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Introduction: Essential genes are essential for the survival of various species. These
genes are a family linked to critical cellular activities for species survival. These genes
are coded for proteins that regulate central metabolism, gene translation,
deoxyribonucleic acid replication, and fundamental cellular structure and facilitate
intracellular and extracellular transport. Essential genes preserve crucial genomics
information that may hold the key to a detailed knowledge of life and evolution.
Essential gene studies have long been regarded as a vital topic in computational
biology due to their relevance. An essential gene is composed of adenine, guanine,
cytosine, and thymine and its various combinations.

Methods: This paper presents a novel method of extracting information on the
stationary patterns of nucleotides such as adenine, guanine, cytosine, and thymine in
each gene. For this purpose, some co-occurrencematrices are derived that provide the
statistical distributionof stationarypatternsof nucleotides in thegenes,which is helpful in
establishing the relationship between the nucleotides. For extracting discriminant
features from each co-occurrence matrix, energy, entropy, homogeneity, contrast,
and dissimilarity features are computed, which are extracted from all co-occurrence
matrices and then concatenated to form a feature vector representing each essential
gene. Finally, supervised machine learning algorithms are applied for essential gene
classification based on the extracted fixed-dimensional feature vectors.

Results: For comparison, some existing state-of-the-art feature representation
techniques such as Shannon entropy (SE), Hurst exponent (HE), fractal dimension
(FD), and their combinations have been utilized.

Discussion: An extensive experiment has been performed for classifying the
essential genes of five species that show the robustness and effectiveness of
the proposed methodology.

KEYWORDS

essential genes, DNA, co-occurrence matrix, feature analysis, classification

OPEN ACCESS

EDITED BY

Zhibin Lv,
Sichuan University, China

REVIEWED BY

Lei Wang,
Changsha University, China
Yansu Wang,
University of Electronic Science and
Technology of China, China

*CORRESPONDENCE

Saurav Mallik,
sauravmtech2@gmail.com,
smallik@hsph.harvard.edu

Hong Qin,
hong-qin@utc.edu

RECEIVED 30 January 2023
ACCEPTED 04 April 2023
PUBLISHED 20 April 2023

CITATION

Rout RK, Umer S, Khandelwal M, Pati S,
Mallik S, Balabantaray BK and Qin H
(2023), Identification of discriminant
features from stationary pattern of
nucleotide bases and their application to
essential gene classification.
Front. Genet. 14:1154120.
doi: 10.3389/fgene.2023.1154120

COPYRIGHT

© 2023 Rout, Umer, Khandelwal, Pati,
Mallik, Balabantaray and Qin. This is an
open-access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 20 April 2023
DOI 10.3389/fgene.2023.1154120

https://www.frontiersin.org/articles/10.3389/fgene.2023.1154120/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1154120/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1154120/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1154120/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1154120/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2023.1154120&domain=pdf&date_stamp=2023-04-20
mailto:sauravmtech2@gmail.com
mailto:sauravmtech2@gmail.com
mailto:smallik@hsph.harvard.edu
mailto:smallik@hsph.harvard.edu
mailto:hong-qin@utc.edu
mailto:hong-qin@utc.edu
https://doi.org/10.3389/fgene.2023.1154120
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2023.1154120


1 Introduction

Essential genes are necessary for the survival of a living being and
are considered the basis of life. Essential genes consist of vital data of
genomes and, hence, could be the key to the broad interpretation of life
and expansion (Juhas et al., 2011). It decides significant attributes
involving cellular structure, chemistry, and reproduction, among others.
Genomes have encoded data for the functions regularly viewed as in all
life forms, and the instructions could be species-specific. Some genes
appear essential for survival, whereas others seem to be optional.
Essential genes have been provided to segregate genes and
determine the fundamental sustaining cellular life components.
Deletion of an essential gene would result in cell death. As a result,
essential gene prediction aids in identifying the bare minimum of genes
necessary for the vital survival of specific cell types. The discovery and
analysis of essential genes aids our understanding of origin of life
(Koonin, 2000). Furthermore, essential genes play a crucial role in
synthetic molecular biology, vital to genome development. An extensive
comprehension of essential genes can empower researchers to clarify
the biological essence of microorganisms (Juhas et al., 2014), generate
the smallest genome subset (Itaya, 1995), evolve promising medication
targets, and create probable drugs to fight infectious diseases (Dickerson
et al., 2011). Due to their significance, the identification of essential
genes has been viewed as essential in bioinformatics and genomics.

Essential genes are a set of genes necessary for an organism to
thrive in a certain climate. Most of these are only necessary for
particular circumstances. For instance, if a cell is supplied with the
amino acid lysine, the gene responsible for lysine production is non-
essential. However, if the amino acid supply is unavailable, the gene
encoding the enzyme responsible for lysine biosynthesis becomes
essential, as protein synthesis is not possible without it. Essential
genes regulate the activity of fundamental cells in almost every
species (Qin, 2019; Guo et al., 2021). Genes are essential if they
cannot be knocked out individually under circumstances when most
of the needed nutrients are present in the growth medium and the
organism grows at its optimal temperature. One of the major issues
is determining which identified genes are necessary. There are
various experimental techniques to identify essential genes in
microorganisms, such as gene knockouts (Roemer et al., 2003),
RNA interference (Cullen and Arndt, 2005), transposon
mutagenesis (Veeranagouda et al., 2014), and single-gene
knockout procedures (Giaever et al., 2002). However, these
experimental techniques have various benefits and are generally
good. They are still expensive and laborious. So, there is a need for
computational methods to identify essential genes.

