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Background: Regulation of nutrient status during fasting and refeeding plays an
important role in maintaining metabolic homeostasis in the liver. Thus, we
investigated the impact of the physiological Fed–Fast–Refed cycle on hepatic
gene expression in nutrient-sensitive mice.

Methods:We performed transcriptomic analysis of liver samples in fed, fasted and
refed groups ofmice. ThroughmRNA-sequencing (RNA-Seq) andmiRNA-Seq, we
compared fasted and fed states (fasted versus fed cohort) as well as refed and
fasted states (refed versus fasted cohort) to detect dynamic alterations of hepatic
mRNA–miRNA expression during the fed–fasted–refed cycle.

Results:We found dozens of dysregulated mRNAs–miRNAs in the transition from
fed to fasted and from fasted to refed states. Gene set enrichment analysis showed
that gene expression of the two cohorts shared common pathways of regulation,
especially for lipid and protein metabolism. We identified eight significant mRNA
and three miRNA clusters that were up–downregulated or down–upregulated
during the Fed–Fast–Refed cycle. A protein–protein interaction network of
dysregulated mRNAs was constructed and clustered into 22 key modules. The
regulation between miRNAs and target mRNAs was presented in a network. Up to
42 miRNA–mRNA-pathway pairs were identified to be involved in metabolism. In
lipid metabolism, there were significant correlations between mmu-miR-296-5p
and Cyp2u1 and between mmu-miR-novel-chr19_16777 and Acsl3.

Conclusion: Collectively, our data provide a valuable resource for the molecular
characterization of the physiological Fed–Fast–Refed cycle in the liver.

KEYWORDS

liver, fasting, refed, gene expression, microRNA, fed

Introduction

Obesity has emerged as a global public health problem, and improvement of nutrient status
and dietary interventions have been touted as potential remedies. To achieve resistance to
environmental stresses and toxicity, fasting can bring cells and tissues into a protected state. It is
reported that preoperative fasting can alleviate hepatic damage induced by ischemia/reperfusion
injury (Amer et al., 2017). Nutrient status is regulated by highly variable molecular mechanisms
and has an impact onmetabolic homeostasis in the liver, particularly for glucose, lipid and energy
metabolism (Koliaki and Roden, 2013; Jones, 2016). To gain a comprehensive understanding of
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molecular alterations in different nutrient statuses, we performed
hepatic mRNA-sequencing (RNA-Seq) and miRNA-Seq during the
physiological Fed–Fast–Refed cycle in mice.

Over the past decade, RNA-Seq has become an indispensable tool
for transcriptome-wide analysis of differential gene expression and
differential splicing of mRNAs, which interrogate global gene
expression changes at the transcriptional level (Stark et al., 2019;
Hong et al., 2020). miRNAs are a family of post-transcriptional gene
repressors and are associated with the regulation of gene expression in
metabolism (Lu and Rothenberg, 2018; Agbu and Carthew, 2021). To
date, several microarray profiling studies have been performed to
investigate the Fed–Fast–Refed cycle. However, most transcriptomic
studies in the liver have focused on a single aspect of the cycle, such as
transition from fed to fasted or from fasted to refed states (Chi et al.,
2020; Hwangbo et al., 2020; Wahl and LaRocca, 2021), which might be
inadequate. Our study investigated the Fed–Fast–Refed cycle
comprehensively and combined RNA-Seq with miRNA-Seq analysis.

We performed a systematic evaluation of hepatic genome-wide
mRNA and miRNA expression through RNA-Seq and miRNA-Seq
in mice in fed, fasted and refed states. We compared
mRNA–miRNA expression during the transition from fed to
fasted and from fasted to refed states. We analyzed alterations in
mRNAs–miRNAs and related pathways in fasted versus fed and
refed versus fasted cohorts. We detected significant mRNA and
miRNA clusters that were upregulated and subsequently
downregulated (up–down) or downregulated and subsequently
upregulated (down–up) during the Fed–Fast–Refed cycle. A
regulatory network including protein–protein interaction (PPI),
miRNA–mRNA and miRNA–mRNA pathways was established
for further analysis in the Fed–Fast–Refed cycle. We aimed to
provide novel insights into the molecular characteristics of the
physiological impact of the Fed–Fast–Refed cycle in the liver.

Materials and methods

Animal experiments

The animal procedures were approved by the Animal Experiment
Ethics Committees of Shanghai Jiao Tong University School of
Medicine. Wild-type male C57BL/6J mice aged 8 weeks were
purchased from Shanghai Laboratory Animal Company (SLAC,
Shanghai, China). All mice were housed at 21°C ± 1°C with a
humidity of 55% ± 10% and 12-h light/12-h dark cycle in a specific-
pathogen-free facility. After 2 weeks of acclimatization, mice were
divided into three groups. The fasted group was fed a regular diet
with subsequent fasting for 24 h. The refed group underwent 24 h
fasting and was refed a fixed-calorie meal for 2 h. Mice were
anesthetized with sodium pentobarbital (Nembutal, 80 mg/kg, i.p.)
and killed during the fasted and refed states. Liver tissues were
harvested and snap-frozen in liquid nitrogen for further analysis.

RNA-Seq and data processing

Total RNA was extracted using TRIzol reagent (Invitrogen,
Carlsbad, CA, United States). A total of 3 µg RNA per sample was
used as input material for the RNA sample preparations. Sequencing

libraries were generated using the NEBNext® Ultra™ RNALibrary Prep
Kit for Illumina® (NEB, United States), and index codes were added to
attribute sequences to each sample. Library quality was assessed by
Agilent Bioanalyzer 2100 system. The sequencing libraries were
sequenced on an Illumina Hiseq2500/X platform. For mRNA
sequencing, cuffdiff software (part of cufflinks) was used to obtain
FPKM as the expression profiles of mRNA and differentially expressed
mRNAswere calculated based on log(FPKM+1) with p< 0.05 and |Fold
Change|≥2 used as the cutoff values. For miRNA sequencing, limma R
package (http://bioconductor.org/packages/release/bioc/html/limma.
html) (Ritchie et al., 2015) was used to obtain scaled raw counts,
and differentially expressed miRNAs were identified with p < 0.05 and |
Fold Change|≥2 used as the cutoff values. Pearson coefficient r2 values
were calculated based on FPKMvalues and raw counts in RNA-Seq and
miRNA-Seq, respectively. Principal component analysis (PCA) was
performed by R ggfortify package (http://bioconductor.org/packages/
release/bioc/html/ggfortify.html). Heatmaps were plotted by applying R
pheatmap package (http://bioconductor.org/packages/release/bioc/
html/pheatmap.html).

