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To improve the performance of individual DNA sequencing results, researchers
often use replicates from the same individual and various statistical clustering
models to reconstruct a high-performance callset. Here, three technical replicates
of genome NA12878 were considered and five model types were compared
(consensus, latent class, Gaussian mixture, Kamila–adapted k-means, and
random forest) regarding four performance indicators: sensitivity, precision,
accuracy, and F1-score. In comparison with no use of a combination model, i)
the consensus model improved precision by 0.1%; ii) the latent class model
brought 1% precision improvement (97%–98%) without compromising
sensitivity (= 98.9%); iii) the Gaussian mixture model and random forest
provided callsets with higher precisions (both >99%) but lower sensitivities; iv)
Kamila increased precision (>99%) and kept a high sensitivity (98.8%); it showed
the best overall performance. According to precision and F1-score indicators, the
compared non-supervised clustering models that combine multiple callsets are
able to improve sequencing performance vs. previously used supervised models.
Among the models compared, the Gaussian mixture model and Kamila offered
non-negligible precision and F1-score improvements. These models may be thus
recommended for callset reconstruction (from either biological or technical
replicates) for diagnostic or precision medicine purposes.
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1 Introduction

Evaluating the performance of an individual’s DNA sequencing results is often
hampered by the lack of gold standard. A number of researchers use then replicates of
DNA sequencing results from the same individual or frommonozygotic twins to reconstruct
a set of high-quality calls (Zook et al., 2014). Sequencing results obtained from two or more
distinct samples from a same individual are called biological replicates, whereas sequencing
results obtained from two or more distinct vials of a single sample are called technical
replicates (Robasky et al., 2014). Technical replicates may stem from using different
sequencing platforms, different bioinformatics analysis tools, or repeated sequencing
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with the same platform and same bioinformatics tool. With both
types of sequencing replicates, several methods have been widely
used to obtain more reliable sequencing results.

Among these methods, a simple one is the concordance-based
model where a “consensus” can be defined according to various
degrees of agreement between callsets (Trubetskoy et al., 2015).
Although this model may seem “naïve”, several investigations have
suggested that its performance may not be worse than that of a
machine-learning method (Wang et al., 2020).

Another method is latent class analysis (LCA) that is commonly
used in biology and medicine to evaluate test performance without
gold standard. In a classical latent class model, the latent variable
and the observed variables are all categorical and there is a
conditional independence between the observed variables within
each latent class. Extensions of this classical model have been
developed to account for local dependence, such as using random
effects or correlation coefficients. Other extensions included
covariables with effects on the latent variable or on the observed
variables (Huang and Bandeen-Roche, 2004). Furthermore,
Bayesian latent class analyses have been also used to provide
combinations of callsets with improved performance indicators
(Cantarel et al., 2014). A similar approach was the Gaussian
mixture model in which the categorical latent variable is the class
membership of the observations and where the observed continuous
variables within each latent class follow hypothetically a Gaussian
distribution. Finally, machine-learning methods (k-nearest
neighbors, random forest, naïve Bayes classifier, or support vector
machine) were also used to merge several callsets (Gézsi et al., 2015;
Wang et al., 2020). Table 1 provides a short overview of the most
relevant methods and studies designed to combine multiple callsets.

The literature on processing replicate sequencing results is
rather scanty and a number of methods do not satisfy specific
research needs. This work intended to explore the main ways of
dealing with multiple NGS results stemming from biological or
technical replicates, investigate their properties, and compare their
key performance indicators to help choosing the most performing
among readily implementable methods able to improve
sequencing performance. It explored the consensus model, the
latent class model, the mixture model, and random forest
regarding their abilities to produce a callset with improved
quality. It compared their main performance indicators:
precision, recall, and F1-score.

2 Methods

2.1 The study data

The present study used calling results from sequencing three
technical replicates of genome NA12878. NA12878 is a human DNA
sample that is “thought to represent the best-characterized diploid
human genome in the world”, is “considered as a ‘reference material’
by the National Institute of Standards and Technology (NIST)”, and
includes “near-perfect genome sequences for public use” as well as
“truth sequences” established after repeated sequencings “using a wide
variety of technologies and computational pipelines”. Today, more
than 80% the NA12878 cell line’s genome is considered known with
high confidence. This is why it is used as benchmark for assessing the
performance of sequencing platforms or bioinformatic pipelines
(Krol, 2015).

