
Identification of shared biological
features in four different lung cell
lines infected with
SARS-CoV-2 virus through
RNA-seq analysis

Xiaoxi Zhang1, Seungjun Ahn1,2, Peihua Qiu1 and Somnath Datta1*
1Department of Biostatistics, University of Florida, Gainesville, FL, United States, 2Department of
Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, United
States

The COVID-19 pandemic caused by SARS-CoV-2 has resulted in millions of
confirmed cases and deaths worldwide. Understanding the biological
mechanisms of SARS-CoV-2 infection is crucial for the development of
effective therapies. This study conducts differential expression (DE) analysis,
pathway analysis, and differential network (DN) analysis on RNA-seq data of
four lung cell lines, NHBE, A549, A549.ACE2, and Calu3, to identify their
common and unique biological features in response to SARS-CoV-2 infection.
DE analysis shows that cell line A549.ACE2 has the highest number of DE genes,
while cell lineNHBE has the lowest. Among theDE genes identified for the four cell
lines, 12 genes are overlapped, associated with various health conditions. The
most significant signaling pathways varied among the four cell lines. Only one
pathway, “cytokine-cytokine receptor interaction”, is found to be significant
among all four cell lines and is related to inflammation and immune response.
The DN analysis reveals considerable variation in the differential connectivity of
the most significant pathway shared among the four lung cell lines. These findings
help to elucidate the mechanisms of SARS-CoV-2 infection and potential
therapeutic targets.
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1 Introduction

As of 30 April 2023, the coronavirus disease 2019 (COVID-19) pandemic caused by
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to more than
765 million confirmed cases and nearly 7 million deaths worldwide, reported to the World
Health Organization (WHO). It’s reported that SARS-CoV-2 infection is similar to other
respiratory infections such as SARS-CoV and MERS-CoV, which caused outbreaks in
Southern China in 2003 and Saudi Arabia in 2012, respectively (Prompetchara et al., 2020).
This similarity is attributed to the fact that all three viruses belong to the coronavirus family
(Pustake et al., 2022). Genomic sequencing has shown that SARS-CoV-2 shares
approximately 79% similarities with SARS-CoV and 50% similarities with MERS-CoV.
Recent research indicates that the identifications of molecular mechanisms (Zhang et al.,
2021a), cellular functions (Alipoor et al., 2021), and biological network activities (Habibi
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et al., 2021; Guo et al., 2022) are important to better understand the
intricacies of disease biology and potentially lead to new therapies in
treating COVID-19. The virus can invade cellular processes by
moving proteins and genetic material from cells, resulting in the
formation of new virus particles (Cohen, 2016). With regards to the
SARS-CoV-2 virus, it has a detrimental effect on both lung epithelial
cells (John et al., 2021) and lung adenocarcinoma cell lines (Stewart
et al., 2021).

Our research of interest lies in comparing these four distinct
lung cell lines: normal human bronchial epithelial cell line (NHBE),
A549 lung adenocarcinoma cell line (A549), A549 expressing
angiotensin-converting enzyme 2 receptors (A549.ACE2), and
Calu-3 lung epithelial cell line (Calu3). This comparison is driven
by the RNA-seq data (Blanco-Melo et al., 2020), providing
information solely for these four specific lung cell lines. Rayner
et al. (2019) state that NHBE, which is the primary lung epithelial
cell, is widely employed as in vitro lung model for assessing the
fundamental events that contribute to respiratory diseases. Blanco-
Melo et al. (2020) and Vishnubalaji et al. (2020) indicate that
A549 has a relatively low susceptibility to SAR-CoV-2 infection.
Nevertheless, if A549 expresses angiotensin-converting enzyme 2
(ACE2) receptors, it can become compatible with SARS-CoV-2, as
the exogenous expression of ACE2 allows SARS-CoV-2 to replicate
in A549 cell (Blanco-Melo et al., 2020). In our study, we utilize
A549.ACE2 to denote the A549 that has been modified to express
ACE2 receptors. Calu3 is suitable for investigating innate immune
responses to SARS-CoV-2 infection, as it reproduces IFN induction
when exposed to SARS-CoV-2 (Rebendenne et al., 2021). These cells
are of great significance in the study of SARS-CoV-2 infections and
in the exploration of medical strategies through real-life
experiments.

Recent studies related to COVID-19 disease have shed light on
various aspects of the disease, including its pathogenesis,
mechanisms of action, and potential therapeutic interventions.
Here are some key findings. Draghici et al. (2021) examined the
mechanisms of SARS-CoV-2 infection in NHBE, A549, and
COVID-19 lung tissues. The analysis identified
methylprednisolone as a promising therapy, which was confirmed
by the survival analysis of clinical data. Blanco-Melo et al. (2020)
conducted a comparison of the transcriptional response to the
SARS-CoV-2 virus with other respiratory viruses such as
influenza A virus (IAV) and respiratory syncytial virus (RSV).
They concluded that the hallmark features of COVID-19 disease
are reduced innate antiviral defenses and exuberant inflammatory
cytokine production. Wu et al. (2021) conducted pathway
enrichment analysis using two types of lung epithelial cells
infected with SARS-CoV-2: A549 cells with overexpression of
ACE2 and NHBE cells. They found that the main cause of the
inability to eliminate SARS-CoV-2 is immune dysregulation and
interferon malfunction. Chen et al. (2021) identified common
mechanisms between SARS-CoV-2 infection and human cancers
by conducting differential expression (DE) analysis and pathway
analysis on three different lung cell lines (NHBE, A549, and Calu3)
and performing a meta-analysis across various datasets. Daamen
et al. (2021) investigated the pathogenesis of COVID-19 in COVID-
19 patients by analyzing the lung, blood, and airway responses and
discovered the dynamic nature of the inflammatory response to
SARS-CoV-2. They also proposed various potential therapeutic

suggestions based on their findings. A549 cells, lacking
ACE2 expression, could still be infected by SARS-CoV-2,
although its replication of SARS-CoV-2 is significantly higher in
A549.ACE2 cells (Yang et al., 2020).

Although many studies have investigated COVID-19 using
RNA-seq data from different cell lines, few have examined the
common and unique biological characteristics among NHBE,
A549, A549.ACE2, and Calu3 cell lines based on DE analysis,
pathway analysis, and differential network (DN) analysis.
Additionally, most of these studies have used only one approach
for DE analysis, which could lead to biased results. In this study, we
conduct a comparative analysis of the four different lung cell lines,
namely, NHBE, A549, A549.ACE2, and Calu3. Our approaches
involve DE analysis, pathway analysis, and DN analysis to
identify both unique and common disease mechanisms among
these cell lines. The structure of this paper is as follows. In
Section 2, we provide a detailed description of the dataset used
in our analysis, as well as our analysis plan and suggested statistical
models. The results of the DE analysis, pathway analysis, and DN
analysis are presented in Section 3. Finally, in Section 4, we provide
some concluding remarks.