Functional enrichment analysis

Gene Ontology (GO) annotation (Ashburner et al., 2000)
includes three categories: biological process, cellular compartment
and molecular function. Biological process of GO and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis (Kanehisa and Goto, 2000) was performed
by DAVID (Sherman et al., 2022) online tool (https://david.
ncifcrf.gov/tools.jsp) with dysregulated mRNAs. Gene set
enrichment analysis (GSEA) (Subramanian et al., 2005) was
performed based on the log2(Fold Change) of mRNA by R
clusterProfiler package (Yu et al., 2012) (http://bioconductor.org/
packages/release/bioc/html/clusterProfiler.html). p < 0.05 and gene
number in one term ≥2 was identified as significant enrichment.

Expression trend analysis

Weobtained the union set of dysregulatedmRNAs–miRNAs in the
fasted versus fed and refed versus fasted cohorts, which were considered
as mRNAs–miRNAs pairs in the Fed–Fast–Refed cycle. Trend cluster
analysis was performed with these mRNAs–miRNAs to explore
expression trends in the Fed–Fast–Refed cycle based on the R
Mfuzz package (Kumar and Futschik, 2007) (http://bioconductor.
org/packages/release/bioc/html/Mfuzz.html). Membership ≥0.3 was
used as the cutoff value. For each cluster, large membership values
indicated that the genes were in accordance with the expression trend
cluster. Next, clusters with similar expression trends were merged. We
focused on trend clusters that were upregulated and subsequently
downregulated (up–down) and downregulated and subsequently
upregulated (down–up) in the Fed–Fast–Refed cycle.

PPI network analysis

Based on the STRING (http://www.string-db.org/) dataset (von
Mering et al., 2003), we predicted proteins encoded by dysregulated
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genes up–downregulated or down–upregulated in the
Fed–Fast–Refed cycle and created a PPI network, which was
visualized with cytoscape (http://chianti.ucsd.edu/cytoscape-3.4.0//
) (Nangraj et al., 2020). The PPI score was set as 0.7, which was
considered as high confidence. CytoNCA (http://apps.cytoscape.
org/apps/cytonca) was applied to detect hub proteins through
ranking Degree Centrality. MCODE (http://apps.cytoscape.org/
apps/mcode) (Bader and Hogue, 2003) was applied to calculate
key modules in the PPI network (Degree Cutoff = 2, Node Score
Cutoff = 0.2, K-core = 2 and Max.Depth = 100). KEGG pathway
enrichment analysis of key modules was performed with R

clusterProfiler package (http://bioconductor.org/packages/release/
bioc/html/clusterProfiler.html) (Kanehisa and Goto, 2000). p.
adjust<0.05 was identified as enrichment significant.

miRNA–mRNA regulation network analysis

miRanda (http://www.mircorna.org/) was applied to predict
potential target mRNAs of miRNA. A score ≥140 and
energy ≤−20 were set as cutoff values. We focused on
dysregulated mRNAs–miRNAs in the Fed–Fast–Refed cycle and

TABLE 1 Groups of mice used in this study.

Group Strain Treatment Number of samples (N) Profile

1 C57BL/6J Fed 3 mRNA-Seq/miRNA-Seq

2 C57BL/6J Fasted 3 mRNA-Seq/miRNA-Seq

3 C57BL/6J Refed 2 h 3 mRNA-Seq/miRNA-Seq

FIGURE 1
The reproductivity and reliability of mRNA-Seq andmiRNA-Seq datasets. (A,B) Boxplot of mRNA (A) andmiRNA (B) expression after normalization in
fed, fasted and refed groups. (C,D) PCA analysis showing normalized expression of mRNA (C) and miRNA (D) in fed, fasted and refed groups after batch-
effect correction. (E,F)Heatmap showingmRNA € andmiRNA (F) expression patterns between fed, fasted and refed groups after batch-effect correction.
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obtained miRNA–mRNA pairs through prediction by miRanda.
miRNA–mRNA pairs were selected to construct an miRNA–mRNA
regulatory network.

miRNA–mRNA-pathway regulation analysis

A Sankey diagram was established between miRNA–mRNA
pairs and mRNA-pathway pairs involved in metabolism.
Significant correlation with p < 0.05 between miRNA and mRNA
expression was presented with scatter plots.

Results

RNA-Seq and miRNA-Seq data validation

The mouse model for Fed–Fast–Refed cycle was constructed. As
expected, blood glucose levels were reduced in the fasted state and
increased in the refed state (Supplementary Figure S1A). Besides,
expression levels of gluconeogenic (PEPCK and G6Pase) and lipogenic
genes (SREBP-1c, Fasn, Scd1, and Acc1) confirmed that gluconeogenesis
was induced by fasting and lipogenesis was increased by refeeding,
respectively (Supplementary Figures S1B, S1C). Then, mouse hepatic
genome-wide mRNA and miRNA expression was profiled using
RNA-Sequencing and miRNA-Sequencing, respectively. Details of the
study groups are listed in Table 1. The fed, fast and refed groups had three
replicates each. mRNA–miRNA expression density plots in the fed, fasted
and refed groups are presented in Supplementary Figures S2A, S2B. We
demonstrated the reproducibility and reliability of mRNA–miRNA
expression profiles. Correlation analysis showed that mRNA–miRNA
expression reads were correlated well between different samples
(Supplementary Figures S2C, S2D). Pearson correlation r2 values
between all samples in the three groups are shown in Supplementary
Figures S2C, S2D. Box plots based on normalized mRNA–miRNA
expression reads after batch-effect correction by interquartile range are
shown in Figures 1A, B. PCA of mRNA–miRNA expression profiles
showed that samples within each groupwere close, while samples between
different groups were separated (Figures 1C, D). Hierarchical clustering
analysis showed that samples in each group clustered together (Figures 1E,
F). These data demonstrated that all of the RNA-Seq and miRNA-Seq
results were reproducible and reliable for downstream analysis.

Differential expression analysis of RNA-Seq
and miRNA-Seq

To detect dynamic alterations of hepatic genome-wide mRNA
and miRNA expression during the Fed–Fast–Refed cycle,
comparisons were made between fasted and fed states (fasted

FIGURE 2
Differential expression analysis of RNA-Seq and miRNA-Seq
datasets. (A,B)Hepatic DEGs during the transition from fed to fasted in
mice. (A) Volcano plot of DEGs in the livers of mice in fasted compared
with fed state. The top DEGs are labeled as indicated. (B)
Heatmap showing expression patterns between top 100 DEGs in the
liver of mice in fasted compared with fed state after batch-effect
correction. (C,D) Hepatic dysregulated miRNAs during the transition
from fed to fasted in mice. (C) Volcano plot of dysregulated miRNAs in
the liver of mice in fasted compared with fed state. (D) Heatmap
showing expression patterns between dysregulated miRNAs in the
liver of mice in fasted compared with fed state after batch-effect
correction. (E,F) Hepatic DEGs during the transition from fasted to
refed state. (E) Volcano plot of DEGs in the liver of mice in refed
compared with fasted state. (F) Heatmap showing expression patterns
between top 100 DEGs in the liver of mice in refed compared with
fasted state after batch-effect correction. (G,H) Hepatic dysregulated
miRNAs during the transition from fasted to refed state. (G) Volcano
plot of dysregulated miRNAs in the liver of mice in refed compared
with fasted state. (H) Heatmap showing expression patterns between
dysregulated miRNAs in the liver of mice in refed compared with
fasted state after batch-effect correction.