All three sequencing procedures were carried out on Illumina
NovaSeq 6000 system platform. The samples were then aligned with
Burrow-Wheeler Aligner (BWA-MEM) (Li, 2013) against the
GRCh37 version of the human reference genome. Genome
Analysis Toolkit (GATK) duplicate marking, base quality score
recalibration, and indel realignment were applied (McKenna
et al., 2010). The resulting sequencing data were deposited in the
European Nucleotide Archive.

Variant calling was performed by joint genotyping according to
the GATK Best Practices recommendations (DePristo et al., 2011;
van der Auwera and O’Connor, 2020). Concordance rates between
the calling results of the replicates were calculated. The concordance
rate was defined as the number of sites called in the same category
(see 2.2) by each replicate divided by the total number of sites called
as variants by at least one of the replicates.

The latest version (v 4.2.1) of Genome in a Bottle (GIAB) variant
calling benchmark set was used as ‘gold standard’ (Zook et al., 2016;
Wagner et al., 2022). This version has a higher coverage of the
GRCh37 reference genome and includes more difficult-to-map
regions than the previous version (Wagner et al., 2022).

2.2 Basic definitions and main covariables

Performance considered only bps from the GIAB benchmark
region, each bp position being a statistical unit and each GIAB

TABLE 1 Overview of the most relevant methods and studies designed to combine multiple callsets.

Authors Algorithm Model type References

Trubetskoy et al., 2015 CGES Consensus Bioinformatics 2015; 31(2):187

Wang et al., 2020 SomaticCombiner Consensus Sci Rep 2020; 10:12898

Chiara et al., 2018 CoVaCS Consensus BMC Genomics 2018; 19:120

Hwang et al., 2014 --- Consensus and logistic regression Hum Mutat 2014; 35(8):936

Cantarel et al., 2014 BAYSIC Bayesian latent class model BMC Bioinformatics 2014; 15:104

DePristo et al., 2011 VQSR Gaussian mixture model Nat Genet 2011; 43(5):491

Hwang et al., 2019 --- Gaussian-multinomial mixture model Sci Rep 2019; 9(1):3219

Huang et al., 2019 SMuRF Random forest Bioinformatics 2019; 35 (17): 3157
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benchmark result a true status of each bp. Here, only performance in
single nucleotide variant (SNV) analysis was considered.

In this analysis, the variant calling results in the VCF file and the
GIAB benchmark callset (gold standard set) were considered to
belong to one of three categories: homozygous reference,
heterozygous variants, and homozygous variants. A true positive
(TP) was defined as a variant call in the query callset that belongs to
the same category as in the gold standard set; i.e., both are
heterozygous variants or both homozygous variants despite
potential allele or phasing differences. A false negative (FN) was
defined as a variant in the gold standard set called as non-variant in
the query callset. A false positive (FP) was defined as a non-variant
in the gold standard set called as variant in the query callset or a
variant in the gold standard set called as variant in a different
category. A true negative (TN) was defined as a non-variant in the
gold standard set called as non-variant in the query callset. No-calls
in the VCF file were considered as non-variants. This recalls the
“genotype match, for which only sites with matching alleles and
genotypes are counted as TPs” (Krusche et al., 2019), though, in this
study, the criteria for true positivity were less stringent.

The covariables included in the models were:

1) The depth of coverage (DP); i.e., the number of informatics reads
covering a given base-pair. In this study, the mean DP value
across the three replicates was circa 38 and the DP value ranged
from 0 to 13,858.

2) The allele balance (AB; i.e., the number of reads supporting the
alternative allele divided by the number of all informatics reads at
a specific site) ranged from 0 to 1.

3) The QualByDepth (QD); i.e., the site-level Phred-scaled
confidence for the existence of variant divided by the number
of reads supporting the alternative allele in variant samples. Here,
the QD value ranged from 0.02 to 42.9.

4) The genotype quality (GQ); i.e., the Phred-scaled confidence for
the called genotype (ranged from 0 to 99).

5) The mapping quality (MQ); i.e., the root mean square of the MQ
of reads across all samples (ranged from 20 to 60).

