
OCRFinder: a noise-tolerance
machine learning method for
accurately estimating open
chromatin regions

Jiayi Ren1,2, Yuqian Liu1,2†, Xiaoyan Zhu1,2, Xuwen Wang1,2,
Yifei Li1,2, Yuxin Liu1,2, Wenqing Hu1,2, Xuanping Zhang1,2 and
Jiayin Wang1,2*
1School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China, 2Shaanxi
Engineering Research Center of Medical and Health Big Data, Xi’an Jiaotong University, Xi’an, China

Open chromatin regions are the genomic regions associated with basic cellular
physiological activities, while chromatin accessibility is reported to affect gene
expressions and functions. A basic computational problem is to efficiently
estimate open chromatin regions, which could facilitate both genomic and
epigenetic studies. Currently, ATAC-seq and cfDNA-seq (plasma cell-free DNA
sequencing) are two popular strategies to detect OCRs. As cfDNA-seq can obtain
more biomarkers in one round of sequencing, it is considered more effective and
convenient. However, in processing cfDNA-seq data, due to the dynamically
variable chromatin accessibility, it is quite difficult to obtain the training data
with pure OCRs or non-OCRs, and leads to a noise problem for either feature-
based approaches or learning-based approaches. In this paper, we propose a
learning-based OCR estimation approach with a noise-tolerance design. The
proposed approach, named OCRFinder, incorporates the ideas of ensemble
learning framework and semi-supervised strategy to avoid potential overfitting
of noisy labels, which are the false positives on OCRs and non-OCRs. Compared
to different noise control strategies and state-of-the-art approaches, OCRFinder
achieved higher accuracies and sensitivities in the experiments. In addition,
OCRFinder also has an excellent performance in ATAC-seq or DNase-seq
comparison experiments.
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1 Introduction

Open chromatin regions (OCRs) are the particular regions associated with cellular
physiological activities. They exposed when highly folded chromatin structures are replicated
and transcribed, which can bind to intranuclear macromolecules regulated by DNA
regulatory elements (Flavahan et al., 2017; Klemm et al., 2019; Minnoye et al., 2021).
Chromatin accessibility in cancer provides a link between gene expression and somatic
mutations, DNA methylation, and distant regulatory elements (Corces et al., 2018; Wang
et al., 2019; Shin et al., 2021). For example, in gastric cancer, by estimating corresponding
OCRs, researchers can significantly distinguish anti-PD-1 therapy responders from non-
responders (Shin et al., 2021). Moreover, since OCRs exhibit different patterns in different
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cancer species, the estimation of OCRs can also be used to predict
tumor markers and analyze the epigenetic mechanisms of cancer
(Jiang et al., 2018; Sun et al., 2019; Ulz et al., 2019; Wang et al., 2019).

Traditional OCR estimating method relies on tissue sampling,
which is a complex experimental process. In recent years, the
discovery of the relationship between cell-free DNA (cfDNA)
fragment characteristics and gene expression levels (Snyder et al.,
2016; Ulz et al., 2016) has provided a more convenient,
comprehensive, and safer method for OCR estimation (Sun et al.,
2019; Wang et al., 2021). These methods analyze the biological
background of OCRs, observe the distribution of cfDNA fragments,
construct corresponding features artificially, and combine with
machine learning classifiers to finally achieve the estimation of
OCRs. Figure 1 shows the distribution of cfDNA fragments and
related cfDNA-features in OCRs. These artificially constructed
features could reflect the distribution of cfDNA fragments to a
certain extent. But when the cfDNA-seq data has low sequencing
depth or gene mutations exist, these features will be disturbed and
have limitations. In addition, these manually constructed features
are subjective and can hardly give a good picture of cfDNA
distribution. Therefore, it is not enough for artificially
constructed features, and a more objective feature construction
way is needed. However, there is no current method for OCR
estimation with automatic feature extraction, such as LDA
(Campbell et al., 2015) and neural networks.

Moreover, the labels used by these methods are based on
statistical rules, such as considering regions with active gene
expression as OCRs and regions with silent gene expression as
closed chromatin regions (CCRs). Thus there is a potential problem:
labels used for OCR estimation are in error. Due to the individual
specificity of biological samples, the chromatin accessibility in the
same region can vary from individual to individual and from time to
time (Wang et al., 2019). Even if the experimental means of ATAC-
seq (Buenrostro et al., 2015) and DNase-seq (Natarajan et al., 2012)

are used to validate labels, the dynamic change problem of
chromatin accessibility cannot be solved perfectly, not to
mention its economic, time, and sampling burden. Thus, how to
address the inevitable noisy labels in open chromatin regions
becomes the key to the OCR estimation problem.