Because essential genes have biological significance, several
computational methods, particularly machine learning methods, have
been employed to ascertain them. For this objective, many feature
extraction and model building approaches have been developed (Gil
et al., 2004; McCutcheon and Moran, 2010; Juhas et al., 2012; Mobegi
et al., 2017). Chen and Xu (2005) effectively used high-throughput data
and machine learning techniques in Saccharomyces cerevisiae to evaluate
protein dispensability. Seringhaus et al. (2006) constructed a machine
learning model to predict essential genes in S. cerevisiae using several
intrinsic genomic factors. Additionally, Yuan et al. (2012) designed three
machine learning techniques based on informative genomic
characteristics to detect knockdown lethality in mice. Deng (2015)
proposed an important gene classification algorithm using hybrid

characteristics like intrinsic and context-dependent genome aspects.
This model acquired area under the receiver operating characteristic
curve (AUC) scores of 0.86–0.93 when testing the same organism and
scores of 0.69–0.89 when predicting cross-organisms using ten-fold
cross-validation.

Zhang et al. (2020) have contributed significantly by combining
sequence- and network-based features to identify essential genes and
arrived at valid results by utilizing a deep learning-based model to
learn the characteristics generated from sequencing data and
protein–protein interaction networks. Liu et al. (2017) published
the findings of comprehensive research on 31 bacterial species,
including cross-validation, paired, self-test, and leave-one-species-
out experiments. Rout et al. (2020) proposed a method to identify
essential genes of four species based on various quantitative
methods, including purine and pyrimidine distribution. Le et al.
(2020) proposed a model for identifying essential genes using an
ensemble deep neural network. Xu et al. (2020) developed a method
to predict essential genes in prokaryotes based on sequence-based
features using an artificial neural network. A web server, Human
Essential Genes Interactive Analysis Platform (HEGIAP), was
developed by Chen et al. (2020) for detailed analysis of human
essential genes.

An expression-based predictor was developed by Kuang et al.
(2021) to recognize the essential genes in humans. The predictor
utilized gene expression profiles to predict lncRNAs in cancer cells.
Senthamizhan et al. (2021) created a database NetGenes for essential
genes, which contains predictions for 2,711 bacterial species using
network-based features. The protein–protein interaction network
was used to extract features from the STRING database. Marques de
Castro et al. (2022)predicted the essential genes in Tribolium castaneum
and Drosophila melanogaster based on the physicochemical and
statistical data along with subcellular locations. They extracted
extrinsic and intrinsic attributes from the essential and nonessential
data. This paper analyzed the DNA sequences of five species, i.e., Homo
sapiens, Danio rerio, D. melanogaster, Mus musculus, and Arabidopsis
thaliana, to identify essential genes. The proposed model extracts co-
occurrence matrices from the essential gene sequences to find some
informative patterns that distinguish the species. This paper also finds
the impact of different co-occurrence matrices and existing features,
such asHurst exponent (HE), fractal dimension (FD), Shannon entropy
(SE), and modified Shannon entropy (MSE).

The rest of the paper is structured in the following manner. The
definitions of various fundamental parameters are given in Section 2,
with relevant descriptions. The proposed methodology with detailed
dataset description is discussed in Section 3. The efficiency of our strategy
is proven by experimental findings and comments in Section 4, which
summarizes the paper by highlighting the most important aspects of the
whole investigation. Finally, the paper is concluded in Section 5.

2 Basic terminology

Essential genes are a family linked to critical cellular activities for
survival of species. Identifying essential genes is a multidisciplinary
process that necessitates both computational and wet-lab validation
experiments. Several machine learningmethods have been developed to
improve classification accuracy, making it a time-consuming and
resource-intensive process. Hence, with lower validation costs, most
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of these methods use supervised methods, which necessitate massive
labeled training data sets, typically impractical for less-sequenced
species. On the other hand, the rise of high-throughput wet-lab
experimental approaches like next-generation sequencing has
resulted in an oversupply of unlabeled essential gene sequence data.
In the initial study, it has been observed that a fixed-dimensional feature
vector represents every DNA sequence by using various quantitative
measures, such as SE, MSE, FD, and HE. To estimate these quantitative
measures, we convert gene sequences into binary sequences based on
pyrimidine and purine distribution. The two main forms of nucleotide
bases in DNA are made up of nitrogenous bases. Adenine (A) and
guanine (G) are purines, whereas cytosine (C) and thymine (T) are
pyrimidines. Here, purine and pyrimidine bases are expressed as 1 and
0, respectively.