Covariates DP, AB, and GQ were obtained from the VCF file for
each bp in each sample (here, replicate), and then the mean of each of
the three values was calculated. MQ and QD were obtained from the
VCF file for each bp and had the same values across the three samples.

2.3 Clustering models used for NGS
reconstruction

Five types of models were selected for reconstructing NGS result
from technical replicates.

2.3.1 The consensus (or concordance-based)
model

In this model, “strict consensus” was considered whenever all
variant calling results across all replicates agreed and “majority
consensus” whenever there was a majority of variant calling results
across all replicates (Trubetskoy et al., 2015; Wang et al., 2020).
Here, it is the majority consensus that was used. In case of no
majority consensus, the sites were classified as homozygous variants.

2.3.2 The latent class model without covariables
This type of analysis was often used to evaluate the performance

of diagnostic tests in the absence of gold standard. A latent class
analysis is a mixture model where both the observed and unobserved
variables are categorical. A classical LCA assumes conditional
independence between observed variables (here, called genotype
categories) given the latent class (here, the true genotype status).

Let i represent each site in the VCF file, r the latent classes 1 to 3.
Yi represents the calling results in replicates 1 to 3 for site i (Y1, Y2,
andY3 are categorical variables with three categories that correspond to
the three genotype categories). pr denotes the prevalence of latent class
r. πr(Y1), πr(Y2), and πr(Y3) are the probability mass functions of
variables Y1, Y2, and Y3 for latent class r.

The equation of this model may be written:

P Yi

∣∣∣∣p,π( ) � ∑3

r�1pr × πr Y1( ) × πr Y2( ) × πr Y3( ) (1)

The model parameters, namely, pr and πjrk, were estimated with
an expectation-maximization (EM) algorithm using 50 sets of
random initial values.

2.3.3 The latent class model with covariables
In this model, covariables’ effects were put on the prior

probability of class membership (Pr in Eq. 1) and modelled using
a logistic link. Covariables that are potentially correlated with the
latent bp status were included; namely, Allele Balance (AB; the mean
AB value of the three replicates), QualByDepth (QD), and Mapping
Quality (MAPQ). Univariate models were first fitted for each
covariable, then models were fitted with all possible pairs of
covariables. Model parameters (π, p) were estimated using
100 sets of random initial values. Models with distinct
covariables were compared with the Bayesian information
criterion (BIC) as a measure of model fit.

The latent class model without covariables and the latent class
model with covariables were fitted using package “poLCA” (v.
1.6.0.1) in R (v. 4.1.3) (Linzer and Lewis, 2011).

2.3.4 The Gaussian mixture model
The Gaussian mixture model assumes that the observed

variables within each latent class follow a multivariate normal
distribution. Here, it is the observed continuous covariables that
were modelled; the calling results of each replicate were not
included. The covariables included in the model were read depth
(DP; the mean DP value of the three replicates), allele balance (AB;
the mean AB value of the three replicates), and quality by depth
(QD); all were assumed to be normally distributed.

Let xi denote the vector of covariables for site i, pr the prevalence
of each latent class (r = 1, 2, or 3), αr the parameters of the
multivariate normal distribution for latent class r. h(xi|αr) is the
probability density function for latent class r, with parameters αr.
Thus, the probability density function for xi can be written:

f xi
∣∣∣∣p, α( ) � ∑

R

r�1
prh xi|αr( )

The model parameters, namely, p and α, were estimated with
an expectation-maximization (EM) algorithm. This model was
fitted using package “mclust” (v. 6.0.0) in R (v. 4.1.3) (Scrucca et al.,
2016).
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2.3.5 Kamila model (k-means for mixed large
datasets)

Kamila is a model-based adaptation of the k-means
clustering algorithm for heterogeneous variables (mix of
categorical and continuous). It uses a kernel density
estimation technique to model flexibly spherical clusters in
the continuous domain and uses a multinomial model in the
categorical domain (Foss et al., 2016). The model parameters
were estimated with an iterative process similar to an EM
algorithm. One advantage of this model is to include both
types of variables at the same time without pre-specifying the
weights of continuous versus categorical variables.