Our research project falls within the scope of the Disease Maps
to Modeling COVID-19 research topic at the Critical Assessment of
Massive Data Analysis (CAMDA) Annual Conference 2022.

2 Materials and methods

2.1 RNA-seq data

The RNA-seq data was obtained from the Gene Expression
Omnibus (GEO) under the accession number GSE147507
(Blanco-Melo et al., 2020). To be specific, we incorporated
Series1, Series2, Series5, Series6, Series7, and Series16 from
the dataset. The dataset consists of 21797 genes and includes
independent biological triplicates of four different human lung
cell lines: primary human lung epithelium cell line (NHBE),
transformed lung alveolar cell line (A549), transformed lung
alveolar transduced with a vector expressing human ACE2
(A549.ACE2), and transformed lung-derived Calu-3 cells
(Calu3), with mock treatment and SARS-CoV-2 infection as
our research interest. Genes with low expression are filtered out
based on a cutoff of median log2 transformed counts per gene per
million mapped reads (CPM). After removing genes with a
median log2(CPM) below −1, only 13111 genes are kept for
the subsequent analysis. The right panel in Supplementary
Figure S1 shows the normalized histogram of median
log2(CPM) after removing the lowly expressed genes, which is
in contrast to the highly left-skewed histogram before the
filtering process, that is, shown in the left panel of
Supplementary Figure S1.

2.2 Analysis plan

The study is designed to compare the mock-treated group and
SARS-CoV-2-infected group in four different lung cell lines (NHBE,
A549, A549.ACE2, and Calu3) with the aim of identifying singular

Frontiers in Genetics frontiersin.org02

Zhang et al. 10.3389/fgene.2023.1235927

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1235927


and common DE genes, influenced pathways, and DN in these cell
lines infected with the SARS-CoV-2 virus.

For A549.ACE2, the independent biological triplicates are also
mock-treated or SARS-CoV-2-infected with or without Ruxolitinib
(Rux) pre-treatment. Rux is verified as an effective and safe
treatment for COVID-19 patients (La Rosée et al., 2020). In our
analysis, we treat the independent biological triplicates infected with
SARS-CoV-2 with and without Rux pre-treatment as one group
based on the following two reasons: 1) The multidimensional scaling
(MDS) and heatmap are techniques for visualizing the distances
between two groups (cf., Mead, 1992; Wilkinson and Friendly,
2009). Both the MDS plot and the heatmap show a tiny
difference between the independent biological triplicates infected
with SARS-CoV-2 with and without Rux pre-treatment (cf.,
Supplementary Figures S2, S3). 2) Comparing DE genes between
the mock-treated group and SARS-CoV-2-infected with Rux group
and DE genes between the mock-treated group and SARS-CoV-2-
infected without Rux group, there are negligible differences between
these two lists of DE genes (cf., Supplementary Tables S1, S2).

A549.ACE2 is a modified version of A549 cells that expresses
ACE2, the receptor for SARS-CoV-2 viral entry (Samavati and Uhal,
2020). In our study, we treat the independent biological triplicates of
A549.ACE2 and A549 as distinct groups. We observe that similar to
the analysis of Rux treatment, the difference between the
independent biological triplicates of A549.ACE2 and A549 is
smaller than other pairs of cell lines based on the MDS plot and
heatmap. This is reasonable given that A549.ACE2 is a variant of
A549. However, there are a small number of overlapping DE genes
between the mock-treated and SARS-CoV-2-infected groups in both
A549.ACE2 and A549 (cf., Supplementary Figures S2, S3;
Supplementary Tables S3, S4).

2.3 Statistical methods

The objective of this study is to identify the singular and
common DE genes, influenced pathways, and DN in the four
lung cell lines (NHBE, A549, A549.ACE2, and Calu3) infected
with the SARS-CoV-2 virus. All DE analysis, Pathway analysis,
and DN analysis are performed based on the four pairs of
comparison between the mock-treated group and SARS-CoV-2-
infected group in each of the four cell lines (NHBEMock vs.
NHBESARS.CoV.2, A549Mock vs. A549SARS.CoV.2,
A549.ACE2Mock vs. A549.ACE2SARS.CoV.2, and Calu3Mock vs.
Calu3SARS.CoV.2). Below, we outline the statistical methods used
for the analysis of DE genes, pathways, and DN. All statistical
analyses are conducted using R version 4.0.2 (R Foundation for
Statistical Computing, Vienna, Austria).

2.3.1 Differential expression analysis
DE genes are defined as genes that exhibit a difference in

expression between groups. In the fields of clinical trials and
drug development, DE genes play an important role in the
understanding of underlying disease mechanisms, the
identification of potential biomarkers, the discovery of
therapeutic targets, and the generation of gene signatures for
diagnostic purposes. In our study, the DE analysis is conducted
to find the DE genes in the four lung cell lines (NHBE, A549,

A549.ACE2, and Calu3) infected with the SARS-CoV-2 virus. To
prevent bias and validate the results of DE genes, we use multiple
methods rather than relying on a single approach. Three commonly
used R packages for DE analysis are utilized in our analysis, which
are DESeq2 (Love et al., 2014), edgeR (Robinson et al., 2010), and
limma (Ritchie et al., 2015), respectively. While these three methods
have similar goals, there are some key differences in the
normalization methods and statistical models that they use.

Three different normalizationmethods are utilized in these three
DE methods (Dillies et al., 2013). The first method, employed by
DESeq2, is called size factor normalization, which involves dividing
the counts for each gene by a size factor that accounts for differences
in library size. The second method, used by edgeR, is called trimmed
mean of M-values (TMM), which adjusts for differences in library
size and composition by scaling the counts for each sample to ensure
that the average log-fold change between samples is zero. Finally,
limma employs a method called quantile normalization, which
adjusts for differences in library size and composition by
matching the distribution of expression values across samples. As
for statistical modeling techniques employed in this study, DESeq2
utilizes the negative binomial (a.k.a. gamma-poisson) distribution.
Similarly, edgeR employs negative binomial-based models, with the
addition of an empirical Bayes procedure to shrink the dispersions.
Limma, on the other hand, utilizes a linear modeling-based method
and incorporates an empirical Bayes approach to borrow
information between genes. To adjust p-values for multiple
comparisons, the Benjamini–Hochberg correction (Benjamini and
Hochberg, 1995) is applied to all three differential expression
methods and the significance threshold is set at 0.05.