A/G → 1 and C/T → 0. (1)

2.1 Shannon entropy and modified Shannon
entropy

SE may be used to determine how much uncertainty or
information a sequence contains (Zurek, 1989; Khandelwal
et al., 2022b). The uncertainty affects the distribution of each
word. A sequence’s uncertainty concerning a base pair ranges
from 0 to 2n, where n is the length of a word. The SE uses the
probability p of the two possibilities (0/1) to calculate
information entropy. The following equation gives the SE of a
binary sequence:

SE � −∑1
i�0

pi log2 pi( ), (2)

where pi indicates the probability of two values regarding the
binary sequence, and SE is used to compute the uncertainty in a
binary string (Khandelwal et al., 2022a). When the probability p =
0, the event is assured never to happen, resulting in no
uncertainty and entropy of 0. Similarly, if p = 1, the result is
definite; hence, the entropy must be 0. When p = 1/2, the
uncertainty is highest, and the SE is 1. The MSE of different
word size is given by

MSE � −∑k
j�1

wj log2 wj( ), (3)

wherewj indicates the frequency of the j
thword in the gene sequence.

For instance, for a word of length 1, wj is determined using the
frequencies of purine or pyrimidine 0, 1, and for a word of length 2,
wj is determined using the two-time repeat of purine or pyrimidine
00, 10, 01, and 11. The number of words determined by taking the
maximum length of both purines and pyrimidines is represented by
k (Rout et al., 2020).

2.2 Hurst exponent

The HE evaluates a data set’s smoothness and degree of
similarities. The HE is often used to analyze auto-correlation in

time-series analysis. It is calculated using rescaled range analysis (R/
S analysis) and has a value of 0–1 (Hurst, 1951; Khandelwal et al.,
2022c). A negative auto-correlation of a time series is indicated by a
HE value between 0 and 0.5, while a HE value between 0.5 and
1 indicates a positive auto-correlation. If the HE value is 0.5, the
series is random, meaning that there is no relation between the
variable and its previous values (Hassan et al., 2021; Rout et al.,
2022). The HE of a binary sequenceDn is computed by the following
equation:

R n( )
S n( ) �

n

2
( )HE

, (4)

where

S n( ) �














1
n
∑n
i�1

Di −m( )2
√

, (5)

and

R n( ) � max X1, X2, . . . , Xn( ) −min X1, X2, . . . , Xn( ), (6)

Xt � ∑t
i�1

Di −m( ) for t � 1, 2, 3, . . . , n (7)

m � 1
n
∑n
i�1

Di. (8)

2.3 Fractal dimension

Every DNA sequence is converted into indicator matrices (Rout
et al., 2018; Umer et al., 2021). Let X = {A, T, C, and G} denote the set
of finite alphabet nucleotides, and D(N) denote a DNA sequence
with four symbols from X of length N. The indicator function for
every DNA sequence is described by the following equation:

F: D N( ) × D N( ) → 0, 1{ }, and D N( ) � 0, 1{ }, (9)
such that the indicator matrix will be

I N,N( ) � 1, if si � sj
0, if si ≠ sj

{ where si, sj ∈ D N( ). (10)

Here, I(N, N) is a matrix with values 0 and 1, and it produces a
binary image of the DNA sequence as a 2D dot-plot. Within the
same sequence, the binary image can represent the distribution of 0s
and 1s. It is possible to assign a white dot to 0 and a black dot to 1.
The FD from an indicator matrix can be computed as the average
number of σ(n) of 1, randomly selected n× n from an N×N indicator
matrix (Cattani, 2010; Rout et al., 2014; Upadhayay et al., 2019).
Using σ(n), the FD is computed by the following equation:

FD � − 1
N

∑N
n�2

log σ n( )( )
logn

. (11)

3 Proposed scheme

In this paper, we used the Database of Essential Genes (http://
www.essentialgene.org/) for experimental findings and discussion.
This dataset consists of essential genes of five species. There are
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2,051 H. sapiens (HS), 315 D. rerio (DR), 339 D. melanogaster
(DOM), 356 A. thaliana (AT), and 125M. musculus (MM) essential
genes. Table 1 lists some of the terminologies employed in the
proposed technique for reference.

3.1 Proposed feature representation
technique

The DNA (deoxyribonucleic acid) sequence of essential genes S
is composed of four bases: adenine (A), guanine (G), cytosine (C),
and thymine (T). So, several occurrences may exist with
combinations of A, C, T, G within the sequence S. The co-
occurrences of A, C, T, G in the DNA sequence establishes the
relationship between the nucleotide. It is the first time that a method
has been proposed for finding the co-occurrences of nucleotides A,
C, T, G within S. The objective of finding these co-occurrences is to

analyze the patterns of A, C, T, G within the DNA sequence S to
derive some useful features that uniquely discriminate the species by
the feature representation of their essential genes. Assuming x = (A,
C, T, G) is a vector of the nucleotides, then the possibility of
arrangement of these characters in the DNA gene sequences is
represented through co-occurrence matrices formed by the vector
combination, which are shown in Table 2.