The categorical covariables included were: the calling results of
the three replicates and a binary covariable to indicate whether a site
is present in a “difficult region” (Amemiya et al., 2019). The
continuous covariables included were DP, AB, and QD. The
algorithm is sensitive to outliers because it uses kernel density
estimation and Euclidean distance for continuous covariables.
Here, the maximum value of DP was set to 150.

This model was applied with package “Kamila” (v. 0.1.2) in R (v.
4.1.3) (Foss and Markatou, 2018).

2.3.6 The random forest
An unsupervised version of the random forest model for

clustering was implemented (Shi and Horvath, 2006). The
algorithm started with an unsupervised random forest model to
generate a synthetic dataset without correlation between covariables,
and then classified the observations into the synthetic or the original
dataset using a classical random forest. This generates a proximity
matrix that represents the number of times observations were
classified into the correct dataset. A hierarchical clustering was
then applied using the proximity scores as dissimilarity measure
between observations.

This model was applied with Package ‘RandomForest’ (v.
4.7-1.1) in R (v. 4.1.3) (Liaw and Wiener, 2002). Because this
model is computationally expensive, only 10,000 sites from the
VCF file were sampled for its use. The number of trees used
was 1000.

2.4 Clustering choices

Among the six above-mentioned models, five generate clusters.
As the purpose was identifying the three latent classes that
correspond to the three genotype categories, the number of
clusters in each model was fixed to three. The largest cluster
had to correspond to the heterozygous variants, the
intermediate cluster to the homozygous variants, and the
smallest cluster to the homozygous reference. Also, any model
that showed any cluster with <0.1% of the observations was
considered unable to identify three clusters, and therefore not
retained. This choice was made according to a prior knowledge
about the relatively stable proportions of the three categories in a
VCF file of WGS. The ratio of heterozygous variants to
homozygous variants in the VCF files is expected to be around
2 (Guo et al., 2014; Wang et al., 2015). The reference sites (i.e., the
false positives for at least one replicate) occupy usually 0.1%–10%
in WGS data (Zhao et al., 2020).

2.5 Model result comparisons

Each callset was compared against the GIAB gold standard set.
This comparison used the above-provided definitions of TPs, FPs,
FNs, and TNs as well as the following performance indicators:

i) Accuracy (or 1−the overall classification error rate) was
calculated as (TPs + TNs)/(TPs + FPs + FNs + TNs);
i.e., over the total number of sites in the VCF file;

ii) Recall (or sensitivity) was calculated as TPs/(TPs + FNs);
iii) Precision (or positive predictive value, PPV) was calculated as

TPs/(TPs + FPs);
iv) F1-score was calculated as 2 × recall × precision/(recall +

precision).

All callsets (except the one generated from the random forest)
included all sites in the VCF file. For the random forest callset, the
total number of real variants was estimated as the number of variants
in the gold standard set multiplied by the sampling proportion.

3 Results

3.1 Performance indicators for calling results
of individual replicates

The precisions relative to the three replicates (1 to 3) had very
close values (96.7%–96.9%) and the sensitivities were nearly the
same (~98.9%) (Table 2). The concordance rates of Replicate 1 vs.
Replicates 2 and 3 were 98.4% and 98.3%, respectively; whereas the
concordance rate of Replicate 1 vs. Replicate 3 was 98.2%. The
concordance rate across the three replicates was 97.5%.

Thus, as expected, the three replicates had similar performance
indicators and there were high concordance rates between replicates.
However, given the number of total loci in the VCF file (n =
3,351,415), the number of discordant sites across replicates was
not negligible (n = 84,753).

Among the concordant sites across the three replicates, precision
differed for different genotype categories. For the concordant
heterozygous variant sites (n = 1,993,116), the precision was
96.8%. For the concordant homozygous variant sites (n =
1,273,546), the precision was 99.6%. Among the discordant sites,
55.9% were homozygous references, 39.6% heterozygous variants,
and 4.5% homozygous variants in the gold standard.

