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Introduction: Lung cancer is currently among the most prevalent and lethal cancers
in the world in terms of incidence and fatality rates. In clinical practice, identifying the
specific subtypes of lung cancer is essential in diagnosing and treating lung lesions.

Methods: This paper aims to collect histopathological section images of lung tumor
surgical specimens to construct a clinical dataset for researching and addressing the
classification problem of specific subtypes of lung tumors. Our method proposes a
teacher-student network architecture based on a knowledge distillation mechanism
for the specific subtype classificationof lung tumorhistopathological section images to
assist clinical applications, namely KD_ConvNeXt. The proposed approach enables the
studentnetwork (ConvNeXt) to extract knowledge from the intermediate feature layers
of the teacher network (Swin Transformer), improving the feature extraction and fitting
capabilities of ConvNeXt. Meanwhile, Swin Transformer provides soft labels containing
information about the distribution of images in various categories, making the model
focused more on the information carried by types with smaller sample sizes while
training.

Results: This work has designedmany experiments on a clinical lung tumor image
dataset, and the KD_ConvNeXt achieved a superior classification accuracy of
85.64% and an F1-score of 0.7717 compared with other advanced image
classification methods
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1 Introduction

The lung is a vital organ of the human body and is responsible for the respiratory and
metabolic functions of the body. In recent years, lung cancer has been ranked as the leading
cause of cancer-related deaths worldwide, accounting for more than a quarter (26%) of all
cancers (Viale, 2020). The exact type of lung tumor pathology is also an essential factor in the
next step of the surgical process.
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Currently, various pathological classifications of lung tumors
mainly rely on intraoperative freezing, postoperative paraffin section
or puncture biopsy specimen production staining observation, and
subsequent immunohistochemical analysis, among which the gold
standard for confirming the diagnosis is the paraffin pathology
results. However, more accurate pathological typing can be
obtained by analyzing pathological sections, as shown in
Figure 1, which takes a long time in the scale of days and does
not allow immediate determination of the pathological type at the
time of obtaining the specimen. Computed tomography (CT) is also
a commonly used method for diagnosing lung lesions, which can
reflect information on the shape, number, and location of lung
nodules and has significant clinical value (Han et al., 2021). Some
experienced clinicians can roughly determine the benign and
malignant degree of lung tumors by observing the CT images of
the chest as shown in Figure 1, but the accuracy is overly dependent
on subjective factors such as empirical judgment and has a high rate
of misdiagnosis.

Deep learning techniques have recently made a breakthrough in
various computer vision tasks with exciting results. In particular,
convolutional neural network (CNN)-based image classification
algorithms have succeeded dramatically in classification tasks for
imaging such as CT, MRI, and pathology images (Yang et al., 2017;
Sun et al., 2020). Some studies have shown that deep learning can
identify skin cancers in dermoscopic images and determine gastric
tumor staging in gastroscopic embodiments with relatively good
accuracy compared to pathology results (Esteva et al., 2017; Cho
et al., 2019). Other studies based on deep learning techniques have
been published in cervical cancer, oral cancer, and bladder cancer
(Hu et al., 2019; Shkolyar et al., 2019; Camalan et al., 2021).

There are two main technical routes based on existing deep-
learning techniques for lung cancer diagnosis and classification:

1. Lung cancer classification methods based on low-dose computed
tomography (CT) images (Anderson and Davis, 2018), which are
mainly studied based on public datasets such as LIDC-IDRI and
LUNA16 (Gugulothu and Balaji, 2023; Liu et al., 2023; Zhu et al.,
2023).

2. Deep learning classification algorithms based on
histopathological images, which are mainly studied based on

the LC25000 dataset (Masud et al., 2021), digital full-slide images
(WSIs) and TCGA34, and other datasets combined with deep
learning classification algorithms for the pathological
classification of lung tumors (Halder and Dey, 2023; Jeyaraj
and Nadar, 2023; Omar et al., 2023).

Despite some progress made by works (Gugulothu and Balaji,
2023; Halder andDey, 2023; Jeyaraj andNadar, 2023; Liu et al., 2023;
Omar et al., 2023; Zhu et al., 2023) in the task of diagnostic
classification of lung cancer, the pathological classification of
lung tumors currently faces the following challenges:

• The first is either only preliminarily screening lung tumors for
benign and malignant degrees or mixing histopathological
images of lung cancer and other cancers to differentiate and
classify them, rather than accurately classifying specific
subtypes of lung cancer.