TABLE 2 Numbers of differentially expressed genes and miRNAs detected.

mRNA miRNA

Fasted versus fed Up 291 20

Down 583 5

Total 874 25

Refed versus fasted Up 698 10

Down 350 22

Total 1,048 32
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versus fed cohort) as well as refed and fasted state (refed versus fasted
cohort) using RNA-Seq and miRNA-Seq. p < 0.05 and fold
change>2 were set as the threshold for identifying dysregulated
mRNA and miRNAs. Initially, we investigated the fasted versus fed
cohort. For RNA-Seq, the liver underwent dramatic changes in gene
expression during transition from fed to fasted state, with a total of
874 differentially expressed genes (DEGs); of which, 291 were
upregulated and 583 were downregulated (Figure 2A). The most
significantly upregulated genes included those encoding Cyp4a14,
Cyp4a10, Cyp4a31, and Tnnt2, while the most significantly
downregulated genes included those encoding A2m and
Serpina12 (Figure 2A). The top 100 significantly dysregulated
genes in the fasted versus fed cohort are presented in the circle
heatmap plot (Figure 2B). In addition, we undertook intersection
analysis of our RNA-Seq analysis with a public dataset (GSE107787),
in which mice were fasted 20 h. As a result, a total of 298 DEGs were
found between both screening, of which 129 were upregulated and
169 were downregulated (Supplementary Document S1). For
miRNA-Seq, we identified 25 dysregulated miRNAs in the liver
of mice in the fasted state compared with fed state; of which, 20 were
upregulated and five were downregulated (Figure 2C). These
differentially expressed miRNAs are shown in the circle heatmap
plot (Figure 2D).

In the refed versus fasted cohort, for mRNA-Seq, 1,048 genes
were differentially expressed in the refed state compared with fasted
state; among which, 698 were upregulated and 350 were
downregulated (Figure 2E). The most significantly upregulated
genes included those encoding Nrep, Cyp2c69, and Derl3, while
the most significantly downregulated genes included those encoding
Mt2, Igfbp1, Saa2, Lcn2, and A2m (Figure 2E). The top
100 significantly dysregulated genes in the refed versus fasted
cohort are presented in the circle heatmap plot (Figure 2F). We
also undertook intersection analysis of our analysis with a public
dataset (GSE137385), in which mice were refed 3 h with low-fat diet
after fasting. As a result, a total of 157 DEGs were found between
both screening, of which 87 were upregulated and 70 were
downregulated (Supplementary Document S2). These
comparisons would inform on which gene expression sets change
robustly enough across platforms and somewhat differing
experimental conditions. For miRNA-Seq, we identified
32 differentially expressed miRNAs in the liver of mice in the
refed state compared with fasted state; of which, 10 were
upregulated and 22 were downregulated (Figure 2G). These
differentially expressed miRNAs are shown in the circle heatmap
plot (Figure 2H). Numbers of differentially expressed mRNAs and
miRNAs detected are summarized in Table 2.

FIGURE 3
KEGG signaling enrichment analysis of mRNA expression profile based on GSEA. (A,B) KEGG signaling enrichment analysis of mRNA expression
profile in fasted versus fed cohort. (A) Selected GSEA results of mRNA expression profile in fasted versus fed cohort. Running enrichment score and
ranked list are presented. (B) Ridge plot listed the top 20 pathways in fasted versus fed cohort. (C,D) KEGG signaling enrichment analysis of mRNA
expression profile in refed versus fasted cohort. (C) Selected GSEA results of mRNA expression profile in refed versus fasted cohort. Running
enrichment score and ranked list are presented. (D) Ridge plot listed the top 20 pathways in refed versus fasted cohort.
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KEGG signaling enrichment analysis of
mRNA expression profile based on GSEA

KEGG signaling enrichment analysis based on GSEA was
performed with log2(Fold Change) of all mRNAs in the fasted

versus fed and refed versus fasted cohorts. In the fasted versus fed
cohort, GSEA demonstrated that mRNAs were mainly mapped to
66 KEGG pathways; of which, 29 showed a trend to be upregulated,
while 37 showed a trend to be downregulated (Supplementary
Tables S1, S2). In particular, pathways such as insulin resistance

FIGURE 4
Expression trend analysis. (A) The results of expression trend analysis based on the union set of dysregulated mRNAs in fasted versus fed and refed
versus fasted cohorts. Twelve mRNA clusters were detected. With a member.ship ≥0.3 used as the cutoff value, we identified eight significant mRNA
clusters in the Fed–Fast–Refed cycle; three were upregulated and subsequently downregulated (1, 6 and 10) and five were downregulated and
subsequently upregulated (2–5 and 11). (B) Expression trend analysis based on the union set of dysregulated miRNAs in fasted versus fed and refed
versus fasted cohorts. Six miRNA clusters were detected. With amember.ship ≥0.3 used as the cutoff value, we identified three significant miRNA clusters
in the Fed–Fast–Refed cycle; two were upregulated and subsequently downregulated (1 and 2) and one was downregulated and subsequently
upregulated (4).
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showed a trend to be upregulated (Figure 3A), and pathways
including fatty acid biosynthesis, steroid biosynthesis, protein
export and protein processing in the endoplasmic reticulum (ER)
showed a trend to be downregulated (Figure 3A). The top
20 pathways according to p-value were listed in the ridge plot,
which showed the distribution of log2(Fold Change) of genes
enriched in each pathway (Figure 3B). The top 20 pathways
included nine pathways in which enriched genes were mainly
upregulated and 11 in which enriched genes were mainly
downregulated (Figure 3B). In the refed versus fasted cohort,
GSEA demonstrated that mRNAs were mainly mapped to
70 KEGG pathways, of which, 33 showed a trend to be
upregulated, and 37 showed a trend to be downregulated
(Supplementary Tables S3, S4). Pathways including fatty acid
biosynthesis, steroid biosynthesis, protein export and protein
processing in the ER showed a trend to be upregulated
(Figure 3C), and insulin resistance showed a trend to be
downregulated (Figure 3C). The pathway results in the refed
versus fasted cohort were in contrast with those in the fasted

versus fed cohort. The top 20 pathways according to p-value are
listed in the ridge plot (Figure 3D). The top 20 pathways included
13 in which enriched genes were mainly upregulated and seven in
which enriched genes were mainly downregulated (Figure 3D).