Therefore, in this paper, we propose a novel OCR estimation
algorithm called OCRFinder. It is centered on avoiding or mitigating
the interference of noisy labels. It combines the characteristics of
cfDNA-seq data and the relationship between OCR and gene
expression levels to perform noisy label learning in OCRs by
ensemble ideas and semi-supervised strategies.

2 Background

2.1 The estimation of OCRs

The traditional OCR estimation methods (ChIP-Seq (Lorzadeh
et al., 2016), ATAC-seq, DNase-seq, and Mnase-seq (Mieczkowski
et al., 2016)) surgically obtain tissue cells and culture them in vitro.
Then these methods use specific enzymes to cleave DNA sequences
and obtain exposed OCRs that can bind to regulatory factors.
Although reliable, these methods are invasive biopsies, which are
complex, harmful, and difficult to apply to clinical applications.

Plasma cfDNA is derived from apoptotic cells and can be
obtained by safe and convenient liquid biopsy (Snyder et al.,
2016). With the discovery of cfDNA fragment characteristics in
OCRs, chromatin accessibility studies through cfDNA-seq data have
gradually become popular.

In 2016, Snyder first found that the distribution of cfDNA
fragments could reflect the distribution of nucleosomes and
proposed the windowed protection score (WPS) algorithm to
present it digitally (Snyder et al., 2016). The WPS waveform can
reflect the position of nucleosomes and provide support for OCR

FIGURE 1
The distribution and characteristics of cfDNA fragments.
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estimation. In the same year, Ulz proposed EP (Expression
Prediction) algorithm (Ulz et al., 2016), which focused on the
low sequencing coverage in OCRs to estimate the gene
expression levels. OCRs are associated with gene expression, but
the EP algorithm cannot directly identify them. In 2019, Lo (Sun
et al., 2019) proposed that the differentially phased fragment end
signals could reflect the characteristics of cfDNA fragment
distribution. Based on the WPS waveform and sequencing
coverage, Wang proposed the OCRDetector algorithm in 2021
(Wang et al., 2021). It is the first OCR estimation algorithm in
whole genome regions through cfDNA-reads, but it could hardly
solve the limitations of artificially constructed features.

In this paper, deep neural networks will be used for feature
extraction as well as classification. As long as an effective encoding
method is provided, deep learning models can automatically extract
the characteristic fragmentation pattern of cfDNA molecules at
OCRs without manual intervention. Therefore, using deep
learning for OCR estimation is a feasible approach.

2.2 The method of noisy label learning

Most existing noisy label learning methods can be classified into
two main categories. The first type is to design noise-resistant loss
functions by exploiting the characteristics of noisy data to correct the
gradients of noisy samples or to balance their negative effects (Arazo
et al., 2019; Han et al., 2019; Liu et al., 2020; Ma et al., 2020). However,
these methods tend to depend on the a priori information about the
data and have application limitations (Wang et al., 2022). Another
category is to design a sample selection strategy to separate clean
samples from noisy samples (Reed et al., 2014). A common
approach is to consider samples with fewer losses as clean samples
(Shen and Sanghavi, 2019). Jiang (Jiang et al., 2304) used a data-driven
curriculum learning strategy to solve the noisy-label-overfitting
problem. Ren (Ren et al., 2018) assigns different weights to the
samples by the meta-learning approach. Chen (Chen et al., 1062)
proposes a method to clean the data using a cross-validation
method. Han (Han et al., 2018) used the idea of co-training to train
two networks to improve the noisy label overfitting problem. Yu (Song
et al., 2019) updated it by using disagreement of the co-trained networks
to maintain the robustness of the model to the noise labels. But these
methods rely on the data prior information and cleaning guidelines. For
OCR estimation in the biomedical field, such a priori information is
difficult to obtain, so this paper proposes a division method without a
priori information and integrates integration and semi-supervised ideas
to improve the robustness of the model.

3 Materials and methods

To solve the problem of estimating OCRs with noisy labels, we
propose a three-stage binary classification algorithm that introduces
the ideas of ensemble learning as well as semi-supervised learning
into it. The three stages are data pre-processing, model pre-training,
and model semi-supervised training. The last step consists of three
parts: sample selection, calculation of ensemble loss, and
recirculation of dirty samples. The data pre-processing converts
cfDNA-seq data to two-dimensional images. The second stage gives

the model an initial discriminatory capability and requires the
design of a loss function with noise-resistant characteristics to
avoid early overfitting of noisy data. In the last stage, we design a
reliable and adjustable division criterion and use semi-supervised
ideas to balance data utilization and training noise rate. The general
flow chart of the algorithm is shown in Figure 2.

