from
XGBoost model for stress predictions is shown in the
(Supplementary Figure S1). The accuracy of the predictions
was dependent on the hyperparameters. The grid search
algorithm provided the optimal hyper parameters (Table 1).
For MR the optimal learning rate was 0.01 and maximum
depth was 7, and optimal number of estimators was 1,000. For
maximum leaflet von Mises stress the optimal learning rate was
0.1 and maximum depth was 3, and optimal number of estimators
was 500. The training and inference time for this algorithm are
summarized in Table 2, and the MAPE results are summarized in
Table 3.

TABLE 1 Parameters used in the grid search for XGBoost algorithm.

Learning rate Maximum depth Number of estimators

range 0.000001, 0.0001, 0.001, 0.01, 0.1 2, 3, 5, 7 1000, 4000, 10,000

Optimal (MR) 0.01 7 1,000

Optimal (stress) 0.1 3 500

TABLE 2 Runtime (CPU) for FE and ML results.

MR Stress

XGBoost DL XGBoost DL

ML Training 1,473 s 2,106 s 762 s 3,110

ML Inference Less than 1s

FE In average 6 h

FIGURE 2
The MR results for the test set obtained from FE (ground truth)
and XGboost (predicted). The MR is computed based on the blood
particles that leaked into left atrium. Python (3.7, https://www.python.
org/) was used to create this figure.

Frontiers in Genetics frontiersin.org03

Dabiri et al. 10.3389/fgene.2023.1142446

https://www.python.org/
https://www.python.org/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1142446


The DL model also provided the MR and leaflet stresses
(Figures 5–7). The DL predictions were sensitive to DL
hyperparameters including learning rate, number of epochs,
and number of DL layers and neurons. We used 14 layers of
neurons. The first layer right after the input layer had
100 neurons, the two next layers had 200 neurons, and the
other layers except for the output layer (one output) had
300 neurons. The runtime and MAPE are summarized in
Tables 2, 3, respectively.

The ML model errors had different characteristics for training and
validation sets. The training errors continued to decrease as the number
of estimators (XGBoost), or number of epochs (DL) increased.
However, the validation set error had a saddle point after which the
error started to increase. The XGBoost model hyperparameters were
based on the errors obtained from different folds of the validation sets.
The DL optimal hyperparameters were selected based on the error for
the validation set whereby the hyperparameters that provided the
minimum validation error were selected for the DL model (Figure 8).

According to the XGBoost analysis, different features used for ML
predictions had different levels of importance (Table 4). For MR
predictions, baseline MR had the highest level of importance
whereas for stress predictions, baseline stress was the most
important feature. The importance of geometrical features for MR
predictions were different, implying different levels of effect on MR.
Additionally, different geometrical attributes had different levels of
importance for stress predictions. Moreover, for MR and stress
outcomes the importance of each geometrical feature was different.

Discussion

In this study, we usedML to predict the outcomes ofMC therapy
in less than 1 s, in contrast to FE computations, which need 6 h on
average. We focused on MR and maximum leaflet stress, as they
(especially MR) are critical for successful MC therapy. Although we
used a relatively small dataset (1267 FE models), the ML models
provided results much faster than FE and with relatively reasonable
accuracy (Figures 2–7; Tables 2, 3). To the best of our knowledge,
our study is the first one that uses ML for prediction of MC
outcomes.

One of the two ML models we studied, the XGBoost algorithm,
predicted the MR and leaflet stress with relatively reasonable
accuracy (Figures 2–4). The prediction accuracy depends on

FIGURE 3
The maximum leaflet von Mises stress for the test set obtained
from FE (ground truth) and XGboost (predicted). Python (3.7, https://
www.python.org/) was used to create this figure.

FIGURE 4
Comparison between FE results and XGBoost predictions. Python (3.7, https://www.python.org/) was used to create this figure.
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several factors. The hyperparameters (including number of
estimators), learning rate and maximum tree depth were altered
by the cross-validation algorithm, which finds the optimal model.
These parameters can change the accuracy of the predictions to
some extent. Another important factor in achieving accurate ML
predictions is the data size. The XGBoost training was based on only
1267 FE models (datapoints). This relatively small dataset could
explain why the XGBoost algorithm failed to predict results for some
cases with relatively high accuracy (Figures 2–4).

The DL model training was also based on 1267 FE models
(datapoints). We tried different sets of parameters to improve the
DL results, specifically altering the number of layers and number of
neurons in each layer, as well as the learning rate. The accuracy of
the DL model was noticeably altered by changing these parameters.
However, as with XGBoost, DL failed to predict the results for some
cases with relatively high accuracy (Figures 5–7). The errors in the
DL predictions can be explained by the optimal hyperparameters
and the relatively small dataset.

Analysis of feature importance shows that the baseline MR and
stress were the most important in predicting the outcomes of MC
intervention (Table 4). However, because other specifications of the

MLmodels were the same, the baseline MR and stress are influenced
only by the MV geometry. We used the geometrical landmarks
utilized during the morphing process. If the MV geometry is
encoded in other dimensions, such as the principal components
(Liang et al., 2018), the importance of baseline MR and stress could
be affected. Consequently, some features in the encoded dimensions
could become the most important features.