After obtaining the ordered lists of DE genes for each of the four
cell lines (NHBE, A549, A549.ACE2, and Calu3) by different DE
methods (i.e., DESeq2, edgeR, and limma), the R package
RankAggreg (Pihur et al., 2009) can be employed to aggregate
these ordered lists based on the ranks using the Genetic
Algorithm (Golberg, 1989).

2.3.2 Pathway analysis
DE analysis has a limitation that it can lead to the identification

of a large number of DE genes between sample groups, making it
challenging to apply visualization techniques and interpret in the
biological context about these genes. To extract maximum
information from RNA-seq data and gain a better understanding
of the biological context of these DE genes and their potential role in
disease or other biological processes, researchers can identify the
signaling pathways affected by the observed changes. Signaling
pathways consist of a group of genes that provides information
about the fundamental cellular mechanisms and interactions
required for the development of morphology and organs (Sanz-
Ezquerro et al., 2017). In our study, the R package SPIA (Tarca et al.,
2009) is utilized to examine the pathway topology, which includes
listing the component genes and illustrating their interactions within
the pathway (García-Campos et al., 2015). SPIA considers two pieces
of evidence to evaluate the impact of DE genes on signaling
pathways. Firstly, a “classical” pathway enrichment analysis is
used to assess the number of DE genes observed in a given
pathway. Secondly, the actual perturbation (activation or
inhibition) of a given pathway under a specific condition is
measured. Here, perturbation denotes the disturbance that
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induces changes in the gene-gene association. Human signaling
pathways from the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database (Ogata et al., 1999), which is a knowledge open-
source database for biological pathways, are used for this analysis. It
should be mentioned that we consider pathways with an adjusted p-
value below 0.05 to be statistically significant.

2.3.3 Differential network analysis
DN analysis is a method to identify group-specific changes in

measures of differential connectivity (DC) by comparing networks
between different sample groups (Gill et al., 2010; Grimes et al.,
2019). In the analysis of RNA-seq data, the RNA-seq co-expression
network is a type of differential network (Ballouz et al., 2015; Grimes
et al., 2019), which comprise nodes representing genes and edges
representing gene-gene associations (Mitra et al., 2013). The changes
in the topology between two networks may suggest variations in
cellular activity (Lu et al., 2007). In our study, we utilize the R
package dnapath (Grimes et al., 2019) to perform DN analysis that
integrates gene regulatory pathways into a DN analysis. The dnapath
package can identify the DC pathways, DC genes, and DC edges by
computing DC scores, with p-values calculated via monotonized
permutation tests. The DN analysis is performed on pathways with
sizes ranging from 10 to 200 in our study. The pathway information
used in our analysis is obtained from the Reactome database (Jassal
et al., 2020), which is a publicly available resource of biological
pathways. The dnapath package is applied to the RNA-seq data from
the literature (Ahn et al., 2021) to investigate the influence of tumor
purity (TP) on gene expression data.

3 Results

3.1 Differential expression analysis

Table 1 displays the results of the three distinct DE methods,
DESeq2, edgeR, and limma, for identifying DE genes among a total of
13111 genes in the four lung cell lines (NHBE, A549, A549.ACE2,
and Calu3). The percentage of DE genes for each cell line is
presented in the parenthesis in each entry of the table. It is
worth noting that these methods exhibit minor differences,
except for the limma method, which can detect almost 1.5 times
as many DE genes for A549 in comparison with DESeq2 or edgeR.
Among the four cell lines, NHBE has the lowest percentage of DE
genes, which is approximately 0.2%, whereas A549.ACE2 has the

highest percentage of DE genes, around 60%, which is consistent
with the fact that ACE2 serves as the receptor for SARS-CoV-2 viral
entry (Samavati and Uhal, 2020).

Given such a large number of DE genes, placing emphasis on the
most biologically relevant genes can lead to more valuable insights in
practical applications such as discovering biomarkers and potential
therapeutic targets. Therefore, a list of the top 10 DE genes for each
cell line using the three different DE methods is generated and
presented in Table 2. It can be seen from the table that there is a little
variation in the top 10 DE genes identified for each cell line by
different DE methods. RankAggreg is then used to combine the
ranked lists of DE genes from each cell line, based on the ranks
obtained from the three DE methods via the Genetic Algorithm
(Table 2).

Based on the DESeq2 results, we plot a Venn diagram (cr.,
Figure 1) to visualize the overlapping DE genes among the four lung
cell lines, NHBE, A549, A549.ACE2, and Calu3. The analysis shows
that there are 14 overlapping DE genes between A549 and NHBE,
26 overlapping DE genes between A549.ACE2 and NHBE, and
25 overlapping DE genes between Calu3 and NHBE. Moreover,
there are 1086 overlapping DE genes between A549 and
A549.ACE2, 816 overlapping DE genes between A549 and Calu3,
and 3055 overlapping DE genes between A549.ACE2 and Calu3.
Notably, 12 DE genes are shared among all four cell lines, including
NHBE, A549, Calu3, and A549.ACE2. These genes are SAA2,
BIRC3, TNFAIP2, IL32, CSF3, C1QTNF1, C3, KYNU, CXCL5,
CXCL3, VNN1, and SOD2. These genes have been identified that
are associated with both severe COVID-19 and various other health
conditions. SAA2, for example, is linked to inflammation and tissue
(e.g., cancer cell lines) injury (Malle et al., 2009) and has been
identified as a biomarker of severe COVID-19 and poor prognosis
(Li et al., 2020). BIRC3 is an upregulated gene, also verified in our
analysis, in glioblastoma and leads to therapeutic resistance due to
its critical role in the NF-κB signaling pathway (Wang et al., 2016). It
has also been identified as one of the six common hub proteins
involved in SARS-CoV-2 infection and the risk factors related to
COVID-19 (Nain et al., 2021). Additionally, CXCL3, a member of
the CXC-type chemokine family, is known to be involved in the
development and progression of various types of cancer (Lou et al.,
2023) and has also been linked to COVID-19 (Chua et al., 2020).

For more comprehensive information about DE genes,
including the number of upregulated and downregulated genes
and the complete table regarding the results of the top
10 significant DE genes for each cell line type, along with the
corresponding volcano plots, please refer to Supplementary
Tables S5–S9 and Supplementary Figure S4.