• Existing methods fail to take full advantage of the vast amount
of other data available in modern clinics, and using routinely
obtained images of surgical specimen sections for histological
classification may be necessary for diagnostic and therapeutic
decisions, as innovative tools for clinical data evaluation are
needed to augment biopsies and help better characterize the
disease, given the complexity of lung cancer classification and
the limitations of current practice.

• The surgical management of lung cancer requires
intraoperative frozen pathology analysis of the tumor,
during which the patient waits on the operating table for at
least 30 min. There are two hot issues of concern: how to
reduce the patient’s waiting time on the operating table to
reduce the risk of surgery and identifying specific subtypes of
lung tumors more accurately and efficiently.

This work aims to collect raw images of lung tumor surgical
specimen sections, create a clinical dataset image by cropping the
features thoroughly examined by doctors as ROI regions, and
investigate the efficacy of deep learning methods for quick
classification on this dataset. The goal is to give doctors timely
references for surgical strategies and to increase their productivity
and diagnostic and treatment decision accuracy. Our method uses

FIGURE 1
Pathological classification of lung neoplasms: a histopathological slice of lung tumor and CT images of the chest.
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the ConvNeXt (Liu et al., 2022) as a student network and the Swin
Transformer model (Liu et al., 2021) as a teacher model for
knowledge distillation in the intermediate feature mapping layer,
and the softmax output layer (Hinton et al., 2015) is applied to solve
the problems of lung cancer images classification. Also, to effectively
improve the model’s classification performance, we processed the
dataset with a super-resolution denoising algorithm. This work
performed data enhancement to better learn the features of lung
tumors. Overall, the contributions of this paper can be summarized
as follows:

• This work constructed a dataset of 2,221 raw images of the
ROI regions of lung tumors. Due to the irregularities in
processing images in hospitals, we used the Real-ESRGAN
(Wang et al., 2021) algorithm to super-resolution process and
denoise them to solve the problems of low resolution and noise
in the clinically processed dataset, which can improve the
accuracy of lung cancer-specific subtype classification. In
addition, this work has explored a new and unprecedented
route to rapidly predict specific subtypes of liver tumors,
which can assist physicians in roughly deciding on
subsequent surgical steps and treatment strategies while
waiting for the results of intraoperative frozen pathology
analysis.

• Our method proposed a teacher–student structure based on
the knowledge distillation mechanism called KD_ConvNeXt,
which can effectively improve the student network’s feature
extraction and fitting ability. Also, the training of the student
network will be more biased towards the categories with a
smaller sample size, improving the classification ability of
clinical datasets with a severe imbalance of category data.
The model’s accuracy is not significantly different from
existing deep learning techniques based on pathology slides
and CT images and is of great clinical reference.

• The proposed approach conducted many comparative
experiments and experimental ablation analyses as well as
selected advanced image classification methods for
comparison to demonstrate the validity and advancement
of the proposed framework in classifying specific
pathological subtypes of lung tumors and to analyze the
existence of shortcomings and deficiencies.

The rest of this paper is organized as follows. In Section 2, this paper
first reviewed the related work on the pathological classification of lung
cancer. This paper detailed the clinical dataset and the detailed structure
of the model in Section 3. We describe the starting point of our
experimental design and experimental implementation details in
Section 4. Then, we compared the proposed method with some
advanced image classification methods, including the comparison of
evaluation metrics for image multiclassification and the analysis of
ablation experiments in Section 5. Finally, we conclude our work in the
Section 6.

2 Related work

Currently, studies (Gugulothu and Balaji, 2023; Halder and Dey,
2023; Jeyaraj andNadar, 2023; Liu et al., 2023; Omar et al., 2023; Zhu

et al., 2023) have made some progress in the task of lung tumor
pathology classification. These methods include two main technical
lines: lung cancer classification methods based on CT images
(Gugulothu and Balaji, 2023; Liu et al., 2023; Zhu et al., 2023)
and deep learning classification algorithms based on
histopathological images (Halder and Dey, 2023; Jeyaraj and
Nadar, 2023; Omar et al., 2023).