3.2 Comparison of model fits

In this study, the five types of models used neither the same
amount of information nor the same type of covariables: i) the
consensus model and the classical latent class model used the
categorical variant calling results from the three replicates; ii) the
Gaussian mixture model used continuous covariables; iii) the latent
class model with covariables, Kamila model, and random forest used
categorical variant calling results as well as categorical or continuous
covariables. It was therefore difficult to compare directly model fits
across model types. This section presents only comparisons within
each model type.
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With the latent class models with one covariable (AB, QD, or
MAPQ), the effect of each covariable was significantly different from
0. The model with AB showed the smallest BIC and was therefore
considered as the most fitted to the data.

With the latent class model with two covariables, among the
three models relative to the three pairs of covariables, the model with
AB and QD had the lowest BIC. Here, it is useful to note that, with
some models, the estimations of the parameters of the latent class
model with covariables were not stable. With some models, the
global maxima of the log-likelihood were reached in only 10% of
estimation attempts. The most frequent local maxima were seldom
the global maxima and the estimated proportions of heterozygous
variant, homozygous variant, and homozygous reference sites were
substantially different between estimation attempts. Therefore, a

large number of sets of random initial values (100 rather than 50)
were necessary to avoid local maxima. (Supplementary Table S1).

With the Gaussian mixture model, the chosen model (the one
with the lowest BIC) was the model with three covariables: DP, AB,
and QD.

3.3 Performance comparisons

The performance indicators (accuracy, precision, recall, and F1-
score) of the models are shown in Table 2 and Figure 1 shows the
precision and the recalls of callsets of individual replicates and
clustering models. The consensus method improved the precision by
0.1% without much decrease of the recall. Among the five clustering

TABLE 2 Performance indicators of the clustering models under study.

Clustering model Accuracy Precision Recall F1-score

None 96.7%–96.9% 96.7%–96.9% 98.9% 97.8%–97.9%

Majority consensus 97.0% 97.0% 98.9% 97.9%

Latent class analysis without covariables 97.8% 97.9% 98.8% 98.3%

Latent class analysis with covariables 98.0% 98.0% 98.9% 98.4%

Gaussian mixture model 98.5% 99.3% 98.2% 98.7%

Kamila 99.0% 99.2% 98.8% 99.0%

Random Forest 98.2% 99.5% 97.9% 98.7%

FIGURE 1
Positive predictive values and sensitivities of callsets without and with selected clustering models.
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models, the Gaussian mixture model showed the highest accuracy
(98.5%). The random forest model showed the highest precision
(99.6%) but the lowest recall (98.2%). The consensus model and the
latent class model with covariables showed the highest recall
(98.9%). The Gaussian mixture model and random forest had
high F1-scores (98.7%). Kamila model showed the highest F1-
score (99.0%).

The proportions of the three genotype categories in each callset,
including the gold standard GIAB benchmark set, are shown in
Table 3 (Total loci: 3,351,415 in the VCF file). The first row shows
the “true” category proportions in the GIAB benchmark set for all
sites in the VCF file. More than 4% were classified as reference sites
in GIAB set, which corresponds to the marginal false positive rate in
the VCF file. Rows 2 to 5 show the proportions in the three replicates
and the consensus callset. With the model-based methods (rows
6–10), these proportions were the estimated latent-class
proportions. The callsets generated by the clustering models
grouped more sites into the smallest class (interpreted as
reference; thus, false positives) than into the consensus callset;
this explains the improved precision of these models. With the
Gaussian mixture model, the highest proportion was found in the
reference category, which explains its higher precision and lower
recall versus the other models.

4 Discussion

In this study, six clustering algorithms were run on real
sequencing replicates of the NA12878 genome to compare their
abilities in allowing reconstruction of a new callset with improved
performance: one consensus model, two latent-class models, a
Gaussian mixture model, a Kamila (adapted k-means) model,
and a random forest model. These models showed various
advantages. For example, the consensus model improved slightly
the precision (by 0.1%) whereas the latent class model provided a
non-negligible 1% precision improvement (97% to 98%) without
compromising recall (98.9%). In comparison with no use of a
clustering model, all six models brought ≥1% gain in sensitivity,
which is not negligible: i) the Gaussian mixture and the random

forest models provided callsets with high precision (>99%) but at the
price of lower recall; ii) Kamila increased precision (99.2%) and kept
a high recall (98.8%); it proved having the best overall performance.