3.2 Pathway analysis

Based on the DE genes identified by DESeq2 for each lung cell
line, SPIA is used to investigate the significant signaling pathways for
each cell line. The top 10 significant signaling pathways for each lung
cell line, as determined by SPIA, are presented in Tables 3–6. These
pathways play crucial roles in the functioning of the four lung cell
lines, highlighting their potential relevance in respiratory infections
and diseases. Furthermore, Figure 2 displays the corresponding
SPIA two-way evidence plots.

TABLE 1 Numbers of detected DE genes in the four lung cell lines (NHBE, A549,
A549.ACE2, and Calu3) using the three DE methods (DESeq2, edgeR, and
limma). The numbers in parentheses denote the percentages of detected DE
genes for each cell line among a total of 13111 genes.

Cell lines Methods

DESeq2 edgeR limma

NHBE 34 (0.3%) 27 (0.2%) 25 (0.2%)

A549 1794 (13.7%) 1561 (11.9%) 2605 (19.9%)

A549.ACE2 7926 (60.5%) 7728 (58.9%) 7614 (58.1%)

Calu3 4266 (32.5%) 4082 (31.1%) 4481 (34.2%)
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Based on the False Discovery Rate (pGFdr) cutoff of 0.05, only
three pathways are identified as significant in the NHBE lung cell
type (cf., Table 3 and top-left panel in Figure 2), “Cytokine-cytokine
receptor interaction” and “Chemokine signaling pathway” are
associated with inflammation and immune response (Turner
et al., 2014), and are known to be impacted by SARS-CoV-
2 infection (Costela-Ruiz et al., 2020). Meanwhile, “Pertussis” is
linked to common symptoms of COVID-19 disease, such as
paroxysmal coughing with whooping and post-tussive vomiting
(De Gouw et al., 2011).

The lung cell type A549 is analyzed to identify the top
10 significant signaling pathways (cf., Table 4 and top-right panel
in Figure 2). Among these pathways, “Cytokine-cytokine receptor
interaction” is not only the most significant for A549 but also the
same as the top one for NHBE. Furthermore, “Rheumatoid arthritis”
is a pathway associated with bone destruction (Takayanagi, 2009)
and linked to severity and risk of COVID-19 (Dewanjee et al., 2021).
Another pathway, “MAPK signaling pathway”, is crucial for various
cellular processes such as proliferation, differentiation,
development, inflammatory responses, and apoptosis (Zhang and
Liu, 2002), and can be provoked by SARS-CoV-2 infection (Grimes
and Grimes, 2020).

For the lung cell type A549.ACE2 (cf., Table 5 and bottom-left
panel in Figure 2), the top three significant signaling pathways are
identified as follows. The “Circadian rhythm—mammal” pathway
controls the internal biological clock that enables the sustenance of
24-h physiological and behavioral processes in organisms
(Takahashi, 2017), which is shown to be perturbated by SARS-
CoV-2 infection (Liu et al., 2021). Landles and Bates (2004)
described “Huntington’s disease” as an autosomal-dominant
neurodegenerative disorder that primarily affects medium spiny
striatal neurons (MSN) and leads to symptoms such as motor
dysfunction (e.g., choreiform and involuntary movements),
cognitive decline (e.g., dementia), and psychiatric disturbances
(e.g., personality changes). “Parkinson’s disease” is a
neurodegenerative movement disorder (Abou-Sleiman et al.,
2006) that is, related to the third significant signaling pathway.
Notably, several recent studies have linked COVID-19 disease to the
pathways named after these diseases. (Ellul et al., 2020; Rahman
et al., 2021).

Among the top 10 significant signaling pathways identified for
the lung cell type Calu3 (cf., Table 6; bottom-right panel in Figure 2),
the most significant one is “Influenza A” which is responsible for
annual seasonal flu epidemics and periodic pandemics worldwide

TABLE 2 Top ten DE genes in the four lung cell lines (NHBE, A549, A549.ACE2, and Calu3) using three DE methods (DESeq2, edgeR, and limma), as well as the Rank
Aggregation Method RankAggreg.

Cell lines Methods

DESeq2 edgeR limma RankAggreg

NHBE CXCL5, PLAT CSF3, CXCL5 TNFAIP2, SAA2 CSF3, CXCL5

CSF3, TNFAIP2 TNFAIP2, PLAT IFITM10, SAA1 TNFAIP2, PLAT

ZC3H12A, IFITM10 IFITM10, ZC3H12A ZC3H12A, CSF3 ZC3H12A, IFITM10

BPGM, OLFML2A OLFML2A, BPGM MMP9, BPGM OLFML2A, BPGM

TNIP1, KYNU TNIP1, C1QTNF1 PLAT, TNIP1 TNIP1, MMP9

A549 BTG3, CLDN1 BTG3, CLDN1 BTG3, ANXA3 BTG3, CLDN1

TXNIP, ANXA3 SERPINB7vGAS5 SYNGR3, NT5DC2 ANXA3, GAS5

GAS5, SERPINB7 LAMC2, ANXA3 CLDN1, OD2 LAMC2, SERPINB7

LAMC2, ADM2 TXNIP, SAT1 IRF9, SYTL2 TXNIP, IRF9

NEB, EREG MTHFD2, EREG NEB, MGAT5B NEB, EREG

A549.ACE2 IER5, HIST2H2BE IER5, HIST2H2BE HIST2H2BE,IER5 IER5, HIST2H2BE

EGR1, DUSP8 DUSP8, EGR1 DUSP8, PCF11 DUSP8, EGR1

PCF11, NFKBIE PCF11, NFKBIE BCL3, EPM2AIP1 PCF11, NFKBIE

BCL3, NFKBIA BCL3, ZC3H4 ZC3H4, PPM1D BCL3, ZC3H4

ZC3H4, CCNL1 CCNL1, EGR2 CCNL1, NFKBIA CCNL1, NFKBIA

Calu3 THBS1, DAPP1 THBS1, TNFAIP2 THBS1, TNFAIP2 THBS1, TNFAIP2

TNFAIP2, ADRB2 DAPP1, NUAK2 PTGER4, MB21D2 DAPP1, NUAK2

PLAT, MAP3K8 MAP3K8, PLAT MAP3K8, B4GALT5 MAP3K8, PLAT

NUAK2, B4GALT5 ADRB2, TNF LGALS9, PLAT ADRB2, B4GALT5

TNF, IRS2 B4GALT5, IL12A PTAFR, CTGF TNF, PTAFR
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(Michael et al., 2013) and also related to COVID pandemic (Flerlage
et al., 2021). “Cytokine-cytokine receptor interaction” is also
identified as a significant signaling pathway for Calu3, similar to
NHBE and A549. Additionally, the pathway, “Herpes simplex
infection”, is associated with various symptoms, including
orofacial lesions, infectious blindness, viral encephalitis, genital
lesions, and neonatal encephalitis (Steiner and Benninger, 2013),
and can be triggered by COVID-19 infection (Shanshal and Ahmed,
2021).