2.1 Lung cancer classification methods
based on CT images

Zhu et al., (2023) proposed the DEPMSCNet model, which has
high sensitivity and a low false-positive rate for detecting lung
nodules. In the feature extraction stage, the model uses REPSA-
MSC to extract multi-scale information from the feature maps, while
introducing adaptive convolutional branching to detect contextual
information at each location of the multi-scale. Secondly, the DSAM
(Dual Path Spatial Attention Module) proposed in this model
acquires sensory field information from two branches, combining
low-level feature map information with high-level semantic
information. The model has been evaluated on the public Lung
Nodule Analysis (LUNA16) challenge dataset with a sensitivity of
0.988 and a Competitive Performance Measure (CPM) of 0.963.

Liu et al., (2023) proposed a novel asymmetric residual network
called 3D-ARCNN that utilizes 3D features and spatial information
of lung nodules to improve classification performance. The
framework employs an internal cascaded multilevel residual
model for fine-grained learning and multilayer asymmetric
convolution of lung nodule features to address the problem of
significant neural network parameters and poor reproducibility.
Through experiments on the publicly available LUNA16 image
dataset, the detection sensitivity was found to be 95.8%, and the
average CPM index is 0.912.

Gugulothu and Balaji, (2023) first preprocessed the input lung
images to remove non-informatics blocks using step deviation mean
multilevel thresholding (SDMMT). Afterward, the LN portion is
detected using the earliest event network classifier, and essential
features are selected using the Horse-Drop Optimization Algorithm
(MD-HHOA). The study utilized the publicly accessible Lung Image
Database Consortium Image Set (LIDC-IDRI) dataset, and the
experimental results show that the proposed method has an
accuracy of 97.11%, sensitivity of 96.98%, and specificity of
94.34% for detecting nodules, respectively.

2.2 Deep learning classification algorithms
based on histopathological images

Halder and Dey, (2023) proposed a novel deep learning
framework based on image morphology for lung cancer subtype
classification. The framework combines morphology-based
pathways with attention blocks that can accurately and efficiently
capture morphological variants of lung cancer subtypes and deep
features extracted from convolutional and morphological ways for
lung cancer subtype classification. This study analyzed the
performance of the proposed framework on a publicly available
dataset and achieved a sensitivity, specificity, average accuracy,
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precision, and F1-score of 98.33%, 97.76%, 98.96%, 99.12%, and
98.72%, respectively.

Omar et al., (2023) proposed an integrated migration learning
model for fast lung and colon cancer diagnosis by utilizing multiple
migration learning models and integrating them for better
performance. The accuracies of MobileNet V1, Inception V3, and
VGG16 for lung and colon cancer detection are 98.32%, 98%, and
96.93%, respectively, whereas the integrated model of the study has
an accuracy of 99.44%. The results of this study indicate that the
proposed method is superior to existing models and can therefore be
used in clinics to assist medical staff in detecting lung and colon
cancers.

Jeyaraj and Nadar, (2023) compared the proposed LDCNN with
AlexNet and EfficientNet on benchmark datasets such as MS-
COCO, LC25000, and multi-class Kather datasets. The empirical
experimental performance metrics obtained by the proposed
LDCNN in this study outperform the baseline convolutional
neural network architecture, achieving 99.6% accuracy, 98.4%
sensitivity, 97.9% specificity, and a 99.1% F1-score. The
lightweight feature-specific learning network proposed in this
study thus achieved steady improvements in medical annotation
work and classification.

2.3 Knowledge distillation

Knowledge distillation has emerged as a prominent model
compression technique, garnering significant attention in deep
learning. It involves a teacher–student training framework, where
a trained teacher model imparts knowledge to a student model
through a process known as distillation (Hinton et al., 2015). This
allows the transfer of knowledge from a complex teacher model to a
simpler student model, albeit with a minor sacrifice in performance.
Various forms of knowledge can be utilized, such as output feature
knowledge, intermediate feature knowledge, relational feature
knowledge, and structural feature knowledge. Output feature
knowledge primarily encompasses the last layer features of the
teacher model, incorporating insights into logical units and soft
targets (Zhang et al., 2022; Xu et al., 2023). It enables students to
learn the teacher’s final predictions, aiming to achieve a similar
predictive performance. Knowledge distillation of intermediate
features involves extracting hints from the middle layer of the
teacher model, guiding the output of the student model’s
intermediate layer (Okamoto et al., 2022; Zhao et al., 2022). This
approach utilizes not only the output feature knowledge of the
teacher model but also the implicit layer’s feature map knowledge.
Relational feature knowledge focuses on capturing relationships
between different layers of the teacher model and other data
samples (He et al., 2022; Shen and Xing, 2022; Zhang et al.,
2023). It aims to establish a consistent relational mapping,
facilitating the student model’s enhanced understanding of
relational knowledge from the teacher model.