3.1 Data pre-processing

First, the cfDNA-seq data in fastq format is processed by BWA and
Samtools to obtain the cfDNA-reads data in bam format. Then,
OCRFinder encodes cfDNA-reads data into two-dimensional matrixes
T, rows representing genomic coordinates and columns representing
cfDNA-reads lengths. For example, Tij denotes the number of cfDNA-
reads with genomic coordinate i and length j. Besides, We only consider
the cfDNA-reads with lengths between 50 bp-250 bp.

In addition, since sequencing coverage, WPS score, and the density
of the head and tail of cfDNA fragments can help reflect the gene
expression, we encode these four artificial features in the same way, to
obtain two-dimensional matrixes as another input to OCRFinder.

3.2 Model pre-training

Most of the sample selection methods perform data cleaning
based on the losses of samples. Because the model will first fit clean
samples during iterative training, the losses of clean samples will be
smaller than that of noisy samples (Han et al., 2018). As shown in
Figure 3, the losses of clean samples and the losses of noisy samples
show two different distributions. In order to make themodel have an

FIGURE 2
Algorithm flow chart.
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initial discriminative ability in the training process, an additional
pre-training session is needed, which is also to make the model
better adapted to the learning rate and other settings. At the same
time, the pre-training phase needs to be constrained to avoid
overfitting noisy labels during the pre-training period.

The cross-entropy (CE) loss is the most common classification
loss function. Still, it is prone to the overfitting problem of noisy
data, interfering with subsequent data cleaning. It has been found
that symmetric loss functions can tolerate noisy labels, and the mean
absolute error (MAE) loss is one of them. But MAE loss trains slowly
and is difficult to converge (Ma et al., 2020). As shown in
Supplementary Figure S1, as the number of iterations increases,
there will be a significant drop in the test accuracy of CE loss after
reaching the peak.

In contrast, the test accuracy of MAE loss will slowly increase,
and in the training set, CE loss is much easier to fit. So, the
combination of the binary cross-entropy (BCE) function and
mean absolute error function in this paper is used as the pre-
trained loss function; that is, the BCE loss is bounded by
L1 regularization (Equation 1). Improving the loss function not
only ensures the stability of the model, but also increases the
comprehensibility of the machine learning model (Wang et al.,
2023).

In addition, because the number of different OCRs varies greatly, we
also studied the relationship between the size of the training set and the
performance of CE loss and MAE loss. And the experimental results
show that as the training set increases, CE loss will be subject to noise
labeling and lead to performance degradation, whileMAE loss is difficult
to train when the training set is small (Supplementary Figure S2).
Therefore, according to the size of the training set, we designed a
weighting factor to regulate the percentage of CE loss and MAE loss
(Equation 2).

Loss � CE x, y( ) + ψMAE x, y( )
� −y logp(y|x, θ) + 1 − y( )log (1 − p(y∣∣∣∣x, θ)
+ψ‖p(y∣∣∣∣x, θ) − y‖, (1)

ψ n( ) � n

t
( )

γ

, (2)

where x ∈ Rm×n is the two-dimensional input, y ∈ 0, 1{ } is the
corresponding label, θ is the trained network parameter, n is the
size of the training set, t is the fixed size taken as 1,000, and γ is the
adjustment factor taken as 0.5 in this paper.

As shown in Figure 3, our proposed regularized CE loss will
effectively alleviate the loss-overlap areas between noisy samples and
clean samples. The L1 regularized CE loss can somewhat reduce the
overfitting of noisy labels.

In addition, our OCR dataset only contains unknown and noisy
labels. To illustrate the noisy-label influence on CE loss, MAE loss,
and sample loss distributions, here we used the CIFAR10 dataset
with exact labels and artificially assigned noisy labels to this dataset.

3.3 Model semi-supervised training

3.3.1 Sample selection
With an initial discriminative power, the model will be used for

data cleaning. It has been shown that the network tends to
remember clean samples more than noisy ones in the initial stage
of model training. As the number of iterations increases, the network
gradually fits the noisy samples. Eventually, the network will
remember all the samples ideally, showing that the losses of clean
samples will be smaller than those of noisy samples (Huang et al.,
2019). Therefore, most sample selection methods select data based
on themagnitude of sample loss. However, in many sample selection
methods, the thresholds for data cleaning will rely on prior
information, which is not present in the OCR estimation
problem. Therefore, OCRFinder will use the average of the
sample losses as a dynamically adjustable division threshold
(Equation 4). Samples with Losses smaller than the threshold are
considered clean, and vice versa are noisy. The losses are calculated
based on the BCE function. For the kth sample, its loss is:

FIGURE 3
The loss distribution map. (A) The loss distribution obtained from CE loss function. (B) The loss distribution obtained by CE loss function with
L1 regulation.
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lossk � − yk · log p yk( )( ) + 1 − yk( ) · log 1 − p yk( )( )( ), (3)
Where lossk is the loss value of the kth sample, k is the sample
number, yk is the sample label, and p(·) is the model prediction.