In this work, the models were chosen to represent a range of
major clustering models, from the most naïve (consensus) to the
most sophisticated machine-learning type (random forest). One
interest of this choice is that all models may be readily
implemented with packages in R software. However, here, only
non-supervised clustering models were compared and not
supervised ones because the latter need high-quality training data
(Sandmann et al., 2018) which are not usually available in clinical
practice settings. The models dealt with by BAYSIC and
SomaticCombiner or their equivalents were actually considered in
this article as latent class model and consensus model, respectively.
Indeed, in this work, the former algorithm was not considered
because its results would be quite similar to those obtained with a
classical latent class model and the latter is based on an approach
that is close to the consensus model.

Most of the models considered here have been previously used
for similar purposes; i.e., merging several either constitutional or
somatic variant calling results to obtain a new callset with better
performance indicators (precision or recall). Previous authors used:
i) the consensus model (Hwang et al., 2014; Trubetskoy et al., 2015;
Chiara et al., 2018; Di Nanni et al., 2019); ii) the Bayesian latent class
model (Cantarel et al., 2014); iii) the Gaussian mixture model
(DePristo et al., 2011; Hwang et al., 2019); iv) random forest
(Huang et al., 2019; Wang et al., 2020). However, though usual,
these models have been rarely compared, their comparison results
often unclear, and the final conclusions controversial. For example,
the random-forest-based ensemble caller for somatic mutation has
obtained higher F1-scores than the simple consensus approach
(Huang et al., 2019); however, in a study by Wang et al. (Wang
et al., 2020), the authors observed that the consensus method was
more robust and stable than supervised machine-learning models.
They suggested that the difference between the training data and the
test data contributed to the poor generalizability of machine-leaning
models. In another research on the NA12878 genome that used the
GIAB benchmark set as gold standard, a two-component mixture-
model-based method that considered results from 70 pipelines did

TABLE 3 Proportions of the three genotype categories in each callset.

Callset Homozygous References (%) Heterozygous variants (%) Homozygous variants (%)

1 Gold standard (GIAB) 4.241 57.891 37.868

2 Calling results of Replicate 1 1.064 60.800 38.136

3 Calling results of Replicate 2 1.230 60.672 38.098

4 Calling results of Replicate 3 1.295 60.618 38.087

5 Majority consensus 1.287 60.586 38.127

6 Latent class analysis without covariables 2.283 59.596 38.121

7 Latent class analysis with covariables 2.632 59.171 38.197

8 Gaussian mixture model 4.426 58.001 37.573

9 Kamila 3.586 58.310 38.104

10 Random forest 5.560 57.440 37.000
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not significantly improve performance in terms of precision at the
highest analytical sensitivity achievable vs. the highest performance
of a single pipeline. However, the method led to performance
improvement with another gold standard set from the
‘1000 Genomes Project’ (Hwang et al., 2019).

The models compared here did not include the same number of
variables because of the hypotheses inherent to each model. Some
require only continuous variables (e.g., the Gaussian mixture
model), whereas others require only categorical variables (e.g.,
the latent class model). Thus, performance comparisons between
new callsets generated by different models should be interpreted
with this difference inmind. For example, Kamila and random forest
models are able to include more covariables than the other models.
In future works, comparisons between models with same covariables
would be welcome. One current aim was to use information already
available in a VCF file; however, the possibility of including more
covariables may be interesting too.

In some previous research works, sites in the VCF file of
presumably very low quality were filtered out before applying
merging methods; i.e., a small number of sites were considered as
false positives and thus excluded (Sandmann et al., 2018). Here, no
sites were filtered out (all sites from the VCF file were included in the
models); this allowed a more objective evaluation of the overall
performance of each model. However, this choice introduced some
difficulties due to the extreme values of certain variables. For
example, DP has typically a long-tailed distribution and the
presence of extremely high values is often an indicator of
sequencing artifacts, alignment artifacts, or copy number
variations (O’Rawe et al., 2013; Guo et al., 2014; Li, 2014). In
common practice, the solution to extreme DP values is to
exclude sites with values higher than a threshold defined
according to various formulas that use the mean and standard
deviation of DPs (Li et al., 2018; Pan et al., 2022); for example, a
threshold 120 in the hard filters recommended by the GATK (van
der Auwera and O’Connor, 2020).