3 Methods

In this section, our method first details the collection
requirements and the construction process of the clinical dataset,

then introduces the teacher–student structure consisting of
ConvNeXt and Swin Transformer, and finally presents the loss
function of the proposed method in this paper.

3.1 Datasets description

The natural images of the lung tumor’s surgical specimen
section are obtained by dissecting the tumor in half, fully
exposing the tumor section, and then taking more than three to
five images from two to three different angles. The specific subtype
classification of lung tumors is obtained by refining the three
pathological subtypes of lung cancer, adenocarcinoma in situ
(AIS), micro-invasive adenocarcinoma (MIA), and invasive
adenocarcinoma (IA) again because the pathological histological
subtypes of IA can be divided into highly differentiated
adenocarcinoma, moderately differentiated adenocarcinoma, and
poorly differentiated adenocarcinoma, which are also called Grade 1,
Grade 2, and Grade 3. These three histological subtypes can predict
the prognosis of patients after surgery, and studies showed that AIS
and MIA have better predictions than Grade 1, Grade 2, and
Grade 3.

To evaluate the practical effects of the model in clinical
applications, clinical lung tumor image data were obtained from
Guangdong Provincial People’s Hospital, which consisted of
1,245 lesions with 2,221 images in total. Generally speaking, the
images obtained from clinical photography may contain some
backgrounds irrelevant to cancer analysis. Removing these non-
informative regions can significantly reduce the computational cost
and ensure the validity of the training samples, so each lesion image
is the image obtained by cropping the tumor site after removing
some irrelevant backgrounds such as normal lung tissues from the
original image, illustrated by Figure 2. Also, the clinical image
dataset taken in the field undergoes various processes, such as
camera blurring and image compression when cropping the ROI
region, which makes the images blurred and degraded. To improve
the resolution of the images and remove the noise, the Real-
ESRGAN algorithm (Wang et al., 2021) is used to process the
clinical image dataset, illustrated by Figure 3.

3.2 Model design

Enhancing the feature extraction component to ensure the
accuracy of pathological classification in the lung tumor clinical
dataset is essential to achieving multi-scalability and accuracy of the
retrieved features. Therefore, this work chose a teacher–student
architecture of knowledge distillation to improve the model
accuracy and realize the domain migration between image labels.
In the teacher–student architecture, the teacher network provides
supervision information, and the student network is responsible for
learning. For the medical image classification task, if the entropy of
soft targets is higher than that of hard targets, it is evident that the
student will learn more information, which improves the
classification accuracy and the generalization ability of the
student network. The retrieved features exhibit a multi-scale
notion due to the hierarchical feature extraction facilitated by
Swin Transformer, which can be divided into multiple Blocks.
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The shifting operation enables interaction between neighboring
windows, thereby flexibly providing information at different
scales. The properties of shifting are learned through moving
windows, resulting in self-attentiveness computed within the
window. To enhance the capacity of the convolutional neural
network for feature extraction and classification, Swin
Transformer is employed as the teacher model for knowledge
distillation in the ConvNets network. The student network,
ConvNeXt, is specifically chosen as it is a framework and
training method derived from Vision Transformer that enhances
the initial ResNet50 model. This decision is primarily based on the
comparable model architectures of Swin Transformer and
ConvNeXt, allowing for easy separation into matching layer
blocks for the independent distillation of feature layers.