Unlike existing methods, we draw on confident learning
(Northcutt et al., 2021) and take the mean loss of samples as the
threshold to adjust the threshold adaptively during the iterative
process. The threshold for the kth sample is:

τyk �
1
K
∑K

k�1loss
yk
k , (4)

where yk is the sample label, τyk is the division threshold of the
samples with category yk, and K is the number of samples with
labeled label yk.

Unlike existing methods, we draw on the idea of confidence
learning and use the mean loss of the samples as the threshold in
order to adjust the threshold adaptively during the iterative process.

3.3.2 Calculation of loss function
It has been found that while training a dataset with noisy labels,

the model will forget the noisy samples more quickly than the clean
samples (Toneva et al., 2018). In other words, the noisy samples’
losses will be unstable in the iteration process. Thus, the loss for each
iteration of each sample during training can be recorded, and the
noise sample can be judged based on the number of individual
forgotten events and the variance of the individual sample loss.
However, this approach will lead to high spatial complexity and
challenge the experimenter’s equipment conditions. Therefore, we
adopt an exponential moving average strategy for loss calculation
and integrate the historical losses with the current losses to obtain
more reliable cleaned samples. Their loss values were calculated as
follows:

Lossi,k � αLossi−1,k + 1 − α( )Lossi,k, (5)
Where i represents the number of iterations, k represents the sample
number, Lossi,k represents the loss of the kth sample in the ith
iteration, α is the moving average coefficient, which can be adjusted
for different occasions, and in this paper, α is 0.3 in all experiments.
In this way, the loss for the current iteration depends on its current
forward propagation calculation and the losses obtained in the
previous iteration, thus utilizing the historical information of the
sample loss.

3.3.3 Recirculation of dirty samples
To further mitigate the noise label overfitting problem, we adopt

the idea of co-training: two identical models are built, and in each
iteration, each cleaned data is selected to guide each other in the
back-propagation of the model. For example, in the kth iteration,
model A obtains a clean dataset DA in the forward propagation
computation, and then model B uses DA to backpropagate and
update itself; conversely, the same is true for the update of model A.
In this way, the overfitting problem caused by a single model using
the same parameters for both prediction and update can be
indirectly avoided.

To make full use of the training set, we apply the semi-
supervised idea. It uses the cleaned dataset for back-propagation
and assigns pseudo-labels (Equation 7) to samples from the noisy
dataset for semi-supervised training. Moreover, we also designed a

sharpen function to sharpen pseudo-labels (Equation 6). The
sharpening operation can enhance the effect of samples with
consistent model prediction and weaken the impact of samples
with disagreement model prediction.

Sharpen x( ) � e
x
τ

e
x
τ + e

1−x
τ

, (6)

Where τ is the sharpening factor, the smaller is τ, the more obvious
sharpening effect is (Supplementary Figure S3). In this paper, The
value of τ is 0.3.

Here, we adopt the same strategy for the sample confidence as
for the integration loss, and the confidence for the kth sample in the
ith iteration is:

labelk � argmaxc Sharpen p yk,A( )( ) + Sharpen p yk,B( )( )( )/2, (7)
pi yk,A( ) � α · pi yk,A( ) + 1 − α( ) · pi−1 yk,A( ), (8)
pi yk,B( ) � α · pi yk,B( ) + 1 − α( ) · pi−1 yk,B( ), (9)

Where labelk represents the pseudo label for the kth sample, yk,A is
the prediction obtained by model A, yk,B is the prediction obtained
by model B, α is the same as in Equation 5.

For this part of the loss calculation, we focus more on the
consistency of the sample and use the mean square error loss
function (Equation 10). For clean samples, we use the common
BCE loss function (Equation 11).

Lossd � 1
M

· ∑
M

m�1
p ym( ) − labelm
				 				2, (10)

Lossc � − 1
N

·∑N

n�1yn · log p yn( )( ) + 1 − yn( ) · log 1 − p yn( )( ),
(11)

Where labelm represents the pseudo label for the mth sample in
noisy samples, M is the number of noisy samples, and N is the
number of clean samples.

Therefore, the final loss function is:

Loss � Lossc + Lossd. (12)
Considering the sequence nature of cfDNA-reads and the image

nature of cfDNA fragment distribution in OCRs, we will refer to the
structure of the DanQ model (Quang and Xie, 2016), where we
transform the cfDNA-seq data to images as input. The model
consists of a one-dimensional convolutional layer, a max-pooling
layer, a bidirectional LSTM layer, a one-dimensional convolutional
layer, a max-pooling layer, and a fully connected layer (Figure 4).