Results showed that XGBoost provided higher accuracy than DL
(Table 3). However, this should not be generalized. There could be a
structure of DL models that provide results with comparable
accuracy with XGBoost. Since DL models are usually large
models, they are more suitable for large datasets. Given the
relatively small dataset in this study, we expected that XGBoost
can better predict the FE results. Moreover, the accuracy for MR was
better that stress (Table 3). This can be related to numerical errors in
FE data. We used maximum von Mises stresses in the leaflets. This
FE result can be affected by element distortions in such a way that
some maximum stress data act like noise in the dataset and affect the
ML models performance.

The clinical benefits of using ML over FE to predict MC
outcomes are considerable. First, FE modeling is time-consuming
and therefore impractical for predicting the possible undesired
consequences of MC therapy in a given patient. ML provided the
results in less than 1 s, which addresses the need for rapid results
required in the clinic. Second, FE calculations are much more
expensive than ML analysis, in terms of both required hardware
and software. However, FE convergence is not guaranteed. If the
geometry is not accurate or is not well-defined, there is a chance that
FE models do not converge. On the other hand, ML analysis is less
sensitive to these factors. For example, if the image provides the six
landmark points, the ML can provide the results. Moreover, if the
data provides just a few of the six landmark points, statistical
analysis can be used to approximate the missing landmarks.

FIGURE 5
The MR results for the test set obtained from FE (ground truth)
and DL (predicted). The MR is computed based on the blood particles
that leaked into left atrium. Python (3.7, https://www.python.org/) was
used to create this figure.

FIGURE 6
The maximum leaflet von Mises stress for the test set obtained
from FE (ground truth) and DL (predicted). Python (3.7, https://www.
python.org/) was used to create this figure.

TABLE 3 MAPE for different ML models using the testing data.

Model Quantity MAPE

XGBoost MR 0.115

Stress 0.231

DL MR 0.154

Stress 0.310
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Importantly, modeling the relation between MC outcomes and
image data requires ML algorithms that can extract complex
relations between attributes (MV geometrical features and
MitraClip specifications) and outcomes (MR and leaflet stress).

Limitations and future directions

One limitation of this work is the relatively small size of the
dataset used, which included only 1,267 datapoints. This limitation
is particularly important for the ML predictions. As more data
becomes available, we will re-train our ML algorithms. For example,

the points in Figures 3, 6 which have higher errors, also have higher
stress values as compared to other points. If the number of
datapoints is increased, the ML model parameters will be
adapted for these cases so that the respective error decreases.
With a larger dataset, the overfitting problem for all datapoints
also improves, leading to better overall predictions. Nevertheless,
this paper, which describes a proof-of-concept study, takes a step
forward for using ML to provide MC therapy outcomes for
clinical use.

Other ML algorithms such as random forest, support vector
machines (SVM) and recurrent neural networks can be used to
predict FE results. Our computations (not shown in this paper) with
random forest and SVM did not show better performance as
compared to XGBoost and DL. In our study, we used XGBoost
and feed-forward DL. XGBoost can be used for small datasets, it is
computationally efficient and its advantages over other decision tree

FIGURE 7
Comparison between FE results and DL predictions. Python (3.7, https://www.python.org/) was used to create this figure.

FIGURE 8
The training error and test error change with number of epochs
in DL algorithm. The XGBoost errors have a similar behavior. Python
(3.7, https://www.python.org/) was used to create this figure.

TABLE 4 Feature importance for MR and stress predictions.

Importance

MR Stress

Feature

Clip location 0.050 0.027

XP1 0.009 0.012

XP2 0.075 0.023

YP3 0.022 0.023

YP4 0.022 0.004

XP5 0.025 0.028

ZP5 0.037 0.059

XP6 0.009 0.022

ZP6 0.014 0.045

Baseline stress 0.009 0.717

Baseline MR 0.727 0.041
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models include runtime, sensitivity to outliers, flexibility in
processing data, and performance (Chen and Guestrin, 2016; Sun
et al., 2018). We previously showed that for LV mechanics, DL can
provide results in higher accuracy for a relatively small dataset
(Dabiri et al., 2020). The other model used in the current study, feed-
forward DL, was chosen for computational efficiency because
recurrent neural networks usually require more computations for
similar tasks. The DL performance was not as good as XGBoost
(Figures 4, 7; Table 3). DL model complexity can be higher than that
of XGBoost if number of layers and neurons increases. Therefore,
XGBoost may be preferred for its computational efficiency and
lower generalization errors. This condition is more important for
cases where model complexity is too high with respect to the
dataset size.

It should be noted that we used different number of hidden
layers, neurons, and hyper parameters to achieve best results in
terms of DL predictions error. The results shown in this paper were
obtained from the structure with lowest error. We used a try and
error approach, but there are algorithms to find optimal DL
structures, such as genetic algorithms which can be implemented
as a future direction (Stathakis, 2009).

Minimal MV area is another important consideration for MC
intervention. In this paper, we presented mitral regurgitation and
leaflet stresses. We did not present results for MV area for two
reasons: 1) MV area and regurgitation are related; and 2) Our focus
was MV regurgitation. In other words, the results presented for MV
regurgitation and stress can be repeated for MV area.

In summary, severe MR is a disease that is fatal if untreated, and
has high burden on the healthcare system. MC implantation can be
an effective option for patients who cannot tolerate surgery, but
because the procedure currently relies on the cardiologist’s intuition,
it could lead to adverse outcomes. We used ML to predict the
outcomes of MC implantation in near real-time (less than 1 s),
which has important ramifications in clinical practice.
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