In this section, this work proposed the distillation module as
shown in Figure 4. We constructed the distillation framework
along the following lines: first, the ConvNeXt and Swin
Transformer were each divided into several corresponding
modules based on their original structures (Zhang et al.,
2019). During the training period, the Swin Transformer was
utilized as the teacher model, and the Swin Transformer Blocks

were converted to the matching ConvNeXt Blocks for feature
mapping, respectively (Romero et al., 2014). To match the feature
mapping output of the Swin Transformer Blocks, a regressor was
introduced after the ConvNeXt Blocks for the feature boosting.
To suit the feature mapping of the Swin Transformer’s visual field
information, the knowledge from the Swin Transformer’s feature
mapping was incorporated into ConvNeXt at each layer by
computing the L2 loss of the Swin Transformer Blocks’ feature
output with the regressor modified to induce its feature mapping
on each of its block layers, illustrated by Figure 5. In addition, the
softmax layers from the Swin transformer supervised the
ConvNeXt’s output, and the Swin Transformer was utilized to
provide soft goals as supervision to transfer information from the
teacher model to the student model (Hinton et al., 2015). The
relevance of each soft target was managed by introducing a
temperature factor termed T (Hinton et al., 2015). The output
of the softmax probability distribution tended to be smoother as
T increased, as shown in Figure 6. The information carried by the
categories with fewer samples would be comparatively enhanced,
and the training of the student network would concentrate more
on the type with fewer samples.

FIGURE 2
The process of building the clinical dataset of lung tumor: the images obtained by cropping the ROI regions of the tumor section are classified into
Grade 1, Grade 2, Grade 3, AIS and MIA.

FIGURE 3
The left image is the original ROI image, and the right image is the image after processing by the Real-ESRGAN algorithm.
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The specific training process was therefore completed in three
stages. In the first stage, knowledge was transferred from the teacher
network to the student network using an adaptive layer
(1 × 1 convolutional layer) to cause the feature mapping of each
layer of ConvNeXt to adapt the feature mapping of Swin Transformer’s
visual field information on a similar feature space. In the second stage,
the student network was trained under the supervision of the soft labels
supplied by the teacher network, which meant that the student
network’s training relied on the contribution of the teacher network
to identify categories with small sample sizes. The difference between
the predicted logits produced by the ConvNeXt and the accurate labels
was computed in the third stage using the focal loss function (Lin et al.,
2017). This clinical dataset’s category data were drastically out of

balance. Thus, a weighting factor was introduced to the loss
function compared to the widely-used cross-entropy function to give
a few categoriesmoreweight and balance the loss function’s distribution
(Loshchilov and Hutter, 2018).

3.3 Loss function design

In order to improve the performance of the model, three loss
functions were introduced during the training process:

• Matching L2 loss between feature maps: it was obtained by
calculating the L2 loss between the feature mapping of Swin

FIGURE 4
This figure shows the details of the teacher–student network architecture. (1) ConvNeXt and Swin Transformer are divided into four parts according
to their structures. (2) The Swin Transformer Block of each layer performs featuremapping-based knowledge distillation on the corresponding ConvNeXt
Block, respectively. (3) The softmax output layer of the Swin Transformer performs knowledge distillation based on logits output to ConvNeXt.

FIGURE 5
This figure shows the specific process of feature distillation. (1) Firstly, the datas are synchronously input into the teacher model and student model
during the training process. (2) The feature maps are obtained from each intermediate network layer of the teacher model and the student model. (3) The
feature maps from the teacher model and the student model are transformed to the same dimension and then use the absolute value to measure the
similarity between the knowledge. (4) We calculate the distillation loss function of the intermediate layer and optimize the student using the
backpropagation algorithm Neural Network.
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Transformer Blocks and ConvNeXt Blocks. The knowledge
from the feature mapping extracted by the teacher network
was introduced into the student network through the
L2 loss so that the feature mapping of the ConvNeXt
Block matches the feature mapping of the Swin
Transformer Blocks:

Loss1 � ϕt ft x( )( ),ϕs fs x( )( )
����

����22 (1)

where ft(x) and fs(x) are the middle layer feature maps of the
teacher model and the student model, respectively. The
conversion function ϕt(ft(x)) and ϕs(fs(x)) is usually
applied when the feature maps of the teacher and student
models are not of the same shape and represents the
similarity function that matches the feature maps of the
teacher and student models.

• Matching logit output between the teacher model and the
student model: the teacher network provided soft labels to
induce the training of the student network, giving the student
network better generalization capabilities. The importance of
each soft target is controlled by introducing a temperature
factor T:

pi � exp zi/T( )
∑j exp zj/T( )

(2)

where Zi,j is the output of the softmax layer after the fully
connected layer. T typically denotes the distillation
temperature, with higher temperatures producing weaker
probability distributions over the classes. Distillation loss is
calculated using the output of the softmax layer between the
student and teacher networks as follows:

Loss2 � ∑
i

−pi zti, T( )log pi zsi, T( )( ) (3)

where zt and zs are the logits outputs of the teacher and
student models respectively, and the student model matches
the logits output of the teacher model by the cross-entropy
gradient.