Moreover, since our focus is not on feature extraction but on
how to design a noisy label learning algorithm based on deep
learning for OCR estimation, this paper does not care about the
selection of deep learning models.

4 Results

We use the same approach as OCRDetector for evaluating our
algorithm’s performance based on the known gene expression levels
or the chromatin accessibility levels. For example, as many OCRs as
possible for housekeeping genes should be detected due to their high
expression, while for some low-expression genes, fewer OCRs
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should be detected. We use the index of sensitivity for evaluation
(Equation 13). TP (True Positive) represents the number of samples
with OCRs labeled as positive, and FN (False Negative) represents
the number of samples with closed chromatin regions labeled as
positive. Besides, we also use AUC and AURPmetrics to evaluate the
model’s performance. AUC is the area under the ROC curve, and
AUPR is the area under the PR curve. Both of them indicate the
classification ability of the model.

Sensitivity � TP

TP + FN
. (13)

The dataset used in this paper is provided by (Snyder et al., 2016)
and stored in the National Center for Biotechnology Information
(NCBI) database with the accession number SRR2130051, which is
from a healthy population with an average sequencing depth of 20x.
Although the number of individual samples for cfDNA-seq of the
dataset is small, it is still sufficient for training deep learning models.
Because each sample contains tens of chromosomes, the dataset used
in this paper is substantial, and the number of available training
samples is in the thousands.

Since chromatin accessibility is related to gene expression levels,
when a gene region is in the state of transcription or replication, its
nucleosome will be shed, and this chromatin region will be in the
open state. Therefore, for the training set, we select the highly
expressed housekeeping genes as the positive samples and non-
genetic regions as the negative samples because gene expressions are
absent in non-genetic regions. It should be noted that since
chromatin accessibility is dynamically changing, positive samples
will inevitably contain negative samples labeled as positive, and
negative samples will also have noisy labels.

Our training samples are the 2-kbp regions around the gene
transcription start site and any 2-kbp regions in the non-genetic
regions. Chromosomes 2-7 are used for training, and chromosome
1 is used for testing. We keep the number of positive and negative
samples the same. The amount of the training set is 2,144.

For test set, we also selected highly expressed housekeeping genes as
positive samples and non-genetic regions without gene expression as
negative samples. In addition, to exclude gene-specific chance, we also
combined the results of ATAC-seq and DNase-seq experiments and
calculated the overlap percentage of OCRs obtained by OCRFinder and
ATAC-seq or DNase-seq experiments in hematopoietic lineage cells.
This overlap percentage represents the sensitivity of OCRFinder on the
OCRs from ATAC-seq or DNase-seq experiments. We conducted

comparison experiments on three positive test sets: HK_TSS,
Hematopoietic_Lineage_ATAC_OCRs, Hematopoietic_lineage_
DNase_OCRs, and one negative test set Non_Genetic_Regions.
Although there is still some noise in the test set, metrics such as
sensitivity, AUC, and AUPR can also be used to evaluate the model’s
performance as long as the results of the model on the test set are
reasonable.

We used ConvLSTM network and Adam optimizer. The
learning rate was 1e-4, the batch size was 128, the training epoch
was 150, and the warm-up training epoch was 10. This paper’s
results are the average of five random experiments, each with a
different random seed.

4.1 Analysis of sensitivity and false positives
compared with OCRDetector

We compared our method with OCRDetector, and as shown in
Figure 5, our method had higher sensitivity in regions with
housekeeping genes and hematopoietic lineage cells. And our
method detected a much lower percentage of OCRs in non-
genetic regions than OCRDetector, indicating that our method is
able to suppress false positives while detecting more true positives.

We conducted comparative experiments for the classification
performance test between our method and OCRDetector’s random
forest classifier on AUC and AUPR metrics. Figure 6 and Figure 7
show that our method outperforms OCRDetector in both AUC and
AUPR on each test set, indicating that deep learning models with
noisy-label tolerance outperform traditional machine learning
classifiers that rely on manually constructed features.

4.2 Sensitivity analysis of tissue-specific
OCRs based on ATAC-seq and DNase-seq
experiments

ATAC-seq and DNase-seq experiments can locate regions
without nucleosomes to estimate OCRs and provide a confidence
score for each OCR.We can evaluate the performance of OCRFinder
by analyzing the sensitivity of OCRFinder on the OCRs obtained by
the ATAC-seq or DNase-seq experiment. The sensitivity represents
the overlap percentage of OCRs obtained from OCRFinder and
ATAC-seq or DNase-seq experiments.