Expression trend analysis

We analyzed the union set of dysregulated mRNAs/miRNAs in
the fasted versus fed and refed versus fasted cohorts, resulting in
1,579 mRNAs and 48 miRNAs (Supplementary Documents S3, S4).
Based on these dysregulated mRNAs–miRNAs in the union set,
trend cluster analysis was performed using R Mfuzz package to
detect mRNAs–miRNAs expression trends in the Fed–Fast–Refed
cycle, and 12 mRNA clusters were obtained (Figure 4A). Details are
summarized in Supplementary Document S3. Member.ship≥0.3 was
used as the cutoff value. In the Fed–Fast–Refed cycle, we identified
eight significant mRNA clusters including three (1, 6 and 10;
170 mRNAs) that were upregulated with subsequent

FIGURE 5
Functional enrichment of dysregulated mRNAs in significant mRNA clusters. (A) GO analysis of dysregulated mRNAs down–up/up–down in the
Fed–Fast–Refed cycle. (B) KEGG signaling enrichment analysis of dysregulated mRNAs down–up/up–down in the Fed–Fast–Refed cycle.
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downregulation, and five significant mRNA clusters (2–5 and 11;
474 mRNAs) that were downregulated with subsequent
upregulation. Six miRNA clusters were obtained (Figure 4B).
Details are summarized in Supplementary Document S4. In the
Fed–Fast–Refed cycle, we identified three significant miRNA
clusters including two (1 and 2; 11 miRNAs) that were
upregulated with subsequent downregulation, and cluster 4 that
was downregulated and subsequently upregulated.

Functional enrichment of dysregulated
mRNAs in significant mRNA clusters

We performed GO analysis and KEGG signaling enrichment
analysis of dysregulated mRNAs in significant mRNA clusters.
These mRNAs were down–up or up–down regulated in the
Fed–Fast–Refed cycle. GO analysis was classified into three
categories: biological process, cellular component and molecular
function. We only focused on biological process. The top

20 biological process terms of significant mRNA clusters are
plotted in Figure 5A. The down–up mRNA clusters in the
Fed–Fast–Refed cycle were mainly enriched in response to ER
stress, sterol biosynthetic process, protein N-linked glycosylation,
and isoprenoid biosynthetic process. The up–down mRNA clusters
in the Fed–Fast–Refed cycle were mainly enriched in cellular
response to insulin stimulus, amino acid transport, and response
to glucocorticoid. The details of GO analysis are summarized in
Supplementary Tables S5, S6. The top 20 KEGG pathways of
significant mRNA clusters are shown in Figure 5B. The down–up
mRNA clusters in the Fed–Fast–Refed cycle were mainly mapped to
protein processing in the ER, metabolic pathways, terpenoid
backbone biosynthesis, and retinol metabolism. The up–down
mRNA clusters in the Fed–Fast–Refed cycle were mainly mapped
to the FoxO signaling pathway, transcriptional regulation in cancer,
osteoclast differentiation, and the PI3K–Akt signaling pathway. The
details of KEGG analysis are summarized in Supplementary Tables
S7, S8.

PPI network of dysregulated mRNAs in
significant mRNA clusters

Visualized by cytoscape, a PPI was constructed to predict interaction
between proteins encoded by down–up and up–down mRNAs in the
Fed–Fast–Refed cycle (Figure 6A). Based on the CytoNCA tool, hub
genes were identified through ranking Degree Centrality. The top
20 genes encoded Hspa5, Stat1, Ddost, Cyp2c29, Hspa1b, Ugt2b1,
Irf7, Ifit2, Cyp2c70, Cyp2c55, Ugt2b37, Igtp, Pdia4, Hyou1,
Cyp4a12a, Cyp3a13, Cyp2c40, Aldh1a7, and Fasn. These genes might
be pivotal for the Fed–Fast–Refed cycle. Up to 22 key modules clustered
in the PPI network were generated using the MCODE tool (Table 3).
KEGG pathway enrichment analysis of these key modules was
performed (Supplementary Table S9). Importantly, these key modules
were mapped to a series of KEGG pathways related to metabolism.
Module 1 was enriched in steroid hormone biosynthesis, and linoleic
acid and arachidonic acid metabolism (Figure 6B). Module 12 was
enriched in drug metabolism by cytochrome P450, metabolism of
xenobiotics by cytochrome P450, and tyrosine metabolism. Module
3 was enriched in terpenoid backbone and steroid biosynthesis. Module
9 was enriched in glycerolipid and glycerophospholipid metabolism and
alcoholic liver disease.

miRNA–mRNA regulatory network

miRNAs regulate gene expression after binding with target
mRNAs through inhibiting mRNA translation or initiating
degradation (Chen et al., 2019). Therefore, potential targets
of miRNA were predicted using the miRanda tool to explore the
interaction between miRNAs and target mRNAs. In total,
415 miRNA–mRNA pairs were detected based on down–up
and up–down mRNAs–miRNAs in the Fed–Fast–Refed cycle. A
miRNA–mRNA regulatory network was characterized with
275 miRNA–mRNA pairs (Figure 7). Each up–down miRNA
in the Fed–Fast–Refed cycle regulated dozens of down–up
mRNAs. Also, down–up miRNAs in the Fed–Fast–Refed
cycle regulated dozens of up–down mRNAs. The 415 and

FIGURE 6
PPI network of dysregulatedmRNAs in significant mRNA clusters.
(A) PPI network predicted the interaction between proteins encoded
by down-up/up-down mRNAs in the Fed–Fast–Refed cycle. The
orange proteins encoded by dysregulated mRNAs were
upregulated and subsequently downregulated in the Fed–Fast–Refed
cycle. The green proteins encoded by dysregulated mRNAs were
downregulated and subsequently upregulated in the Fed–Fast–Refed
cycle. The node size shows the degree of connection. The grey line
shows interaction between proteins encoded by thesemRNAs. (B) Key
modules were enriched in a series of KEGG pathways related to
metabolism.
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275 miRNA–mRNA pairs are listed in Supplementary
Document S5.

miRNA–mRNA-pathway regulation analysis

A Sankey diagram was established between miRNA–mRNA and
mRNA pathways involved in metabolism (Figure 8A). Up to
42 miRNA–mRNA-pathway pairs were identified (Table 4). A
scatter plot showed the miRNA–mRNA pairs that participated in
lipid metabolism (Figures 8B–E). There was a negative correlation
between expression of these mRNAs and miRNAs (Figures 8B–E).
The correlation between mmu-miR-296-5p and Cyp2u1 and
between mmu-miR-novel-chr19_16777 and Acsl3 was significant
(p < 0.05) (Figures 8B, C).