• The focal loss from the labels to the student network: it is
calculated using the labels of the clinical dataset and the output
of the softmax layer of the student network:

Loss3 � ∑
5

t�1
−αt 1 − pt( )γ log pt( ) (4)

where αt denotes the weight assigned to each category, and pt
indicates the probability that each sample is predicted to be a
specific category, reflecting the proximity to the ground truth.
The larger pt is the more accurate the classification is. Therefore,
the focal loss function is equivalent to increasing the weight of
the category with a smaller number of samples in the loss
function, making the loss function more inclined to the
category with a smaller number of samples.

In summary, the total loss function used in this experiment is
defined as follows:

Loss � αLoss1 + 1 − α( )Loss2 + βLoss3 (5)
Here, α and β are the weighting coefficients used to balance

the three loss functions. We tested various values of α and β in the
training phase and analyzed the variation curve of the total loss
function when α and β take different values, and finally, we chose
α = 0.5 and β = 1 as the final weighting coefficients used in this
thesis.

4 Experiments

4.1 Hardware and software platform
environment

The experiments are based on the Pytorch framework platform
to implement the KD-ConvNeXt model, using the OpenCV-python
library as an image preprocessing tool. The processor of the
computing platform on which the experiments are conducted is
Intel(R) Xeon(R) CPU E5-2,678 v3 @ 2.50GHz, the memory is
236G, and the graphics card model is NVIDIA Corporation
TU102 [GeForce RTX 2080 Ti] with 12 GB of video memory.

FIGURE 6
This figure shows the exact process of logits distillation. (1) We train the teacher model Swin Transformer and use the distillation temperature (T) to
generate soft labels. (2) This work uses the soft labels and the distillation temperature (T) as well as the hard labels to train the student model ConvNeXt at
the same time. (3) We compute the corresponding distillation loss and then compute the overall student model’s loss function and optimize the student
model using the backpropagation algorithm.
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4.2 Dataset processing

The dataset used in this paper is a lung tissue photograph taken
with available camera equipment. It presents mainly some
morphological features in the natural state, and its normality,
resolution, and other indicators are weak. In addition, since the
clinical image dataset taken in the field undergoes various processes
that make the images blurred and degraded, such as camera blurring
and image compression when cropping the ROI region, the Real-
ESRGAN algorithm (Wang et al., 2021) was used to process the
image dataset to improve the resolution of the images to remove the
noise. All lesion data were divided into training sets, validation sets,
and test sets according to the ratio of 8:1:1, where 1778 images were
in the training sets, and there were 234 and 209 images in the
validation and test sets, respectively. Since the model requires an
input size of 224 × 224 × 1 for the images, the extracted lung tumor
images were resized to the same size before being inputted into our
model. Details of the data distribution of the five subtypes of lung
adenocarcinoma and the specific classification table are shown in
Table 1.

The training of the model requires a sufficient amount of
training data available, which may lead to overfitting if only a
small amount of training data is used. To prevent overfitting due
to the limited number of images and to maximize the generalization
performance of the model, 1778 images in the training dataset are
augmented. For example, random horizontal and vertical flipping,
random cropping of images (cropping rate up to 10% of the original
image), random translation (10% in the x, y-axis direction), etc.,
followed by normalization of images, improved the robustness and
generalization ability of the model.

4.3 Experimental implementation details

The algorithmic model proposed in this paper is constructed by
Pytorch, and the convolution kernel is set to the initial value setting
method proposed by (Liu et al., 2022). The pre-training of the layers
is performed by stochastic gradient descent with a learning rate of
0.001 using the AdamW optimizer. Since the pre-training weights
outperformed the random initialization weights, the initial learning
rate was set to 0.001, the momentum was initialized to 0.9, the
weight decay parameter was initialized to 5e-4, the epoch was set to
100, and the training batch size was set to 32.We initialize the model
parameters to the weights saved after pre-training to improve the
training process and performance. Specifically, the model’s pre-
trained weights other than the head are frozen. The softmax layer

output of the model predicts the probability of belonging to a
category for each image in the test set, and the category with the
highest probability is selected as the category for the prediction
output. To ensure that the model performance reported on the test
set is not due to accidental training validation test set partitioning,
the training validation test set partitioning and model training
process is repeated five times. Each time we retrained the model
and re-optimized all parameters from scratch to ensure the
robustness of the results.