FIGURE 4
The model structure diagram.
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Combined with the results of the ATAC-seq experiment, we
selected eight tissues, including B cells, heart, brain, leukocytes,
liver, lung, colon, and stomach. Among these tissues, B cells,
leukocytes, and the liver are related to the hematopoietic system.
They contribute most to the plasma cfDNA fragments. In
contrast, the heart, brain, lung, colon, and stomach do not
contribute much to cfDNA fragments. According to the
confidence score provided by the ATAC-seq experiment, we
divided these tissue-specific OCRs into six confidence intervals,
0–50, 50–100, 100–200, 200–300, 300–500, and above 500. Then
we performed sensitivity tests on these OCRs. Figure 8 shows the
sensitivity of OCRFinder at different confidence intervals, and
the following conclusions can be reached:

1) With the increasing confidence score of OCRs, OCRFinder can
detect more and more OCRs, and the sensitivity gradually increases
from 30% to 99%. This is because OCRFinder can only detect truly
opened OCRs, but the number of truly opened OCRs with low

confidence levels is small. The results of OCRFinder are consistent
with the results of ATAC-seq experiments.

2) OCRFinder can detect more OCRs in B cells, leukocytes, and the
liver. And in these tissues, the sensitivity can vary greatly as the
confidence score increases. Because these tissues contribute more
to cfDNA than other tissues (Sun et al., 2019), the characteristic
patterns of cfDNA fragments are greater. Therefore, OCRFinder
is more sensitive to these regions.

The same conclusion can be drawn combined with the results of
the DNase-seq experiment (Supplementary Figure S4):

1) The sensitivity of OCRFinder increases significantly as the
confidence scores of OCRs become larger, from a minimum
of 7% to an increase to a maximum of 80%.

2) At the same confidence interval, OCRFinder is more sensitive to
OCRs in hematopoietic spectrum cells such as B cells, T cells, and
hepatocytes.

FIGURE 5
Sensitivity comparison between OCRFinder and OCRDector using different test sets.

FIGURE 6
The ROC curves of OCRFinder andOCRDetector’s classifier using different test sets. (A) The ROC curves of OCRFinder and OCRDetector’s classifier
on HK_TSS test set. (B) The ROC curves of OCRFinder and OCRDetector’s classifier on Hematopoietic_Lineage_ATAC_OCRs test set. (C) The ROC
curves of OCRFinder and OCRDetector’s classifier on Hematopoietic_Lineage_DNase_OCRs test set.
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The sensitivity results of OCRFinder in tissue-specific OCRs are
highly consistent with the results of ATAC-seq and DNase-seq
experiments, indicating that OCRFinder’s results are reliable.

4.3 Comparison experiment with other ML
models

In order to verify the necessity and effectiveness of the algorithm
in this paper, we also conducted comparison experiments between
OCRFinder and other machine learning models. Supplementary
Figure S5 and Supplementary Figure S6 show the ROC curves and
PR curves of the ConvLSTM network with the OCRFinder training
framework and the same network with normal training by CE loss. It
can be seen that the AUC and AUPR of the model with the
OCRFinder training framework are higher than the results of the

normal trained model, which illustrates the effectiveness of
OCRFinder training.

Table 1 shows the sensitivity results of the model with the
OCRFinder training framework and the same model with normal
CE-loss training. The sensitivities of deep learning models using the
OCRFinder training framework in housekeeping genes and
hematopoietic Lineage are higher than those of the normally
trained models with CE Loss. In the non-genetic regions, models
with the OCRFinder training framework have lower sensitivities.
Because gene expression is not present in the non-genetic regions
and OCRs are rare, the number of OCRs detected in these regions
should be as low as possible. The results show that OCRFinder can
have lower false positives while maintaining high sensitivity.

As shown in Table 2, the AUC and AUPR of deep learning
models using the OCRFinder training framework are higher than
the results of the normally trained model with CE loss, indicating

FIGURE 7
The PR curves of OCRFinder and OCRDetector’s classifier using different test sets. (A) The PR curves of OCRFinder and OCRDetector’s classifier on
HK_TSS test set. (B) The PR curves of OCRFinder and OCRDetector’s classifier on Hematopoietic_Lineage_ATAC_OCRs test set. (C) The PR curves of
OCRFinder and OCRDetector’s classifier on Hematopoietic_Lineage_DNase_OCRs test set.

FIGURE 8
The sensitivities of OCRFinder on OCRs from ATAC-seq experiment.
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models with the OCRFiner training framework have better
classification performance.