Here, the computed co-occurrence matrices of different
combinations of nucleobases represent the distribution of
nucleobases throughout the essential gene S. This distribution of
nucleobases examines the texture pattern and considered the spatial
relationship of nucleobases in the essential gene S. Experimentally, it
has been observed that the occurrences of the spatial relationship of
nucleobases cannot provide fixed information of the stationary and
non-stationary patterns of A, C, T, and G. However, the obtained
spatial relationship contains the information of both these patterns
at a time. Hence, statistically it is easier to compute information
considering both stationary and non-stationary patterns at a time
rather than differentiating stationary and non-stationary patterns in
S. The essential genes are very critical for the survival of any
organism. It is beneficial for cell growth. Each gene sequence is
variable in length, and the arrangements A, C, T, G nucleobases are
zigzag. Hence, finding the stationary and non-stationary patterns of
A, C, T, G and the co-occurrences of the different combinations of
these nucleobases will help find its natural pattern in the gene.
Hence, deriving the valuable patterns of the variety of A, C, T, G
through co-occurrence matrix descriptors will considerably improve
the retrieval performance and be eligible to analyze the statistical and
structural information effectively from those patterns. Hence,
inspired by the co-occurrence matrix of texture analysis (Umer
et al., 2016) of image processing and pattern recognition, we have
employed the ideas of gray-level co-occurrence matrix. Here, we
have computed several co-occurrence matrices from each essential
gene data. Now, I

4×4
, J
4×4

, K
6×4

, L
6×4

, M
4×4

, N
4×4

, O
4×4

, and P
4×4

co-occurrences

TABLE 1 List of species considered in the proposed technique.

Name Symbol used

Arabidopsis thaliana AT

Drosophila melanogaster DOM

Danio rerio DR

Homo sapiens HS

Mus musculus MM

Naming convention for Arabidopsis thaliana [AT1 − AT356]

Naming convention for Drosophila melanogaster [DOM1 − DOM339]

Naming convention for Danio rerio [DR1 − DR315]

Naming convention for Homo sapiens [HS1 − HS 2051]

Naming convention for Mus musculus [MM1 − MM125]

TABLE 2 Possible sets of occurrences of nucleobases A, C, T, G in a DNA
sequence or essential gene formed by the combination of vectors, where I, J, K,
L, M, N, O, P are the co-occurrence matrices.

X Y XT × Y

X1 = (A, C, T, G) (A, C, T, G) I
4×4

� X1
T

4×1
× Y

1×4

X2 = (AA, CC, TT, GG) (A, C, T, G) J
4×4

� X2
T

4×1
× Y

1×4

X3 = (AC, AT, AG, CT, CG, TG) (A, C, T, G) K
6×4

� X3
T

6×1
× Y

1×4

X4 = (CA, TA, GA, TC, GC, GT) (A, C, T, G) L
6×4

� X4
T

4×1
× Y

1×4

X5 = (ACT, ACG, ATG, CTG) (A, C, T, G) M
4×4

� X5
T

4×1
× Y

1×4

X6 = (CAT, CAG, TAG, TCG) (A, C, T, G) N
4×4

� X6
T

4×1
× Y

1×4

X7 = (ATC, AGC, AGT, CGT) (A, C, T, G) O
4×4

� X7
T

4×1
× Y

1×4

X8 = (TCA, GCA, GTA, GTC) (A, C, T, G) P
4×4

� X8
T

4×1
× Y

1×4

TABLE 3 Co-occurrence matrix I that contains several patterns of A, C, T, G
nucleobases in DNA gene sequence S

A C T G

A #(AA) #(AC) #(AT) #(AG)

C #(CA) #(CC) #(CT) #(CG)

T #(TA) #(TC) #(TT) #(TG)

G #(GA) #(GC) #(GT) #(GG)

TABLE 4 Features extracted from a co-occurrence matrix G of DNA sequence S.

Feature Formulae

Energy ∑q
r�0∑q

s�0G′(r, s)2

Entropy ∑q
r�0∑q

s�0 − G′(r, s) × ln(G′(r, s))

Homogeneity ∑q
r�0∑q

s�0
G′(r,s)

(1+(r−s)2)

Contrast ∑q
r�0∑q

s�0G′(r, s) × (r − s)2

Dissimilarity ∑q
r�0∑q

s�0G′(r, s) ×|(r − s)|
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matrices are computed that contain several patterns of A, C, T, G
nucleobases in each DNA sequence S. These co-occurrence matrices
are defined in Table 3, Supplementary Table S1, Supplementary
Table S2, Supplementary Table S3, Supplementary Table S4,
Supplementary Table S5, Supplementary Table S6, and
Supplementary Table S7, respectively.

Here, from the given DNA sequence S, the aforementioned co-
occurrence matrices are obtained. Each co-occurrence matrix G
contains the number of occurrences of A, C, T, G nucleobases with a
specific combinations and offset in S. Since a sequence S with q
different combinations of A, C, T, G nucleobases will produce a co-
occurrence matrix of size q × 4 for the given offset, so the (r,s)th value
of a co-occurrence matrix (Table 3, Supplementary Table S1,
Supplementary Table S2, Supplementary Table S3, Supplementary
Table S4, Supplementary Table S5, Supplementary Table S6, and
Supplementary Table S7) gives the number of times that rth and sth

nucleobases present in S. Hence, mathematically, here each

co-occurrence matrix (Table 3, Supplementary Table S1,
Supplementary Table S2, Supplementary Table S3, Supplementary
Table S4, Supplementary Table S5, Supplementary Table S6, and
Supplementary Table S7) is given by

G � ∑n
i�1

∑n
j�1

1 G i,j( ) � r & G i+△i,j+△j( ) � s
0 otherwise

,{ (12)

The offset (△i,△j) defines the spatial relation for which the matrix
G is calculated. The number of co-occurrences of the combinations ofA,
C, T, G present in S is obtained by the co-occurrence matrices. So, to
extract distinguish and discriminant features, each matrix G is

normalized to G′ � G∑q

r�0∑q

s�0G(r,s)
. Then, the normalized co-

occurrence matrix G′ is used to compute some features like entropy,
dissimilarity, energy, homogeneity, and contrast. The mathematical
definitions of these features are shown in Table 4.