Furthermore, Supplementary Figure S5 displays six Venn
diagrams that compare the significant signaling pathways shared
among the four lung cell lines: A549 vs. NHBE, A549.ACE2 vs.
NHBE, Calu3 vs. NHBE, A549 vs. A549.ACE2, A549 vs. Calu3, and
A549.ACE2 vs. Calu3. In addition, Figure 3 illustrates the significant
signaling pathways that overlap among these four lung cell lines.
Only one significant signaling pathway overlaps across these four
lung cell lines, which is the “cytokine-cytokine receptor interaction”
pathway.

3.3 Differential network analysis

DN analysis is conducted on two sets of genes: 1) a total of
13,111 genes and 2) DE genes identified for each lung cell line. The
DE genes are obtained usingDESeq2, and Table 1 shows the number
of DE genes for each cell line: 34 for NHBE, 1794 for A549, 7926 for
A549.ACE2, and 4266 for Calu3.

To determine the DC pathways that are significantly affected by
these genes, we analyze the DN results for both sets of genes
separately. For the entire set of 13,111 genes, we identify the top

ten significant DC pathways for each lung cell line and these results
are presented in Tables 7–10. Meanwhile, for the DE genes, we
obtain the top 10 significant DC pathways for each lung cell line and
these results are shown in Supplementary Tables S10–S13. The DN
analysis results for NHBE and Calu3 show relatively large p-values of
differential connectivity score for each pathway, which could be
attributed to the small sample size of these two cell lines, as each
group only has three replicates (mock vs. SARS-CoV-2 infected). By
examining the significant DC pathways for both sets of genes, we can
gain insight into the specific biological processes that are influenced
by these genes in each lung cell line. This information can help us
better understand the molecular mechanisms underlying the
COVID-19 disease. Based on the outcomes of the DN analysis
conducted on 13,111 genes, the subsequent analysis is performed.

The lung cell line NHBE infected with SARS-CoV-
2 demonstrates three important characteristics (cr., Table 7).
First, Coppinger et al. (2004) reported that “platelet
degranulation” is associated with vascular injury, and it is known
to be dysregulated in response to COVID-19 infection (Zamanian-
Azodi et al., 2021). Second, Varga-Szabo et al. (2009) identified that
“response to elevated platelet cytosolic Ca2+” serves as an event of
platelet degranulation, which is essential for platelet activation in
hemostasis and thrombosis. Third, MacFarlane andWilliams (2004)
revealed that “apoptosis” is related to cell death and manipulated by
SARS-CoV-2 virus to evade its own elimination (Li et al., 2022).

For the lung cell line A549 (cr., Table 8), the twomost significant
DC pathways identified from DN analysis are similar to NHBE,
which are “Platelets degranulation” and “Response to elevated
platelet cytosolic Ca2+”. Additionally, the pathway “Phase II -
Conjugation of compounds” is found to play a crucial role in the

FIGURE 1
A Venn diagram illustrating the overlap of DE genes among the four lung cell lines (NHBE, A549, A549.ACE2, and Calu3) based on the results of
DESeq2.
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detoxification of various xenobiotics, drug metabolism, and
endogenous substrates (Jančová and Šiller, 2012) and be
suppressed by the COVID-19 disease (Hammoudeh et al., 2021).

For the lung cell line A549.ACE2 (cr., Table 9), similar to A549,
the top three significant DC pathways identified from DN analysis
are “Platelets degranulation”, “Response to elevated platelet
cytosolic Ca2+”, and “Phase II—Conjugation of compounds”.

For the lung cell line Calu3 (cr., Table 10), the top significant DC
pathway identified from DN analysis is “Phase II—Conjugation of
compounds”, which is also significant for A549 and A549.ACE2. In
addition, two other DC pathways are also identified as significant.
“Metabolism of nucleotides” is essential to cellular signaling and
energy transduction events (Welin and Nordlund, 2010) and
affected by SARS-CoV-2 virus (Qin et al., 2022). “Purine salvage”
plays a crucial role in energy conservation (Cappiello et al., 1992),
and it is closely related to SARS-CoV-2 replication (Zhang et al.,
2021b).

Figure 4 displays a Venn diagram of the top 100 significant DC
pathways resulting from the DN analysis for the four different lung
cell lines NHBE, A549, A549.ACE2, and Calu3. The overlapping
significant DC pathways identified among these cell lines are
“Intrinsic Pathway for Apoptosis”, “Negative regulation of the
PI3K/AKT network”, “Fatty acid metabolism”, and “DDX58/
IFIH1-mediated induction of interferon-alpha/beta”. “Intrinsic
Pathway for Apoptosis” is mainly linked to immune cell depletion
during COVID-19 disease (Bader et al., 2022) and triggered by cellular
damage or stress, leading to the activation of “apoptosis” pathway
(Krüger and Richter, 2022). “Negative regulation of the PI3K/AKT
network” is associated with growth factors and hormones (Shorning
et al., 2020), and it is known to be activated by SARS-CoV-2 infections
(Farahani et al., 2022). “Fatty acid metabolism” is a crucial component
of human energy metabolism (Vance and Vance, 1996)and is
suggested as a potential target for inhibiting SARS-CoV-2 virus
replication (Tanner and Alfieri, 2021). Finally, “DDX58/IFIH1-

FIGURE 2
SPIA two-way evidence plots for the four lung cell lines: NHBE (top-left), A549 (top-right), A549.ACE (bottom-left), and Calu3 (bottom-right). The
most significant pathways in the experiment are represented by the red dots. The significance is determined bymeasuring the log of pNDE and the log of
pPERT.
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mediated induction of interferon-alpha/beta”, whose production is
influenced by SARS-CoV-2 virus (Feizollahi et al., 2023), is also linked
to Influenza A viruses and Hepatitis C Viruses (Yoneyama and Fujita,
2007).