In addition, according to (Snyder et al., 2016; Sun et al., 2019; Ulz
et al., 2019;Wang et al., 2021), sequencing coverage,WPS score, and the
density of cfDNA heads and tails were used as four features and trained
with traditional machine learning models to identify OCRs and
compared with the same models using 300 features extracted by
CNN. The results showed that the manually constructed features
were slightly better than those extracted by CNN in sensitivity
(Table 1), which may be due to the fact that CNN extracted too
many features and the information was redundant. These four
features are obtained through reliable experimental observation and
analysis. Therefore, to further improve the classification ability of

models, these four features were added together as an additional
input to the network to obtain the final OCRFinder. The final
OCRFinder model shows superior performance in sensitivity, AUC,
and AUPR metrics (Table 1; Table 2).

To further explore the classification ability of OCRFinder, we
conducted comparison experiments on the classification boundaries
for OCRFinder and its base model. The base model is normally trained
by CE loss and shares the same network structure as OCRFinder. The
network uses the sigmoid function as the activation function in the last
layer of the model, outputs a probability score of the opening level of
each OCR, and ranks them from smallest to largest based on these
scores. Supplementary Figure S7 shows the results of OCR detection in
housekeeping genes and hematopoietic genealogies by using

TABLE 1 The sensitivity results of different ML models.

Models OCRs of non-genetic
regions

OCRs of
HK_TSS

OCRs of hematopoietic lineage by
ATAC-seq

OCRs of hematopoietic lineage by
DNase-seq

CNN-CE loss 7.03 93.77 79.88 69.20

CNN-OCRFinder 6.47 95.12 81.22 69.81

ConvLSTM-CE loss 12.08 92.20 79.94 68.94

ConvLSTM-OCRFinder 7.33 93.71 80.52 69.28

SVM 11.02 94.04 81.76 70.75

SVM-CNN-Encoder 7.48 93.93 80.47 69.60

RandomForest 9.77 94.31 81.40 69.20

RandomForest-CNN-
Encoder

6.49 93.98 79.58 68.27

OCRFinder-base-CE
loss

6.39 94.31 81.26 71.19

OCRFinder 6.09 95.01 82.5 71.31

The bold text represents the better value in each column, for each two rows.

TABLE 2 The AUC and AURP results of different ML models.

Models OCRs of HK_TSS OCRs of hematopoietic lineage
by ATAC-seq

OCRs of hematopoietic lineage
by DNase-seq

AUC(%) AUPR(%) AUC(%) AUPR(%) AUC(%) AUPR(%)

CNN-base with CE loss 97.09 97.53 93.56 93.74 88.09 89.27

CNN-OCRFinder 97.43 97.89 94.15 94.07 88.59 89.39

ConvLSTM-base with CE loss 94.80 91.62 90.48 88.71 84.84 83.83

ConvLSTM-OCRFinder 97.14 95.27 92.81 92.42 87.13 87.59

SVM 96.55 92.34 91.69 90.93 85.58 85.50

SVM-CNN-Encoder 96.42 97.13 92.58 93.25 81.11 88.64

RandomForest 96.27 91.80 90.82 90.67 83.70 84.89

RandomForest-CNN-Encoder 96.99 96.88 93.04 93.49 87.27 89.08

OCRFinder-base 97.02 96.88 92.72 93.47 87.37 89.31

OCRFinder 97.26 97.27 94.63 94.54 89.02 89.80

The bold text represents the better value in each column, for each two rows.
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OCRFinder and its base model. It can be seen that OCRFinder can
better suppress chromatin closed regions and improve the estimation
scores of OCRs, thus suppressing false positives and improving
sensitivity, implying OCRFinder can obtain sharper, clearer, and
more definite classification boundaries, especially when the noise
rate is greater, i.e., in the chromatin open regions of hematopoietic
lineages obtained from ATAC-seq experiments.

4.4 Comparison experiment with other
noisy-label-learning algorithms

To evaluate the noisy-label-learning ability of OCRFinder in the
OCR-estimation problem, we selected several representative noisy-
label-learning algorithms in the image-classification field, applied
them to the OCR-estimation problem, and conducted comparative
experiments with OCRFinder.

Table 3 shows the results of the comparison experiments.
OCRFinder can show superior performance both in the
housekeeping-gene regions and hematopoietic-genealogy regions,
while other noisy-label learning algorithms have poor classification
performance on OCR data, which we analyze may be due to the
following reasons:

1) Co-teaching, Sel-CL, and DivideMix are sample-selection
methods, but they cannot be directly used in the OCR

estimation problem. Co-teaching only selects clean samples
for updating models and does not use dirty samples well. For
Sel-CL and DivideMix, the calculation of division thresholds
does not take into account the characteristics of OCR data.