Discussion

To explore the molecular alterations underlying the physiological
Fed–Fast–Refed cycle, we analyzed hepatic mRNA–miRNA
expression in mice during the fed to fasted and fasted to refed

transitions, based on RNA-Seq and miRNA-Seq. We observed
874 DEGs and 25 dysregulated miRNAs in the liver of mice in the
fasted state compared with fed state. A total of 1,048 DEGs and
32 dysregulatedmiRNAs were captured in the liver of mice in the refed
state compared with fasted state. mRNAs in the fasted versus fed and
refed versus fasted cohorts were mainly mapped to 66 and 70 KEGG
pathways, respectively. We detected three up–down mRNA clusters,
five down–up mRNA clusters, two up–down miRNA clusters and one
down–up miRNA cluster during the Fed–Fast–Refed cycle. In
addition, we observed up to 22 key modules clustered in a PPI
network of proteins encoded by down–up mRNAs and up–down
mRNAs in the Fed–Fast–Refed cycle. With 275 miRNA–mRNA pairs
in which the regulatory trend between miRNAs and mRNAs was in
contrast, a miRNA–mRNA regulatory network was constructed. Up to
42 miRNA–mRNA-pathway pairs were identified between
miRNA–mRNA- and mRNA-pathways involved in metabolism.

In the fasted versus fed cohort, the most significantly upregulated
genes included those encoding Cyp4a14, Cyp4a10, Cyp4a31, and
Tnnt2, while the most significantly downregulated genes included
those encoding A2m and Serpina12. Serpina12 is an adipokine, that
is associated with development of insulin resistance, obesity, and
inflammation (Kurowska et al., 2021). Interestingly, Tnnt2, which

TABLE 3 22 key modules clustered in PPI network.

Cluster Score Nodes Edges Node IDs

1 9.11 10 41 Cyp2c40, Cyp2c70, Cyp2c55, Cyp2c29, Aldh1a7, Cyp4a12a, Hsd3b5, Cyp3a13, Ugt2b37, Ugt2b1

2 8.00 8 28 Irf7, Ifit2, Oasl1, Ifi44, Isg15, Dhx58, Ddx58, Stat1

3 8.00 8 28 Fdps, Hmgcr, Mvd, Mvk, Cyp51, Hmgcs1, Sc4mol, Sqle

4 7.75 9 31 Pdia3, Hspa5, Pdia4, Pdia6, Ddost, Calr, Hyou1, Sdf2l1, Dnajc3

5 7.14 8 25 Ddx18, Bms1, Ddx55, Utp14b, Trmt6, Polr1e, Trmt61a, Wdr12

6 5.00 5 10 Tuba1a, Tubb2a, Tubb4b, Tubb5, Tuba1b

7 4.50 5 9 Mlec, Rpn1, Ostc, Tmem258, Magt1

8 4.00 5 8 Hspa1b, Cct3, Ahsa1, Hspe1, Dnaja4

9 4.00 4 6 Lpin2, Ppapdc1b, Lpin1, Pnpla2

10 4.00 4 6 Hist1h4i, Hist1h3c, Hist1h2be, Hist1h4m

11 4.00 4 6 Arfgap3, Kdelr2, Copg1, Sec22b

12 3.33 4 5 Gsta4, Gstm3, Adh1, Adh4

13 3.33 4 5 Got1, Tdo2, Ddc, Tat

14 3.00 3 3 Igtp, Gbp10, Irgm1

15 3.00 3 3 Syvn1, Derl3, Sel1l

16 3.00 3 3 Adra1a, Adra1b, Gng11

17 3.00 3 3 Fkbp4, Cacybp, Stip1

18 3.00 3 3 Pcsk9, Sort1, Ngf

19 3.00 3 3 Mlx, Ppargc1b, Mlxipl

20 3.00 3 3 Ints2, Ints3, Nabp1

21 3.00 3 3 Hnrnpa3, Snrpd1, Ncbp2

22 3.00 3 3 Tpm1, Tnnt2, Des
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encodes the cardiac isoform of troponin T, has been shown to regulate
hypertrophic cardiomyopathy. Tnnt2-high and Tnnt2-low
cardiomyocytes showed differential mitotic activity in response to
intracellular glucose (Fajardo et al., 2021). Therefore, we speculate
that Tnnt2 expression in the liver could also be regulated by
changes in blood glucose levels during fed-fasting-refed cycling.
However, its function in the hepatic metabolic regulation remains to
be explored in the future studies. In the refed versus fasted cohort, the
most significantly upregulated genes included those encoding Nrep,
Cyp2c69 and Derl3, while the most significantly downregulated genes
included those encodingMt2, Igfbp1, Saa2, Lcn2, andA2m. Igfbp1 is an
endogenous promoter of β-cell regeneration and reduces the risk of
developing type 2 diabetes (Lu et al., 2016).

GSEA showed that gene expression in the two cohorts shared
common pathways, especially for lipid and protein metabolism. In the
transition from fed to fasted state and from fasted to refed state, insulin
resistance showed a trend to be upregulated. Pathways including fatty
acid biosynthesis, steroid biosynthesis, protein export and protein
processing in the ER showed a trend to be downregulated during
the fed to fasted transition. However, these pathways showed a trend to
be upregulated during the fasted to refed transition.

GO analysis demonstrated that down–up mRNA clusters in the
Fed–Fast–Refed cycle were mainly related to response to ER stress,
sterol biosynthetic process, protein N-linked glycosylation, and
isoprenoid biosynthetic process. The up–down mRNA clusters were

mainly related to cellular response to insulin stimulus, amino acid
transport, and response to glucocorticoid. KEGG pathway analysis
found that down–up mRNA clusters in the Fed–Fast–Refed cycle were
mainly mapped to protein processing in the ER, metabolic pathways,
terpenoid backbone biosynthesis, and retinol metabolism. Up–down
mRNA clusters in the Fed–Fast–Refed cycle weremainlymapped to the
FoxO signaling pathway, transcriptional misregulation in cancer,
osteoclast differentiation, and the PI3K–Akt signaling pathway.

Hub genes were identified through PPI network analysis of proteins
encoded by down–up and up–down mRNAs in the Fed–Fast–Refed
cycle. We found that the top 20 hub genes included those encoding
Hspa5, Stat1, Ddost, Cyp2c29, Hspa1b, Ugt2b1, Irf7, Ifit2, Cyp2c70,
Cyp2c55, Ugt2b37, Igtp, Pdia4, Hyou1, Cyp4a12a, Cyp3a13, Cyp2c40,
Aldh1a7, and Fasn. These hub genes included several classes with
distinct functions. For instance, Cyp2c29, Cyp2c70, Cyp2c55,
Cyp4a12a, Cyp3a13, and Cyp2c40 are cytochrome P450 (CYP)
enzymes are involved in the metabolism of drugs, steroids and
carcinogens (Guengerich et al., 2016; Zhao et al., 2021). Hspa5 and
Hspa1b encode proteins which localized in the ER lumen.
Overexpression of Hspa5 on the cell membrane mediates the vast
number of disordered proteins produced under stress (Wang et al.,
2017). Ugt2b1 and Ugt2b37 belong to UDP glucuronosyltransferase
2 family. UDP glucuronosyltransferase prevents the accumulation of
potentially toxic compounds and their subsequent bioactivation to
more toxic intermediates (Grancharov et al., 2001; Rowland et al.,