Now, the features defined in Table 4 are extracted from each co-
occurrence matrix (Table 3, Supplementary Table S1,
Supplementary Table S2, Supplementary Table S3, Supplementary
Table S4, Supplementary Table S5, Supplementary Table S6, and
Supplementary Table S7), and the list of feature vectors extracted
from these matrices is obtained as follows:

fI = (f1, f2, f3, f4, f5) from I (Table 3)
fJ = (f6, f7, f8, f9, f10) from J (Supplementary Table S1)
fK = (f11, f12, f13, f14, f15) from K (Supplementary Table S2)
fL = (f16, f17, f18, f19, f20) from L (Supplementary Table S3)
fM = (f21, f22, f23, f24, f25) from M (Supplementary Table S4)
fN = (f26, f27, f28, f29, f30) from N (Supplementary Table S5)
fO = (f31, f32, f33, f34, f35) from O (Supplementary Table S6)
fP = (f36, f37, f38, f39, f40) from P (Supplementary Table S7)

FIGURE 1
Framework of the proposed model for the classification of essential genes. Here, CoM indicates the co-occurrence matrices.

TABLE 5 Demonstration of actual files containing gene sequences
corresponding to AT, DOM, DR, HS, and MM species.

Actual files Actual files containing DNA sequences

AT 356 356

DOM 339 339

DR 315 315

HS 2054 2051

MM 411 125

Frontiers in Genetics frontiersin.org05

Rout et al. 10.3389/fgene.2023.1154120

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1154120


Hence, the final feature representation of a DNA sequence or
essential gene S is given by the feature vector f = (fI, fJ, fK, fL, fM, fN,
fO, fP).

3.2 Classification

In this study, for the classification of the essential genes in the
employed species, the decision tree (DT), k-nearest neighbor
(KNN), and support vector machine (SVM) classifiers are used.
During experimentation, the datasets of each species Arabidopsis
thaliana (AT), Drosophila melanogaster (DOM), Danio rerio (DR),
Homo sapiens (HS), and Mus musculus (MM) are divided into two,
with 50% of its data input into the training set and the remaining
50% into the testing set. Then, a five-fold cross-validation technique
is employed. Finally, the average performance for the testing data is
reported for the proposed system.

DT is a supervised algorithm, and it is generated by using the
Iterative Dichotomiser 3 algorithm (ID3) or CART algorithm
(Classification algorithm and Regression Tree) (Quinlan, 1986).
The DT uses decision nodes to split the dataset into smaller
subsets based on information gain (IG) or the Gini index.
ID3 uses IG to evaluate how well an attribute splits the training
dataset based on its classification objective. IG is the difference
between the dataset’s entropy before and after splitting depending
on the specified attribute values. Let X = x1, x2, x3, . . .., xn represent
the set of instances, A represent the attribute, and Xv subset of X
having A = v. Then, IG is given by

IG X,A( ) � Ent X( ) − ∑
v∈V A( )

|Xv|
|X| · Ent Xv( ), (13)

where ENT(X) is the entropy of X and V(A) is the collection of all
possible A values. Entropy of X is given by

Ent X( ) � ∑c
i�1

−pi log2pi, (14)

where pi denotes the probability for current state X.
KNN is a supervised machine learning and non-parametric

technique that signifies that it makes no assumptions about the
underlying data. The KNNmethod ensures that the unseen data and

FIGURE 2
Demonstration of distribution of F1-score performance obtained by decision tree, KNN, and SVM classifiers with respect to the 40 features
computed from co-occurrence matrices of DNA gene sequence S.

TABLE 6 Impact of different co-occurrence features on the classification of
essential gene sequences of AT, DOM, DR, HS, and MM species.

Classifier Accuracy Precision Recall F1-score

Effect of entropy features

K-nearest neighbors 63.56 56.68 63.56 59.39

Decision tree 52.95 53.56 52.95 53.25

Support vector machine 64.37 41.44 64.37 50.42

Effect of dissimilarity features

K-nearest neighbors 62.96 57.38 62.96 59.55

Decision tree 52.70 53.84 52.70 53.25

Support vector machine 67.07 58.80 67.07 56.75

Effect of energy features

K-nearest neighbors 59.48 52.71 59.48 55.46

Decision tree 48.65 49.82 48.65 49.22

Support vector machine 64.94 50.32 64.94 51.83

Effect of homogeneity features

K-nearest neighbors 63.06 57.59 63.06 59.99

Decision tree 53.61 54.81 53.61 54.19

Support vector machine 67.67 60.76 67.67 58.29

Effect of contrast features

K-nearest neighbors 64.25 58.92 64.25 61.02

Decision tree 54.80 56.27 54.80 55.51

Support vector machine 68.36 59.82 68.36 58.85
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existing dataset are comparable and places the unseen data in the
most similar class to the unseen data. KNN works by just storing the
data during training time. When it sees new data at testing time, it
finds k-nearest neighbor to the latest data by using distance measure,

i.e., Euclidean distance, and classifies it based on the similarity
(Peterson, 2009). The steps of the KNN algorithm are as follows.