(2) ERL is a loss-sensitive method. However, its regularization method
has limitations and is only suitable formore complex image datasets,
and will still overfit to noisy labels in OCR data.

4.5 Ablation study

We have studied the effects of removing different components to
provide insights into what makes OCRFinder successful.
Specifically, we tested the effects of.

• The base model with standard CE-loss training.
• The OCRFinder model using only CE loss in the pre-training
stage.

• The OCRFinder model without the co-training strategy.
• The OCRFinder model without the ensemble strategy.
• The OCRFinder model without adopting the semi-supervised
strategy.

The results are shown inTable 4, wherewe find that each component
contributes to the performance of OCRFinder. The overfitting of noisy
labels in the pre-training period will affect the following sample selection

TABLE 3 The AUC and AUPR results of different noisy-label-learning algorithms.

Algorithms OCRs of HK_TSS OCRs of hematopoietic lineage
by ATAC-seq

OCRs of hematopoietic lineage
by DNase-seq

AUC(%) AUPR(%) AUC(%) AUPR(%) AUC(%) AUPR(%)

Co-teaching Han et al. (2018) 96.12 93.13 90.18 88.99 81.34 85.18

ERL Liu et al. (2020) 88.77 84.02 85.41 82.88 80.49 78.34

DivideMix Li et al. (2020) 63.89 77.40 63.24 77.53 61.96 76.41

Sel-CL Li et al. (2022) 50.42 75.38 50.20 74.94 50.15 74.90

CNN-OCRFinder 97.43 97.89 94.15 94.07 88.59 89.39

The bold text represents the maximum value of each column.

TABLE 4 The AUC and AUPR results of different methods.

Methods OCRs of HK_TSS OCRs of hematopoietic
lineage by ATAC-seq

OCRs of hematopoietic
lineage by DNase-seq

AUC(%) AUPR(%) AUC(%) AUPR(%) AUC(%) AUPR(%)

Base model with CE Loss 97.02 96.88 92.72 93.47 87.37 89.31

Pretraining with CE Loss 97.21 96.98 94.47 94.28 88.93 89.61

OCRFinder without co-training 97.18 96.45 94.23 94.11 88.69 89.44

OCRFinder without ensemble learning 97.25 95.85 94.22 93.84 88.65 89.15

OCRFinder without semi-supervised learning 96.86 95.20 94.15 93.70 88.57 88.92

OCRFinder 97.26 97.27 94.63 94.54 89.02 89.80

The bold text represents the maximum value of each column.
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in the training period. Co-training of twomodels can avoid the overfitting
caused by a single model in data cleaning and model training. Ensemble
learning can strengthen the results of data cleaning. And semi-supervised
learning can make full use of the entire training set.

5 Discussion and conclusion

Feature construction is the bottleneck of OCR estimation problem,
and the existing methods are based on manual construction of features,
which is subjective and limited. Automatic feature extraction and
classification based on neural networks will face the problem of noisy
labels in OCR dataset for its dynamic change characteristics.

This paper proposes open chromatin region finder (OCRFinder),
which mainly improves the model’s performance by addressing the
interference of noisy labels. The key idea of OCRFinder is to integrate
ensemble and semi-supervised learning into noisy label learning to obtain
robustness to noisy labels, considering the characteristics of cfDNA-seq
data. These improved components have proven their necessity and
effectiveness in ablation experiments. Specifically, compared to
OCRDetector, OCRFinder has higher sensitivity of 95.01% and
82.50% in highly expressed housekeeping genes and hematopoietic
spectrum regions, while it has lower false positives of 6.08% in non-
genetic regions. Compared with the classifier of OCRDetector,
OCRFinder was able to obtain higher AUC and AUPR results on the
ROC curve and PR curve. Moreover, the sensitivity estimation in tissue-
specific regions conforms to the results of OCR confidence obtained by
ATAC-seq and DNase-seq experiments. Besides, the comparative
experiments with other noisy label learning algorithms illustrate that
noisy label learning in the field of machine learning cannot be directly
applied to the chromatin open region estimation problem, and the
proposed OCRFinder is necessary. The idea of OCRFinder can also
be applied to the study of solving label-unknown or label-ambiguous
problems in other bioinformatics fields, providing a promising idea for
solving costly annotation problems for biomedical samples.

Different cancers have different nucleosome arrangement patterns,
cancer-related OCRs has different patterns in different cancers (Sun
et al., 2019). The current OCRFinder is a binary classification model for
discriminating the presence of OCR. In the future, we need to improve
theOCRFinder into a regressionmodel for estimating the degree ofOCR
openness to provide help and support for cancer analysis.
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