FIGURE 7
miRNA–mRNA regulatory network. The miRNA–mRNA regulatory network was constructed with 275 miRNA–mRNA pairs in which the regulatory
trend between miRNAs and mRNAs was in contrast. The pink triangle indicates miRNAs upregulated and subsequently downregulated in the
Fed–Fast–Refed cycle. The blue inverted arrow indicates miRNAs downregulated and subsequently upregulated in the Fed–Fast–Refed cycle. The
orange circle indicates mRNAs upregulated and subsequently downregulated in the Fed–Fast–Refed cycle. The green square indicates mRNAs
downregulated and subsequently upregulated in the Fed–Fast–Refed cycle. The node size shows the degree of connection. The grey line shows
regulatory interaction between miRNA and targeted mRNAs.
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TABLE 4 Identified miRNA–mRNA-pathway pairs.

miRNA mRNA KEGG pathway Type_miRNA Type_mRNA

mmu-miR-novel-chr2_17679 Acat2 mmu00900:Terpenoid backbone biosynthesis up-down_mi down_up_m

mmu-miR-novel-chr2_17679 Acat2 mmu00071:Fatty acid degradation up-down_mi down_up_m

mmu-miR-novel-chr19_16777 Acsl3 mmu00071:Fatty acid degradation up-down_mi down_up_m

mmu-miR-296-5p Cad mmu01240:Biosynthesis of cofactors up-down_mi down_up_m

mmu-miR-novel-chr19_16777 Cyp2c29 mmu05204:Chemical carcinogenesis - DNA adducts up-down_mi down_up_m

mmu-miR-novel-chr19_16777 Cyp2c29 mmu00590:Arachidonic acid metabolism up-down_mi down_up_m

mmu-miR-novel-chr19_16777 Cyp2c29 mmu00830:Retinol metabolism up-down_mi down_up_m

mmu-miR-novel-chr19_16777 Cyp2c29 mmu00140:Steroid hormone biosynthesis up-down_mi down_up_m

mmu-miR-296-5p Cyp2u1 mmu00071:Fatty acid degradation up-down_mi down_up_m

mmu-miR-296-5p Cyp2u1 mmu00590:Arachidonic acid metabolism up-down_mi down_up_m

mmu-miR-novel-chr2_17679 Cyp4a12a mmu00590:Arachidonic acid metabolism up-down_mi down_up_m

mmu-miR-novel-chr2_17679 Cyp4a12a mmu00830:Retinol metabolism up-down_mi down_up_m

mmu-miR-novel-chr2_17679 Cyp4a12a mmu00071:Fatty acid degradation up-down_mi down_up_m

mmu-miR-novel-chr16_13389 Dnajb2 mmu04141:Protein processing in endoplasmic reticulum up-down_mi down_up_m

mmu-miR-novel-chr6_26186 Dnajb2 mmu04141:Protein processing in endoplasmic reticulum up-down_mi down_up_m

mmu-miR-novel-chr2_17679 Dnajb2 mmu04141:Protein processing in endoplasmic reticulum up-down_mi down_up_m

mmu-miR-novel-chr19_16777 Dnajb2 mmu04141:Protein processing in endoplasmic reticulum up-down_mi down_up_m

mmu-miR-novel-chr6_26186 Gck mmu01250:Biosynthesis of nucleotide sugars up-down_mi down_up_m

mmu-miR-novel-chr6_26186 Gck mmu00520:Amino sugar and nucleotide sugar metabolism up-down_mi down_up_m

mmu-miR-novel-chr11_5509 Gfpt1 mmu01250:Biosynthesis of nucleotide sugars up-down_mi down_up_m

mmu-miR-novel-chr11_5509 Gfpt1 mmu00520:Amino sugar and nucleotide sugar metabolism up-down_mi down_up_m

mmu-miR-novel-chr2_17679 Ggcx mmu01240:Biosynthesis of cofactors up-down_mi down_up_m

mmu-miR-296-5p Ggcx mmu01240:Biosynthesis of cofactors up-down_mi down_up_m

mmu-miR-novel-chr6_26186 Hmgcr mmu00900:Terpenoid backbone biosynthesis up-down_mi down_up_m

mmu-miR-296-5p Hmgcr mmu00900:Terpenoid backbone biosynthesis up-down_mi down_up_m

mmu-miR-669o-5p Hmgcs1 mmu00900:Terpenoid backbone biosynthesis up-down_mi down_up_m

mmu-miR-6972-3p Hyou1 mmu04141:Protein processing in endoplasmic reticulum up-down_mi down_up_m

mmu-miR-6972-3p Mvd mmu00900:Terpenoid backbone biosynthesis up-down_mi down_up_m

mmu-miR-novel-chr2_17679 Mvd mmu00900:Terpenoid backbone biosynthesis up-down_mi down_up_m

mmu-miR-novel-chr2_17679 Nme6 mmu01240:Biosynthesis of cofactors up-down_mi down_up_m

mmu-miR-novel-chr6_26186 Pdia3 mmu04141:Protein processing in endoplasmic reticulum up-down_mi down_up_m

mmu-miR-200b-5p Ppcdc mmu01240:Biosynthesis of cofactors up-down_mi down_up_m

mmu-miR-novel-chr2_17679 Preb mmu04141:Protein processing in endoplasmic reticulum up-down_mi down_up_m

mmu-miR-novel-chr6_26186 Preb mmu04141:Protein processing in endoplasmic reticulum up-down_mi down_up_m

mmu-miR-200b-5p Rpn1 mmu04141:Protein processing in endoplasmic reticulum up-down_mi down_up_m

mmu-miR-novel-chr10_2630 Rpn1 mmu04141:Protein processing in endoplasmic reticulum up-down_mi down_up_m

mmu-miR-377-3p Sec61g mmu04141:Protein processing in endoplasmic reticulum up-down_mi down_up_m

mmu-miR-novel-chr16_13389 Sel1l mmu04141:Protein processing in endoplasmic reticulum up-down_mi down_up_m

(Continued on following page)
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TABLE 4 (Continued) Identified miRNA–mRNA-pathway pairs.

miRNA mRNA KEGG pathway Type_miRNA Type_mRNA

mmu-miR-200b-5p Sel1l mmu04141:Protein processing in endoplasmic reticulum up-down_mi down_up_m

mmu-miR-6972-3p Sel1l mmu04141:Protein processing in endoplasmic reticulum up-down_mi down-up_m

mmu-miR-novel-chr2_17679 Syvn1 mmu04141:Protein processing in endoplasmic reticulum up-down_mi down-up_m

mmu-miR-296-5p Ubqln4 mmu04141:Protein processing in endoplasmic reticulum up-down_mi down-up_m

FIGURE 8
miRNA–mRNA-pathway regulation analysis. (A) Sankey diagram was established under joint relation between miRNA–mRNA and mRNA-pathway
involved in metabolism. (B–E) Scatter plot showing the miRNA–mRNA pairs that participated in lipid metabolism. (B) Correlation between mmu-miR-
296-5p and Cyp2u1. (C) Correlation between mmu-miR-novel-chr19_16777 and Acsl3. (D) Correlation between mmu-miR-novel-chr2_17679 and
Cyp4a12a. (E) Correlation between mmu-miR-novel-chr2_17679 and Acat2.
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2013). Functional enrichment analysis confirmed that steroid
biosynthesis, and drug metabolism by cytochrome P450 or other
enzymes were enriched by key modules in the PPI network.
Importantly, these key modules were also mapped to a series of
KEGG pathways related to lipid metabolism, including steroid
biosynthesis, and linoleic acid, arachidonic acid, glycerolipid and
glycerophospholipid metabolism.