1. First, select the value of K, i.e., the closest data points. Any integer
may be used as K.

2. Do the following for each data point in the test data set: (i) find
the distance between the data point and all samples in the
training dataset using one of the following methods:
Manhattan, Euclidean, or Hamming distance. In this paper,
Euclidean distance measure is used for calculating the
distance; (ii) sort samples in the ascending order depending
on the distance value; (iii) select the top K samples as the
nearest neighbors to the test data point; (iv) next, the test data
point will be assigned a class depending on the most common
class of these K samples.

The SVM is a supervised machine learning approach for
classifying data. The SVM is a well-known technique used in
various bioinformatics and computational biology problems, and
it needs fewer model parameters to describe the non-linear
transition from primary sequence to protein structure region. To
minimize the error, the SVM will create the hyperplane repeatedly.
The SVM is noted for its quick training, which is necessary for high-
throughput database testing (Suthaharan, 2016). Let the dataset be
represented by (X1, y1), (X2, y2), (X3, y3), . . .. , (Xn, yn). The SVM
solves the following equation:

min
w,b

‖w‖2such that∀i, yi 〈w,Xi〉 + b( )≥ 1, (15)

where w and b is the weight and bias of the hyperplane equation w ·
X + b = 0, respectively.

3.3 Evaluation metrics

In this paper, the essential gene classification problem is a
multi-class classification problem as we have classified essential
genes of five species, i.e., AT, DOM, DR, HS, and MM. For every
class in the target, the evaluation matrices (accuracy, precision,
recall, and F1-score) were computed. Then, the weighted
averaging technique was used to give the final value of
evaluation metrics.

Accuracy � ∑C
i�1ni ×

TPi+TNi
TPi+TNi+FPi+FNi∑C
i�1ni

, (16)

Precision � ∑C
i�1ni ×

TPi
TPi+FPi∑C

i�1ni
(17)

Recall � ∑C
i�1ni ×

TPi
TPi+FNi∑C

i�1ni
(18)

F1 − score � ∑C
i�1ni ×

2 × Precisioni × Recalli
Precisioni+Recalli∑C
i�1ni

, (19)

where

Precisioni � TPi

TPi + FPi
, (20)

and

TABLE 7 Impact of features extracted from different co-occurrence matrices for
the classification of essential gene sequences of AT, DOM, DR, HS, and MM
species.

Classifier Accuracy Precision Recall F1-score

Effect of first matrix

K-nearest neighbors 63.37 56.39 63.37 59.20

Decision tree 53.70 54.02 53.70 53.85

Support vector machine 64.38 41.44 64.38 50.42

Effect of second matrix

K-nearest neighbors 62.05 54.43 62.05 57.54

Decision tree 53.20 53.88 53.20 53.53

Support vector machine 64.38 41.44 64.38 50.42

Effect of third matrix

K-nearest neighbors 60.58 52.69 60.58 55.66

Decision tree 49.72 51.01 49.72 50.34

Support vector machine 64.38 41.44 64.38 50.42

Effect of fourth matrix

K-nearest neighbors 62.96 58.32 62.96 59.41

Decision tree 54.33 55.14 54.33 54.72

Support vector machine 64.38 41.44 64.38 50.42

Effect of fifth matrix

K-nearest neighbors 57.91 49.72 57.91 53.02

Decision tree 47.24 48.14 47.24 47.69

Support vector machine 64.38 41.44 64.38 50.42

Effect of sixth matrix

K-nearest neighbors 61.49 54.13 61.49 57.14

Decision tree 52.69 54.34 52.69 53.49

Support vector machine 65.35 47.61 65.35 53.36

Effect of seventh matrix

K-nearest neighbors 58.82 52.94 58.82 55.37

Decision tree 50.44 51.56 50.44 50.99

Support vector machine 64.81 46.81 64.81 53.45

Effect of eighth matrix

K-nearest neighbors 56.12 50.86 56.12 52.78

Decision tree 49.28 49.86 49.28 49.56

Support vector machine 64.38 41.44 64.38 50.42
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Recalli � TPi

TPi + FNi
, (21)

where TPi, TNi, FPi, and FNi are the counts of true positives, true
negatives, false positives, and false negatives, respectively, for the ith

class. Here, C represents the number of classes in the problem, and ni
indicates the number of samples in the ith class.

3.4 Model framework

The proposed model classified essential genes of five species based
on co-occurrence matrices. The proposed model finds the eight
different co-occurrence matrices from the DNA sequences. From
each co-occurrence matrix, five features, i.e., energy, entropy,
homogeneity, contrast, and dissimilarity, were extracted. The existing
features, such as HE, FD, SE, and MSE were also computed and then
combined with the proposed features for the classification of essential
genes. A supervised machine learning algorithm, SVM, was used to
evaluate the model. Figure 1 shows essential genes. A supervised
machine learning algorithm, SVM was used to evaluate the model.
Figure 1 shows the framework of the proposed model.