In the present work, the mean DP across the three replicates was
circa 38 and its maximum 13,858 and, among the compared models,
Kamila is known to be relatively sensitive to extreme values because
it minimizes a dissimilarity measure that is partially based on
Euclidean distance in the case of continuous variables. This
might explain why it failed to identify the three clusters with
acceptable proportions. Indeed, the model grouped a small
number of sites with extremely high DP values into one cluster
(n = 254; i.e., 0.008% of all sites) and, as stated in 2.4, models that led
to any cluster with <0.1% of the sites were considered unable to
identify three clusters and thus not retained. One way to address this
issue is to add one more cluster in the model (4 instead of 3).
However, in this work, only three clusters were considered to allow
model performance comparisons and allow each cluster to represent
each genotype category. Therefore, with Kamila, the maximum DP
value was set at 150 and higher values grouped together at 150. The
other models that involved DP (i.e., the Gaussian mixture model and
the random forest model) performed well despite the presence of
high DP values (these were not then filtered out).

This study focused on the VCF file (i.e., on all sites called as
variants in at least one replicate) and not on all three billion bp
positions across the human genome. This is one reason for which the
indicators of performance kept were only recall and precision

(specificity was ignored). There are also two other practical
reasons: i) negative sites are much more numerous (almost
1000 times the number of sites in the VCF file) and contain less
information; thus, using them is computationally expensive and
adds little information; ii) researchers, especially practitioners and
lab professionals, usually use only the VCF file for routine analyses;
thus, a model that requires information from the BAM file for sites
called as ‘reference’ would not be practical.

One limitation of this study is that it evaluated only callsets’
performance regarding SNVs. Further studies are worth being
conducted to evaluate the performance of clustering models
regarding copy number variations and structural variations. Also,
except for Kamila, the study included only the most classical model
from each clustering algorithm type. Some model features may
prove more adapted to the distribution of the variables or have more
convenient underlying hypotheses. For example, latent class models
that relax the conditional independence between observed variables
through correlation, random effects, or covariables with effects on
the class-conditional probabilities.

The Gaussian mixture model used here showed good
performance vs. the other five models. However, all components
of a variable distribution might not be Gaussian. For example, i) the
distribution of allele balance has been already modelled using a
mixture of 0-inflated beta distribution, binomial distribution, and 1-
inflated beta distribution for the homozygous reference,
heterozygous variant, and homozygous reference categories,
respectively (Muyas et al., 2019); ii) to take into account
heavytails, read depth distributions have been modelled using a
compound Poisson distribution, a negative binomial distribution, or
a log-normal distribution (Robinson et al., 2010; Daley and Smith,
2014; Deng et al., 2020).

From a theoretical viewpoint, a very recent article by Dang et al.
(Dang et al., 2023) reviewed a selection of “mixture models that can
deal with varying cluster tail-weight, skewness and/or concentration,
and kurtosis” (e.g., mixtures of multivariate t-distributions, mixtures
of skew-t distributions, mixtures of normal inverse Gaussian
distributions, etc.). Furthermore, these authors introduced a
multivariate skewed power exponential distribution that “allow
for robust mixture models for clustering with skewed or
symmetric components” and “model components with varying
levels of peakedness, skewness, and tail-weight (light, heavy,
Gaussian)”. In practice, the use of multivariate non-Gaussian
mixture models is often difficult because of identifiability issues
and the instability of parameter estimation. This might explain the
rarity of applications on real data, which is worth being explored.
We especially hope an exploration of the appropriateness of the
above-mentioned models within the context of WGS data.

5 Conclusion

In this study, several clustering models were evaluated within
the context of combining callsets from DNA sequencing replicates.
These non-supervised clustering models proved able to improve
sequencing performance in terms of precision and F1-score, which
is comparable to what is reported about supervised models. Among
the models compared here, the Gaussian mixture model and
Kamila offered improvements that made precision higher than
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99% and F1-score close to 99%. These models may then be
recommended to reconstruct new high-performance callsets
from NGS replicates. This is of particular interest for diagnosis
or precision medicine whenever DNA sequencing results stem
from either biological replicates (more than one sample) or
technological replicates (more than one sequencing platform or
analysis pipeline).
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