Through analysis of miRNA–mRNA-pathway regulation, we
found that several miRNA–mRNA pairs participated in lipid
metabolism. The target mRNA expression was negatively regulated
by miRNA expression. There was a significant correlation between
mmu-miR-296-5p and Cyp2u1 as well as between mmu-miR-novel-
chr19_16777 and Acsl3. Cyp2u1 has been reported to mediate
hydroxylation of arachidonic acid metabolism (Yu et al., 2019).
ACSL3 is regarded as a novel GABARAPL2 interactor that links
ufmylation and lipid droplet biogenesis (Eck et al., 2020).

There were several limitations to our study. First, only three
replicates were involved in each group. Second, our findings were
based on murine models. Third, to further explore the role and
mechanisms of significant genes and miRNAs in the physiological
Fed–Fast–Refed cycle, functional experiments should be carried out.

In conclusion, this study identified several novel potential
mRNAs and miRNAs through expression trend analysis and
regulation networks. These up–down and down–up mRNAs and
miRNAs might be involved in lipid metabolism during the
physiological Fed–Fast–Refed cycle.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number (s) can be found below: https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE225697.

Ethics statement

The animal study was reviewed and approved by Animal
Experiment Ethics Committees of Shanghai Jiao Tong University
School of Medicine.

Author contributions

YL andMZ designed the study. NJ and BZ performed the animal
experiments. NJ and LX performed gene expression profile analysis.

Funding

This study was supported by Shanghai Municipal Commission
of Science and Technology (No. 17DZ1910605), Shanghai
Municipal Health Commission (No. 20204Y0060), Science and
Technology Development Fund Project of Qingpu District in
Shanghai (No. QKY2021-03), The fourth round of personnel
training project of Qingpu District Health System in Shanghai
(No. WM2019-06), The fourth round of discipline construction
project of Qingpu District Health System in Shanghai (No.
WZ2019-03).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fgene.2023.1145769/
full#supplementary-material

References

Agbu, P., and Carthew, R. W. (2021). MicroRNA-mediated regulation of glucose and lipid
metabolism. Nat. Rev. Mol. Cell Biol. 22 (6), 425–438. doi:10.1038/s41580-021-00354-w

Amer, M. A., Smith, M. D., Herbison, G. P., Plank, L. D., and McCall, J. L. (2017).
Network meta-analysis of the effect of preoperative carbohydrate loading on recovery
after elective surgery. Br. J. Surg. 104 (3), 187–197. doi:10.1002/bjs.10408

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., et al.
(2000). Gene ontology: Tool for the unification of biology. The gene Ontology
consortium. Nat. Genet. 25 (1), 25–29. doi:10.1038/75556

Bader,G.D., andHogue,C.W. (2003).Anautomatedmethod forfindingmolecular complexes
in large protein interaction networks. BMC Bioinforma. 4, 2. doi:10.1186/1471-2105-4-2

Chen, L., Heikkinen, L., Wang, C., Yang, Y., Sun, H., and Wong, G. (2019). Trends in
the development of miRNA bioinformatics tools. Brief. Bioinform 20 (5), 1836–1852.
doi:10.1093/bib/bby054

Chi, Y., Youn, D. Y., Xiaoli, A. M., Liu, L., Pessin, J. B., Yang, F., et al. (2020).
Regulation of gene expression during the fasting-feeding cycle of the liver displays
mouse strain specificity. J. Biol. Chem. 295 (15), 4809–4821. doi:10.1074/jbc.RA119.
012349

Eck, F., Phuyal, S., Smith, M. D., Kaulich, M., Wilkinson, S., Farhan, H., et al. (2020).
ACSL3 is a novel GABARAPL2 interactor that links ufmylation and lipid droplet
biogenesis. J. Cell Sci. 133 (18), jcs243477. doi:10.1242/jcs.243477

Fajardo, V. M., Feng, I., Chen, B. Y., Perez-Ramirez, C. A., Shi, B., Clark, P., et al.
(2021). GLUT1 overexpression enhances glucose metabolism and promotes neonatal
heart regeneration. Sci. Rep. 11 (1), 8669. doi:10.1038/s41598-021-88159-x

Grancharov, K., Naydenova, Z., Lozeva, S., and Golovinsky, E. (2001). Natural and
synthetic inhibitors of UDP-glucuronosyltransferase. Pharmacol. Ther. Oxf. 89 (2),
171–186. doi:10.1016/s0163-7258(00)00109-1

Guengerich, F. P., Waterman, M. R., and Egli, M. (2016). Recent structural insights into
cytochrome P450 function. Trends Pharmacol. Sci. 37 (8), 625–640. doi:10.1016/j.tips.2016.05.006

Hong, M., Tao, S., Zhang, L., Diao, L. T., Huang, X., Huang, S., et al. (2020). RNA
sequencing: New technologies and applications in cancer research. J. Hematol. Oncol. 13
(1), 166. doi:10.1186/s13045-020-01005-x

Hwangbo, D. S., Lee, H. Y., Abozaid, L. S., and Min, K. J. (2020). Mechanisms of
lifespan regulation by calorie restriction and intermittent fasting in model organisms.
Nutrients 12 (4), 1194. doi:10.3390/nu12041194

Frontiers in Genetics frontiersin.org13

Ji et al. 10.3389/fgene.2023.1145769

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE225697
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE225697
https://www.frontiersin.org/articles/10.3389/fgene.2023.1145769/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2023.1145769/full#supplementary-material
https://doi.org/10.1038/s41580-021-00354-w
https://doi.org/10.1002/bjs.10408
https://doi.org/10.1038/75556
https://doi.org/10.1186/1471-2105-4-2
https://doi.org/10.1093/bib/bby054
https://doi.org/10.1074/jbc.RA119.012349
https://doi.org/10.1074/jbc.RA119.012349
https://doi.org/10.1242/jcs.243477
https://doi.org/10.1038/s41598-021-88159-x
https://doi.org/10.1016/s0163-7258(00)00109-1
https://doi.org/10.1016/j.tips.2016.05.006
https://doi.org/10.1186/s13045-020-01005-x
https://doi.org/10.3390/nu12041194
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1145769