4 Result and discussion

The proposed essential gene classification model can identify novel
essential genes with high recall and precision while only requiring a
small number of previously identified essential genes in some species.
Such a method could be highly beneficial when investigating essential
genes in newly sequenced genomes of other species with few known
examples of essential genes. The proposed work has been implemented
in the ‘Python’ environment, while the ‘Python’ library of machine

TABLE 8 Impact of existing and proposed features on the classification of
essential genes for the AT, DOM, DR, HS, and MM species.

Classifier Accuracy Precision Recall F1-score

Effect of Shannon entropy features

K-nearest \neighbors 53.10 46.24 53.10 49.14

Decision tree 48.28 46.96 48.28 47.53

Support vector machine 64.33 41.38 64.33 50.36

Effect of Hurst exponent features

K-nearest neighbors 53.98 45.63 53.98 49.14

Decision tree 43.57 45.41 43.57 44.45

Support vector machine 64.33 41.38 64.33 50.36

Effect of modified Shannon entropy features

K-nearest neighbors 54.67 46.20 54.67 49.71

Decision tree 41.76 43.98 41.76 42.80

Support vector machine 64.26 45.64 64.26 50.66

Effect of fractal dimension features

K-nearest neighbors 58.11 52.19 58.11 52.15

Decision tree 68.35 46.72 68.35 55.51

Support vector machine 68.35 46.72 68.35 55.51

Effect of proposed features

K-nearest neighbors 64.95 59.49 64.95 61.50

Decision tree 58.31 59.24 58.31 58.70

Support vector machine 66.14 56.57 66.14 54.35

FIGURE 3
Performance (F1-score) comparison of existing features and the proposed features for the classification of essential genes of AT, DOM, DR, HS, and
MM species.
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learning algorithms has been employed for data classification tasks.
Python is the best scripting and programming language, is open-source,
and has high-level object-oriented programming approaches that deal
with mathematical and statistical functions. The method’s
implementation for the proposed methodology is executed in the
Kaggle repository that explores research to data scientists and
machine learning engineers as best practitioners in these fields.
Here, for Python tools, we have employed NumPy, Pandas,
Matplotlib, Sklearn.Preprocessing, Sklearn.Classifiers, Sklearn.Metrics,
and some other packages for data analysis and prediction models. The
feature vectors extracted from each DNA gene sequence S undergo
KNN, DT, and SVM classifiers. The datasets from AT, DOM, DR, HS,
and MM species are given in Table 5. The experimentation of the
proposed methodology has been divided into sub-sections.

4.1 Experiment for the proposed features

In this section, experiments with individual features have
been performed. Here, from each DNA sequence S, individual

feature from each fI, fJ, fK, fL, fM, fN, fO, fP have been considered,
and then classification has been performed. Figure 2
demonstrates the distribution of F1-score performance
obtained by DT, KNN, and SVM classifiers with respect to
every 40 features computed from co-occurrence matrices of
DNA sequence S. From this figure, it has been observed that
both the KNN and SVM classifiers predict the classification
problem better than the DT classifier for most of the features.
Moreover, it has also been observed that classifiers have obtained
more or less similar performance for most features but better
performance due to the 19th, 26th, 27th, 30th, 32nd, and 35th
features of the forty-dimensional feature vector f. For measuring
the impact of individual features such as entropy, homogeneity,
energy, contrast, and dissimilarity on the classification of
essential genes, the performance has been reported concerning
KNN, DT, and SVM classifiers in Table 6. Here, experiments are
carried out under the same training–testing protocols, and from
each DNA sequence S, the corresponding features are extracted
from all co-occurrence matrices. So, each eight-dimensional
feature vector is extracted for entropy, homogeneity, energy,
contrast, and dissimilarity features.

As shown in Table 6, for every feature, the performance is more
or less the same, but for the KNN classifier, the performance is better
than that of DT and SVM. Here, F1-score has been considered
classification performance as the employed species AT, DOM, DR,
HS, andMMhave class imbalance problems. Furthermore, the effect
of features computed from each co-occurrence matrix in the
subsequent experiments has been considered. Here, the 5-
dimensional feature vector is extracted from each co-occurrence
matrix. The performance due to these feature vectors is reported in
Table 7 under the same training–testing protocol. Table 7 shows that
there is a more or less a similar effect of co-occurrence matrix
features on the essential gene classification. Hence, the features
computed from the co-occurrence metrics are helpful and effective.
Here, the KNN classifier has better performance.

4.2 Experiment for the existing features

In the further experiment, the performance has been
compared with some existing state-of-the-art feature
extraction techniques such as SE, MSE, HE, and FD(discussed
in Section 2), where these features are extracted accordingly. The
performance is obtained concerning KNN, DT, and SVM
classifiers. The performance due to these features is reported
in Table 8, implying that SE, HE, MSE, and FD features have
more or less similar performance. Still, among the classifiers,
SVM has obtained better performance. The comparison of these
performances and the proposed system has been shown in
Figure 3, which shows that the proposed approach has better
classified the essential genes of AT, DOM, DR, HS, and MM
species under the same training–testing protocol. Here, the
difference is in the proposed system, and the forty-
dimensional feature vector is considered, while the one-
dimensional feature vector is extracted in each existing feature
extraction technique. Hence, this work investigates the
discriminatory power of co-occurrence matrix features with
better performance than the existing state-of-the-art features.