The network plots (cr. Figure 5) are generated for each of the
four lung cell lines, depicting the differential connectivity of the most
significant DC pathway that they share, “Intrinsic Pathway for
Apoptosis”. This allows us to visually compare the differential
connectivity of this pathway between the different cell lines. As
depicted in Figure 5, there is a considerable variation in the
differential connectivity of the “Intrinsic Pathway for Apoptosis”
across the four lung cell lines. The detailed information about the
nodes and edges of this pathway is available for reference in
Supplementary Tables S14–S21.

Unfortunately, Reactome does not currently have an exact
mapping file to KEGG. Domingo-Fernández et al. (2018)
provided insights on the mapping across different pathway
databases, introducing a method called ComPath. For the KEGG
pathway “cytokine-cytokine receptor interaction”, which is the only
pathway found to be significant among all four cell lines, ComPath
was used to obtain three sub-pathways from Reactome: “IL-6-type
cytokine receptor ligand interactions”, “TNFs bind their
physiological receptors”, and “Chemokine receptors bind
chemokines”. Among these, “IL-6-type cytokine receptor ligand
interactions” was identified as significantly differentially
connected for Calu3, “TNFs bind their physiological receptors”
for A549, A549.ACE2, and Calu3, and “Chemokine receptors
bind chemokines” for NHBE and A549.

TABLE 3 Ten most significant pathways identified by SPIA for the lung cell line NHBE.

Name pSize NDE pNDE tA pPERT pG pGFdr Status

Cytokine-cytokine receptor interaction 117 6 0.00 −11.21 0.00 0.00 0.00 Activated

Chemokine signaling pathway 114 4 0.00 −12.63 0.05 0.00 0.00 Activated

Pertussis 57 3 0.00 1.99 0.53 0.00 0.03 Inhibited

Complement and coagulation cascades 37 2 0.00 −5.12 0.29 0.01 0.10 Activated

Apoptosis 77 2 0.02 4.68 0.16 0.02 0.16 Inhibited

Transcriptional misregulation in cancer 115 3 0.00 0.00 1.00 0.02 0.16 Inhibited

Tuberculosis 125 3 0.00 0.08 0.99 0.03 0.16 Inhibited

Legionellosis 50 2 0.01 0.00 1.00 0.05 0.22 Inhibited

Toxoplasmosis 94 1 0.02 2.52 0.04 0.05 0.22 Inhibited

Rheumatoid arthritis 58 2 0.01 0.00 1.00 0.06 0.22 Inhibited

The columns include the number of genes on the pathway (pSize), the number of differentially expressed (DE) genes on the pathway (NDE), the observed total perturbation accumulation in the

pathway (tA), the probability of observing at least NDE, genes on the pathway using a hypergeometric model (pNDE), the probability of observing a total accumulation more extreme than tA

only by chance (pPERT), the p-value obtained by combining pNDE, and pPERT (pG), the False Discovery Rate (pGFdr), and the direction in which the pathway is perturbed (activated or

inhibited) (status). The columns in the table are arranged in the following order: Name, ID, pSize, NDE, pNDE, tA, pPERT, pG, pGFdr, and status. Pathways with pGFdr, below 0.05 are

considered as significant.

TABLE 4 Ten most significant pathways identified by SPIA for the lung cell line A549.

Name pSize NDE pNDE tA pPERT pG pGFdr Status

Cytokine-cytokine receptor interaction 117 33 0.00 −20.00 0.00 0.00 0.00 Activated

Rheumatoid arthritis 58 20 0.00 −2.21 0.07 0.00 0.00 Activated

MAPK signaling pathway 207 45 0.00 −19.18 0.01 0.00 0.00 Activated

ErbB signaling pathway 76 23 0.00 −20.70 0.07 0.00 0.00 Activated

Focal adhesion 161 38 0.00 −19.11 0.06 0.00 0.01 Activated

Jak-STAT signaling pathway 85 26 0.00 −0.68 0.75 0.00 0.01 Activated

Melanoma 48 16 0.00 −15.98 0.08 0.00 0.01 Activated

Amoebiasis 76 18 0.01 5.57 0.01 0.00 0.02 Inhibited

Natural killer cell mediated cytotoxicity 79 21 0.00 −19.59 0.12 0.00 0.03 Activated

Systemic lupus erythematosus 18 7 0.01 −4.76 0.03 0.00 0.03 Activated

Pathways with pGFdr, below 0.05 are considered as significant.
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4 Discussion

The purpose of this study is to analyze the RNA-seq data of the
four lung cell lines NHBE, A549, A549.ACE2, and Calu3, and
identify their common and unique biological features by
conducting the DE analysis, pathway analysis, and DN analysis
on the data from each cell line.

This study reveals the shared and unique features of DE genes in
the four lung cell lines NHBE, A549, A549.ACE2, and Calu3, using
the R packages DESeq2, edgeR, and limma. The cell line
A549.ACE2 exhibits the highest number of DE genes, while the
cell line NHBE has the lowest, which is consistent with the finding in
the literature (Alipoor et al., 2021). Although there exists some
variation in the results of DE analysis between our study and other
studies, this might be due to differences in data pre-processing and
DE analysis methods. The ordered list of the top 10 DE genes for
each lung cell line is determined by RankAggreg, which combines the
results of the three DE analysis methods. Among the DE genes
identified for the four lung cell lines, 12 genes are overlapped, which

are SAA2, BIRC3, TNFAIP2, IL32, CSF3, C1QTNF1, C3, KYNU,
CXCL5, CXCL3, VNN1, and SOD2. These genes are known to be
associated with COVID-19 disease, which are elucidated in the
recent literature (Malle et al., 2009; Chua et al., 2020; Liang et al.,
2020; Menon et al., 2020; Nunnari et al., 2020; Yang et al., 2020; Fang
et al., 2021; Zinellu and Mangoni, 2021; Bizjak et al., 2022; Jerotic
et al., 2022; Luo et al., 2022; Zamani et al., 2022; Zoodsma et al.,
2022). Out of these twelve genes, SAA2, BIRC3, TNFAIP2, IL32,
CSF3, C3, KYNU, CXCL5, CXCL3, and SOD2 are linked to
inflammation. CSF3, KYNU, and VNN1 are related to the
immune system, while C1QTNF1, C3, and SOD2 are associated
with blood coagulation. Identifying these specific genes associated
with COVID-19 is essential to understand the molecular
mechanisms underlying the disease, which can help researchers
develop potential drug targets for therapeutic interventions to
reduce the severity of COVID-19 and improve patient outcomes.