4.4 Experimental evaluation indexes

To assess the performance of the model on the clinical dataset,
the following metrics are measured (where precision and recall are
measured by considering a category as a positive category and the
rest as negative categories when considering a category):

• Accuracy: the number of correctly classified samples as a
percentage of all samples and is used to measure the
percentage of correctly classified images. However, no
distinction is made between the different categories, so the
error rate and accuracy under specific categories are not
known.

• Precision: the ratio of the number of correctly classified
positive samples to the number of all predicted positive
samples of the classifier.

• Recall: the ratio of the number of correctly classified positive
samples to the number of actual positive samples, also known
as sensitivity or true positive rate.

• F1-score: a weighted average of precision and recall to balance
precision and recall. For uneven class distribution, the F1-
score is more useful for evaluating models.

Accuracy � TN + TP
FP + TN + TP + FN

(6)

Precision � TP
TP + FP

(7)

Recall � TP
TP + FN

(8)

F1 − score � 2* precision * recall
precision + recall

(9)

Where TP denotes the number of positive samples classified as
positive samples, FN denotes the number of positive samples labeled
and classified as negative samples, FP denotes the number of
negative samples labeled and classified as positive samples, and

TABLE 1 Details of the number of categories in the five categories of the clinical data set and the division of the sample.

Pathological subtypes of lung adenocarcinoma Total number Train sets Val sets Test sets

Grade 1 41 33 3 5

Grade 2 1,317 1,054 141 122

Grade 3 196 157 23 16

AIS 121 97 12 12

MIA 546 437 55 54
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TN denotes the number of negative samples labeled and classified as
negative samples. In calculating the precision, the recall and F1 score
values of the whole confusion matrix, the precision degree, recall,
and F1 score values of each category are calculated first and then
averaged.

5 Analysis of experimental results

5.1 Comparative experimental results and
analysis

The evaluationmetrics defined by the above equations were used
as quantitative evaluation metrics to evaluate the model’s
effectiveness for lung cancer image classification. This work chose
ConvNeXt and Swin Transformer as the baseline models for the
experiments and three advanced network structures such as
EfficientNet V2 (Tan and Le, 2021), DaViT (Ding et al., 2022)
and CoAtNet (Dai et al., 2021) as the comparative experimental
models. This work trained each model under the same experimental
conditions (loss function, learning rate, optimizer, etc.). This work
saved the model that performed best on the validation set and
evaluated it on the test set. Finally, the experimental results showed
that the model proposed in this paper had a better classification
performance and outperforms other comparative models on the
test set.

The results of the comparison experiments are shown in
Figure 7, which shows the performance of each model on the test
set. This work used four evaluation metrics to measure the
performance of the classification results, namely accuracy,

precision, recall, and F1-score. This work predicted and
calculated the evaluation metrics for each test sample, and finally
obtained the average of the evaluation metrics of the models on the
test set. This work shows these results in the figure, fromwhich it can
be seen that our method achieved better results than other models
for lung cancer classification on the clinical test set. Among all the
compared models, CoAtNet performed better, with an accuracy of
79.84%, respectively. Our method still outperformed all comparative
models, with accuracy reaching the highest level of 85.64%, which
basically met the clinical level requirement. The above experimental
results validate the superiority of our proposed method compared
with other methods.

5.2 Analysis of ablation experiments

In this section, we used ablation experimental analysis to
demonstrate the validity of the knowledge provided by the
teacher network in the model. This work chose ConvNeXt as the
baseline model for the experiments. We used the Swin Transformer
as the teacher model to provide knowledge distillation based on logit
output and feature-based, respectively. Table 2 compares the
performance of the ablation experimental models on the test set.
Logits-based and features-based distillation significantly improves
the classification performance of ConvNeXt and allows it to
converge to lower loss values during training. This is because the
logits-based distillation approach provides the student network with
soft labels to supervise the student network’s training, making the
student network’s training dependent on the teacher network’s
contribution to identifying classes with small sample sizes. The

FIGURE 7
Results of comparing KD_ConvNeXt with other comparative models on the test set (bolded font indicates optimal values).
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features-based distillation approach, on the other hand, improves the
ability of the student network to fit features based on the similar
structural features of ConvNeXt and Swin Transformer. The ablation
experiments demonstrate the effectiveness of our proposed distillation
approach. It can be found that the final proposed KD ConvNeXt is the
best among all the selected evaluation metrics. Also, our proposed
modules, such as logits and feature distillation, improve the
performance of ConvNeXt to some extent.