TABLE 9 Demonstration of discriminant features among proposed features,
Shannon entropy, Hurst exponent, modified Shannon entropy and fractal
dimension features.

Feature Eigen-
values

Rank Feature Eigen-
values

Rank

f1 13.908 1 f23 0.283 23

f2 4.434 2 f24 0.257 24

f3 3.628 3 f25 0.224 25

f4 2.895 4 f26 0.192 26

f5 2.505 5 f27 0.152 27

f6 2.233 6 f28 0.109 28

f7 1.904 7 f29 0.041 29

f8 1.602 8 f30 0.032 30

f9 1.388 9 f31 0.027 32

f10 1.133 10 f32 0.027 31

f11 0.986 11 f33 0.023 33

f12 0.855 12 f34 0.019 34

f13 0.820 13 f35 0.015 35

f14 0.750 14 f36 0.008 36

f15 0.714 15 f37 0.006 37

f16 0.525 16 f38 0.001 43

f17 0.471 17 f39 0.001 44

f18 0.440 18 f40 0.002 42

f19 0.432 19 f41 0.003 41

f20 0.333 20 f42 0.003 40

f21 0.329 21 f43 0.004 39

f22 0.299 22 f44 0.004 38
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4.3 Experiment for the combined features

The co-occurrence of nucleotides A, C, T, G in the essential gene
derives the distribution of these nucleotides and also their relative
position information within the gene S. The existing state-of-the-art
techniques of feature extraction (discussed in this work) are key
measures in information theory. For example, SE and its modified
technique compute the amount of uncertainty and randomness of
nucleotides in the gene S. HE measures the relative tendency and
characteristic parameters for analyzing its distribution in the
essential gene. The FD computes the fractal-like distribution of
nucleotides from the indicator matrix calculated from the essential

gene S. So, the similarity of patterns of nucleotides computed by the
co-occurrence matrices and the information of uncertainty,
randomness, relative tendency, and fractal-like distribution
information in S are combined here to obtain more discriminant
features for the classification of essential genes of AT, DOM, DR, HS,
and MM species. The principal component analysis of
dimensionality reduction with variation ratio has been adopted to
find the best suitable combination of these features. The
performance due to the combination of these features is
demonstrated in Table 9.

Table 10 reports the discriminatory power of combined features
with respect to various dimensional reduced features concerning

FIGURE 4
Demonstration of final performance for the combination of features for the classification of essential genes of AT, DOM, DR, HS, and MM species.

TABLE 10 Demonstration of performance due to combination of features for the classification of essential genes of AT, DOM, DR, HS, and MM species.

Variation Classifier Accuracy Precision Recall F1-score Feature dimension

0.85 K-nearest neighbors 72.01 66.37 72.01 68.67 4

Decision tree 63.09 63.63 63.09 63.34

Support vector machine 74.30 68.77 74.30 67.69

0.9 K-nearest neighbors 71.52 66.77 71.52 68.94 5

Decision tree 62.67 63.81 62.67 63.18

Support vector machine 75.91 69.57 75.91 70.31

0.95 K-nearest neighbors 73.82 68.83 73.82 70.80 7

Decision tree 63.93 64.67 63.93 64.29

Support vector machine 76.46 72.63 76.46 71.06

0.99 K-nearest neighbors 73.96 68.29 73.96 70.66 9

Decision tree 64.48 65.35 64.48 64.88

Support vector machine 76.32 70.56 76.32 71.42

The bold value indicates the highest F1-score.
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KNN, DT, and SVM classifiers and shows that highest F1-score is
71.42 and it is due to the SVM classifier. As this is class imbalance
problem, so F1-score performance has been reported.

For better understanding and visibility, the final performance for
the combination of features for the classification of essential genes of
AT, DOM, DR, HS, and MM species has been shown in Figure 4.

5 Conclusion

A novel method of feature extraction and analysis for the
classification of essential genes of Arabidopsis thaliana (AT),
Drosophila melanogaster (DOM), Danio rerio (DR), Homo sapiens
(HS), and Mus musculus (MM) species has been considered in this
work. The implementation of the proposed scheme is divided into three
segments. In the first segment, novel co-occurrence matrix-based
features are extracted from genes that derive the distribution of
nucleotides and their relative position from the respective gene. The
features from these measures belong to the statistical analysis of the
distribution of stationary patterns of nucleotides in the essential genes.
In the second segment, some existing state-of-the-art feature
computation techniques such as SE, HE, and FD are used as
information theory measures that compute uncertainty, randomness,
relative tendency, and fractal-like structures in the gene. In the third
segment of this work, the features from the proposed methodology and
the existing techniques are individually carried out for classification
tasks where their F1-score performance has been considered for
comparison. These comparisons show the robustness and
effectiveness of the proposed methodology. Finally, the features from
the proposed scheme and the existing techniques are combined to
compute more discriminatory features for classifying essential genes of
AT, DOM, DR, HS, and MM species.
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