The study employs SPIA to investigate the significant signaling
pathways in each of the four lung cell lines—NHBE, A549,
A549.ACE2, and Calu3. The number of identified significant

TABLE 5 Ten most significant pathways identified by SPIA for the lung cell line A549.ACE2.

Name pSize NDE pNDE tA pPERT pG pGFdr Status

Circadian rhythm - mammal 20 16 0.06 26.04 0.00 0.00 0.00 Inhibited

Huntington’s disease 151 119 0.00 −2.89 0.43 0.00 0.00 Activated

Parkinson’s diseas 93 77 0.00 9.62 0.29 0.00 0.00 Inhibited

Herpes simplex infection 142 106 0.00 −39.95 0.01 0.00 0.00 Activated

Cytokine-cytokine receptor interaction 117 72 0.45 −70.01 0.00 0.00 0.00 Activated

Small cell lung cancer 77 47 0.51 41.66 0.00 0.00 0.00 Inhibited

Lysosome 112 84 0.00 1.34 0.06 0.00 0.01 Inhibited

Pathogenic Escherichia coli infection 47 34 0.06 35.66 0.00 0.00 0.01 Inhibited

Amyotrophic lateral sclerosis (ALS) 44 32 0.06 −39.56 0.00 0.00 0.02 Activated

NF-kappa B signaling pathway 68 44 0.28 −39.84 0.00 0.00 0.04 Activated

Pathways with pGFdr, below 0.05 are considered as significant.

TABLE 6 Ten most significant pathways identified by SPIA for the lung cell line Calu3.

Name pSize NDE pNDE tA pPERT pG pGFdr Status

Influenza A 125 70 0.00 −40.90 0.00 0.00 0.00 Activated

Cytokine-cytokine receptor interaction 117 62 0.00 −106.10 0.00 0.00 0.00 Activated

Herpes simplex infection 142 70 0.00 −71.60 0.00 0.00 0.00 Activated

Tuberculosis 125 63 0.00 −84.70 0.00 0.00 0.00 Activated

NF-kappa B signaling pathway 68 36 0.00 −59.10 0.00 0.00 0.00 Activated

Chagas disease (American trypanosomiasis) 78 44 0.00 −44.60 0.00 0.00 0.00 Activated

Pathways in cancer 262 107 0.00 −92.70 0.00 0.00 0.00 Activated

Measles 94 54 0.00 −21.80 0.04 0.00 0.00 Activated

Osteoclast differentiation 92 49 0.00 −54.00 0.00 0.00 0.00 Activated

Chemokine signaling pathway 114 50 0.01 −76.50 0.00 0.00 0.00 Activated

Pathways with pGFdr, below 0.0C5 are considered as significant.
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pathways by SPIA for the four cell lines are 3, 19, 12, and 38,
respectively. The results show that the most significant signaling
pathways vary among the four cell lines. For NHBE, the most
significant signaling pathways are related to inflammation,
immune response, and COVID-19 symptoms, such as coughing
and vomiting. For A549, the most significant pathways are not only
related to inflammation but also to bone destruction. The most
significant pathways for A549.ACE2 are associated with internal
biological clock, motor dysfunction, cognitive decline, psychiatric
disturbances, and neurodegenerative movement disorder. In

contrast, the most significant pathways for Calu3 are related to
flu epidemics, inflammation, immune system, and orofacial lesions.
Interestingly, only one pathway, “cytokine-cytokine receptor
interaction” is found to be significant among all four cell lines
and is closely related to inflammation and immune response. This
finding is consistent with some recent research (Chen et al., 2020;
Mehta et al., 2020), and there is a study even summarizes the crucial
role that the “cytokine-cytokine receptor interaction” plays in
COVID-19 disease (Costela-Ruiz et al., 2020). This information
can help researchers better understand the underlying mechanisms

FIGURE 3
Overlap of significant signaling pathways in four lung cell lines A549, A549.ACE2, Calu3, and NHBE.

TABLE 7 Ten most significant DC pathways identified by dnapath for the lung cell line NHBE based on a total of 13,111 genes.

Pathway dc score p-value n genes n dc mean1 mean2

Platelet degranulation 0.02 0.10 129 31 4.25 4.23

Response to elevated platelet cytosolic Ca2+ 0.02 0.10 134 30 4.20 4.18

Apoptosis 0.01 0.10 180 31 5.26 5.25

Intrinsic Pathway for Apoptosis 0.04 0.10 53 6 5.38 5.34

Activation of BAD and translocation to mitochondria 0.14 0.10 15 4 6.82 6.81

Activation of BH3-only proteins 0.07 0.10 30 9 5.69 5.63

Signaling by VEGF 0.02 0.10 108 16 5.41 5.40

Negative regulation of the PI3K/AKT network 0.02 0.10 110 21 3.15 3.11

Regulation of gene expression in beta cells 0.18 0.10 21 2 0.589 0.55

VEGFA-VEGFR2 Pathway 0.02 0.10 99 15 5.58 5.57

The columns include the name of the pathway (pathway), differential connectivity score (dc score), the corresponding p-value of the dc score (p-value), the number of genes on the pathway (n

genes), the number of significantly differentially connected genes with p-value less than 0.10 on the pathway (n dc), the mean expression of genes in the mock-treated group (mean1), and the

mean expression of genes in the SARS-CoV-2-infected group (mean2).
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of COVID-19 and develop more effective treatment plans that target
the specific pathways involved in the disease.

Based on the results of DN analysis by using dnapath, it is observed
that there are certain biological traits shared and distinct among the four
distinct lung cell lines. The DN analysis indicates that the three most
significant DC pathways for NHBE are linked to vascular injury and cell
death. In contrast, the top three significant DC pathways for A549 are
not only associated with vascular injury but also with various
detoxification processes. Interestingly, the top three significant DC
pathways for A549.ACE2 exhibit functions similar to those of A549.
Finally, for Calu3, the three most significant DC pathways are involved
in detoxification processes, energy transduction, and energy
conservation. The DN analysis reveals that among the 100 most
significant DC pathways for each of the four lung cell lines, there are
some shared DC pathways, including “Intrinsic Pathway for Apoptosis”,
“Negative regulation of the PI3K/AKT network”, “Fatty acid
metabolism”, and “DDX58/IFIH1-mediated induction of interferon-

alpha/beta”. These pathways are associated with various cellular
processes such as cellular damage, growth factors, hormones, energy
metabolism, and the periodic occurrence of flu epidemics. Despite the
identification of many common significant pathways among the four
lung cell lines from the DN analysis, the differential connectivity of these
pathways is significantly different among the four cell lines. For instance,
the “Intrinsic Pathway for Apoptosis” exhibits distinct differential
connectivity patterns among these cell lines. Our results of the DN
analysis can provide a more comprehensive understanding of molecular
pathways and differential networks that are disrupted in COVID-19 and
give potential therapeutic recommendations.