Jones, J. G. (2016). Hepatic glucose and lipid metabolism. Diabetologia 59 (6),
1098–1103. doi:10.1007/s00125-016-3940-5

Kanehisa, M., and Goto, S. (2000). KEGG: Kyoto encyclopedia of genes and genomes.
Nucleic Acids Res. 28 (1), 27–30. doi:10.1093/nar/28.1.27

Koliaki, C., and Roden, M. (2013). Hepatic energy metabolism in human diabetes
mellitus, obesity and non-alcoholic fatty liver disease. Mol. Cell Endocrinol. 379 (1-2),
35–42. doi:10.1016/j.mce.2013.06.002

Kumar, L., and Futschik, M. E. (2007). Mfuzz: A software package for soft clustering
of microarray data. Bioinformation 2 (1), 5–7. doi:10.6026/97320630002005

Kurowska, P., Mlyczyńska, E., Dawid, M., Jurek, M., Klimczyk, D., Dupont, J., et al.
(2021). Review: Vaspin (SERPINA12) expression and function in endocrine cells. Cells
10 (7), 1710. doi:10.3390/cells10071710

Lu, J., Liu, K. C., Schulz, N., Karampelias, C., Charbord, J., Hilding, A., et al. (2016).
IGFBP1 increases β-cell regeneration by promoting α-to β-cell transdifferentiation.
Embo J. 35 (18), 2026–2044. doi:10.15252/embj.201592903

Lu, T. X., and Rothenberg, M. E. (2018). MicroRNA. J. Allergy Clin. Immunol. 141 (4),
1202–1207. doi:10.1016/j.jaci.2017.08.034

Nangraj, A. S., Selvaraj, G., Kaliamurthi, S., Kaushik, A. C., Cho,W. C., andWei, D. Q.
(2020). Integrated PPI- and WGCNA-retrieval of hub gene signatures shared between
barrett’s esophagus and esophageal adenocarcinoma. Front. Pharmacol. 11, 881. doi:10.
3389/fphar.2020.00881

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., et al. (2015). Limma
powers differential expression analyses for RNA-sequencing and microarray studies.
Nucleic Acids Res. 43 (7), e47. doi:10.1093/nar/gkv007

Rowland, A., Miners, J. O., and Mackenzie, P. I. (2013). The UDP-
glucuronosyltransferases: Their role in drug metabolism and detoxification. Int.
J. Biochem. Cell Biol. 45 (6), 1121–1132. doi:10.1016/j.biocel.2013.02.019

Sherman, B. T., Hao, M., Qiu, J., Jiao, X., Baseler, M.W., Lane, H. C., et al. (2022). DAVID:
A web server for functional enrichment analysis and functional annotation of gene lists
(2021 update). Nucleic Acids Res. 50 (W1), W216–W221. doi:10.1093/nar/gkac194

Stark, R., Grzelak, M., and Hadfield, J. (2019). RNA sequencing: The teenage years.
Nat. Rev. Genet. 20 (11), 631–656. doi:10.1038/s41576-019-0150-2

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M.
A., et al. (2005). Gene set enrichment analysis: A knowledge-based approach for
interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 102
(43), 15545–15550. doi:10.1073/pnas.0506580102

von Mering, C., Huynen, M., Jaeggi, D., Schmidt, S., Bork, P., and Snel, B. (2003).
STRING: A database of predicted functional associations between proteins. Nucleic
Acids Res. 31 (1), 258–261. doi:10.1093/nar/gkg034

Wahl, D., and LaRocca, T. J. (2021). Transcriptomic effects of healthspan-promoting
dietary interventions: Current evidence and future directions. Front. Nutr. 8, 712129.
doi:10.3389/fnut.2021.712129

Wang, J., Lee, J., Liem, D., and Ping, P. (2017). HSPA5 Gene encoding
Hsp70 chaperone BiP in the endoplasmic reticulum. Gene 618, 14–23. doi:10.1016/j.
gene.2017.03.005

Yu, G., Wang, L. G., Han, Y., and He, Q. Y. (2012). clusterProfiler: an R package for
comparing biological themes among gene clusters. Omics 16 (5), 284–287. doi:10.1089/
omi.2011.0118

Yu, X.,Wu, J., Hu,M.,Wu, J., Zhu, Q., Yang, Z., et al. (2019). Glutamate affects the CYP1B1-
and CYP2U1-mediated hydroxylation of arachidonic acid metabolism via astrocytic
mGlu5 receptor. Int. J. Biochem. Cell Biol. 110, 111–121. doi:10.1016/j.biocel.2019.03.001

Zhao, M., Ma, J., Li, M., Zhang, Y., Jiang, B., Zhao, X., et al. (2021). Cytochrome
P450 enzymes and drug metabolism in humans. Int. J. Mol. Sci. 22 (23), 12808. doi:10.
3390/ijms222312808

Frontiers in Genetics frontiersin.org14

Ji et al. 10.3389/fgene.2023.1145769

https://doi.org/10.1007/s00125-016-3940-5
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1016/j.mce.2013.06.002
https://doi.org/10.6026/97320630002005
https://doi.org/10.3390/cells10071710
https://doi.org/10.15252/embj.201592903
https://doi.org/10.1016/j.jaci.2017.08.034
https://doi.org/10.3389/fphar.2020.00881
https://doi.org/10.3389/fphar.2020.00881
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1016/j.biocel.2013.02.019
https://doi.org/10.1093/nar/gkac194
https://doi.org/10.1038/s41576-019-0150-2
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1093/nar/gkg034
https://doi.org/10.3389/fnut.2021.712129
https://doi.org/10.1016/j.gene.2017.03.005
https://doi.org/10.1016/j.gene.2017.03.005
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1016/j.biocel.2019.03.001
https://doi.org/10.3390/ijms222312808
https://doi.org/10.3390/ijms222312808
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1145769

	Hepatic gene expression profiles during fed–fasted–refed state in mice
	Introduction
	Materials and methods
	Animal experiments
	RNA-Seq and data processing
	Functional enrichment analysis
	Expression trend analysis
	PPI network analysis
	miRNA–mRNA regulation network analysis
	miRNA–mRNA-pathway regulation analysis

	Results
	RNA-Seq and miRNA-Seq data validation
	Differential expression analysis of RNA-Seq and miRNA-Seq
	KEGG signaling enrichment analysis of mRNA expression profile based on GSEA
	Expression trend analysis
	Functional enrichment of dysregulated mRNAs in significant mRNA clusters
	PPI network of dysregulated mRNAs in significant mRNA clusters
	miRNA–mRNA regulatory network
	miRNA–mRNA-pathway regulation analysis

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