5.3 Confusion matrix analysis of the model

To show the effects and problems of the model in practical
applications more clearly, the confusion matrix of the model on the
test set can be analyzed and discussed. Figure 8 shows the
classification confusion matrix of KD_ConvNeXt on the test set
of clinical data, where the horizontal coordinates indicate the true
label categories and the vertical coordinates indicate the predicted
label categories. The diagonal line represents the number of the
model’s predictions and labels that agree with each other: the larger
the number on the diagonal line, the better it represents the model’s
prediction results in that class. As shown in the figure, for the Grade
1 category images, 5 images were used for testing. In total, 3 of the

images were correctly predicted, which is a better prediction result
for Grade 1 with a small number of samples. The Grade 2 category
images were tested using 122 images, and all predictions were
correct, with a slightly higher discriminatory ability compared to
the other categories, probably because the Grade 2 accounts for most
of the data in the clinical training data set, and the model fits the
features of the Grade 2 images very well. In the Grade 3 and AIS
categories, the number of categories incorrectly predicted to be
classified as other categories was low. However, 9 images were
incorrectly classified as Grade 2 for the MIA category, and
another 6 were incorrectly predicted as Grade 3 and AIS,
respectively. The results indicate that our model can predict the
pathological type of lung tumors. However, the accuracy of lung
tumor prediction classification is still needed to improve to assist
clinical treatment, for example, to reduce the recall of MIA category
prediction. Table 3 shows the precision and recall of the proposed
method for each lung tumor category.

6 Conclusion

This paper established a clinical dataset of section images of lung
tumor surgical specimens. We proposed a classification model based
on logit output distillation and feature distillation to solve the
pathological classification of lung tumors. Our method tested the
method on the dataset, calculated classification evaluation metrics,
and compared several advanced image classification methods. The
results showed that our method achieved the best results on each
metric. The proposed approach also designed ablation experiments
to demonstrate the effectiveness of the proposed knowledge
distillation module and analyze its effectiveness. The results of
the ablation experiments showed that each of our proposed
distillation modules can improve the performance of ConvNext
to some extent. Our method and technical route are better able to

TABLE 2 Results of KD ConvNeXt ablation experiments on the test set (bolded font indicates optimal values).

Method Accuracy [%] Precision [%] Recall [%] F1-score

ConvNeXt 81.12 67.34 68.50 0.6791

Swin Transformer 82.75 70.48 71.40 0.7093

ConvNeXt + logits distillation 83.05 72.38 72.54 0.7246

ConvNeXt + feature distillation 84.21 74.20 74.46 0.7433

KD_ConvNeXt 85.64 79.88 74.64 0.7717

The bold values indicate the optimal value.

FIGURE 8
Confusion matrix analysis of the model on the test set.

TABLE 3 Precision and Recall of each category predicted by KD_ConvNeXt on
the test set.

Type Precision [%] Recall [%]

Grade 1 1 0.6

Grade 2 0.9104 1

Grade 3 0.5789 0.6875

AIS 0.5882 0.8333

MIA 0.9167 0.6111
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assist the surgeons in deciding on subsequent surgical steps and
treatment strategies than intraoperative frozen pathology analysis
that requires at least half an hour or more. However, the model still
needs to be improved in terms of its effectiveness in addressing the
long-tail effect and needs to be supported by a larger clinical dataset
before it can be clinically applied, and the classification accuracy
effect needs to be improved to match the intraoperative freezing
results. We plan to conduct more extensive experiments in the
future using the large number of samples provided by Guangdong
Provincial People’s Hospital to solve the problem of unbalanced
sample size. On the other hand, we plan to further optimize and
lighten the whole model in the follow-up work to reduce the number
of model parameters without losing accuracy to better assist in the
automatic, rapid, accurate, and efficient classification of lung cancer.
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