Our study aims to investigate the unique and shared mechanisms
underlying COVID-19 disease in the four distinct lung cell lines NHBE,
A549, A549.ACE2, and Calu3 using DE analysis, pathway analysis, and
DN analysis. Following the application of the various statistical
techniques to the RNA-Seq data, we successfully 1) generate the
ordered lists of DE genes for individual cell lines through a rank

TABLE 8 Ten most significant DC pathways identified by dnapath for the lung cell line A549 based on a total of 13,111 genes.

Pathway dc score p-value n genes n dc mean1 mean2

Platelet degranulation 0.03 0.01 129 42 4.18 4.23

Response to elevated platelet cytosolic Ca2+ 0.03 0.01 134 45 4.18 4.23

Phase II - Conjugation of compounds 0.05 0.01 107 24 2.67 2.64

Metabolism of nucleotides 0.04 0.01 101 33 4.62 4.59

Intrinsic Pathway for Apoptosis 0.06 0.01 53 17 5.63 5.64

Negative regulation of the PI3K/AKT network 0.04 0.01 110 37 3.30 3.36

PI3K/AKT Signaling in Cancer 0.04 0.01 101 37 3.27 3.29

CD28 dependent PI3K/Akt signaling 0.14 0.01 22 8 4.49 4.44

Constitutive Signaling by AKT1 E17K in Cancer 0.11 0.01 25 11 5.75 5.67

FOXO-mediated transcription 0.06 0.01 65 22 4.52 4.68

The fifth column represents the number of significantly differentially connected genes with p-value less than 0.10 on the pathway (n dc).

TABLE 9 Ten most significant DC pathways identified by dnapath for the lung cell line A549.ACE2 based on a total of 13,111 genes.

Pathway dc score p-value n genes n dc mean1 mean2

Platelet degranulation 0.0 0.01 129 50 4.30 4.05

Response to elevated platelet cytosolic Ca2+ 0.03 0.01 134 47 4.30 4.06

Phase II - Conjugation of compounds 0.06 0.01 107 29 2.52 2.25

Metabolism of nucleotides 0.04 0.01 101 30 4.31 3.97

Cell-Cell communication 0.04 0.01 129 41 3.64 3.49

Regulation of Insulin-like Growth Factor transport and
uptake by Insulin-like Growth Factor Binding Proteins

0.04 0.01 125 36 3.67 3.43

Cell-cell junction organization 0.09 0.01 64 19 2.50 2.41

Cell junction organization 0.05 0.01 91 32 3.49 3.30

Myogenesis 0.15 0.01 30 12 3.53 3.54

Post-translational protein phosphorylation 0.04 0.01 108 34 4.02 3.79

The fifth column represents the number of significantly differentially connected genes with p-value less than 0.10 on the pathway (n dc).
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aggregation method, identify overlapping DE genes across four distinct
cell lines, 2) discover significant signaling pathways unique to each cell
line, recognized shared significant signaling pathways among all cell
lines, 3) unveil significant DN pathways for each cell line and identify
common significant DC pathways among them. The outcomes of these
analyses, which are previously demonstrated, reveal promising results.
We eagerly anticipate the validation of these findings by experts in the
fields of biology, medicine, and pharmacology. However, our study has

limitations, including a small sample size and the absence of covariates
in the analysis. Additionally, the current versions of the R packages
SPIA and dnapath utilize different databases for pathway analysis and
DN analysis. The former only includes KEGG pathways data, while the
latter only includes Reactome pathways data. To address these
limitations, we suggest searching more related RNA-seq data,
incorporating covariates if clinical data are also available, and trying
more approaches of pathway analysis and DN analysis to validate the

TABLE 10 Ten most significant DC pathways identified by dnapath for the lung cell line Calu3 based on a total of 13,111 genes.

Pathway dc score p-value n genes n dc mean1 mean2

Phase II - Conjugation of compounds 0.03 0.10 107 35 2.58 2.45

Metabolism of nucleotides 0.02 0.10 101 54 4.40 4.19

Purine salvage 0.16 0.10 13 8 4.39 4.26

Nucleotide salvage 0.09 0.10 23 13 4.50 4.50

Cell-Cell communication 0.02 0.10 129 48 3.83 3.95

Regulation of Insulin-like Growth Factor transport and
uptake by Insulin-like Growth Factor Binding Proteins

0.02 0.10 125 33 3.32 3.31

Adherens junctions interactions 0.11 0.10 33 8 2.49 2.54

Cell-cell junction organization 0.05 0.10 64 21 2.87 2.89

Cell junction organization 0.03 0.10 91 29 3.81 3.86

Myogenesis 0.09 0.10 30 10 3.08 3.20

The fifth column represents the number of significantly differentially connected genes with p-value less than 0.10 on the pathway (n dc).

FIGURE 4
Overlap of the top 100 significant pathways based on the DN analysis of the four lung cell lines: A549, A549.ACE2, Calu3, and NHBE, using a total of
13,111 genes.

Frontiers in Genetics frontiersin.org12

Zhang et al. 10.3389/fgene.2023.1235927

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1235927


results and avoid bias caused by relying on only one approach.
Integrating both KEGG pathways and Reactome pathways data into
these R packages (e.g., SPIA and dnapath) in the future would enable us
to establish connections between our results of pathway analysis and
DN analysis. Furthermore, we can also apply similar DE analysis,
pathway analysis, and DN analysis to investigate other lung-related
diseases using these lung cell lines. Furthermore, we can investigate the
distinct and shared mechanisms of the SARS-CoV-2 virus and other
comparable viruses, which can provide more insights into the
pathogenesis of COVID-19.
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FIGURE 5
Differential network plots of “Intrinsic Pathway for Apoptosis” for the four lung cell Lines, NHBE (top-left), A549 (top-right), A549.ACE (bottom-left),
and Calu3 (bottom-right). In the network plots, nodes represent genes. The edges in the network are color-coded: a blue edge denotes a stronger gene-
gene association in the mock-treated group, while a red edge denotes a stronger association in the SARS-CoV-2 infected group. The width of the edges
corresponds to the magnitude of the association, and the transparency is determined by the p-value of the edge’s differential connectivity score.
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