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Introduction:MicroRNAs (miRNAs) are a class of non-coding RNAmolecules that
play a crucial role in the regulation of diverse biological processes across various
organisms. Despite not encoding proteins, miRNAs have been found to have
significant implications in the onset and progression of complex human diseases.

Methods: Conventional methods for miRNA functional enrichment analysis have
certain limitations, and we proposed a novel method called MiRNA Set
Enrichment Analysis based on Multi-source Heterogeneous Information
Fusion (MHIF-MSEA). Three miRNA similarity networks (miRSN-DA, miRSN-
GOA, and miRSN-PPI) were constructed in MHIF-MSEA. These networks were
built based on miRNA-disease association, gene ontology (GO) annotation of
target genes, and protein-protein interaction of target genes, respectively. These
miRNA similarity networks were fused into a single similarity network with the
averaging method. This fused network served as the input for the random walk
with restart algorithm, which expanded the original miRNA list. Finally, MHIF-
MSEA performed enrichment analysis on the expanded list.

Results and Discussion: To determine the optimal network fusion approach,
three case studies were introduced: colon cancer, breast cancer, and
hepatocellular carcinoma. The experimental results revealed that the miRNA-
miRNA association network constructed using miRSN-DA and miRSN-GOA
exhibited superior performance as the input network. Furthermore, the MHIF-
MSEA model performed enrichment analysis on differentially expressed miRNAs
in breast cancer and hepatocellular carcinoma. The achieved p-values were
2.17e(-75) and 1.50e(-77), and the hit rates improved by 39.01% and 44.68%
compared to traditional enrichment analysis methods, respectively. These
results confirm that the MHIF-MSEA method enhances the identification of
enriched miRNA sets by leveraging multiple sources of heterogeneous
information, leading to improved insights into the functional implications of
miRNAs in complex diseases.
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1 Introduction

MicroRNAs (miRNAs) are a type of non-coding RNAs
(ncRNAs) that are approximately 22 nucleotides long. There is
growing to suggest that miRNAs play a crucial regulatory role in
human biological processes (Slack and Chinnaiyan, 2019). Non-
coding RNAs are involved in the regulation of gene expression in
various physiological activities, including cell proliferation (Cheng
et al., 2005), cell differentiation (Miska, 2005), apoptosis (Xu et al.,
2004), immune function modulation in animals (Stern-Ginossar
et al., 2007), and gene expression level regulation (Shivdasani, 2006).
Furthermore, they are closely associated with the occurrence and
development of complex human diseases (Esteller, 2011). Due to the
rapid development and widespread application of high-throughput
sequencing technologies, researchers have accumulated a wealth of
information regarding miRNA attributes. High-throughput
experimental analysis have indicated that miRNAs often exert
their regulatory functions as sets rather than individual molecules
(Yoshida et al., 2021). Consequently, there has been a shift from
analyzing the functional roles of individual miRNAs to a
comprehensive analyzing the collective functions of miRNA sets,
highlighting the importance of functional enrichment analysis
methods. However, accurately analyzing the relationships among
miRNAs within a set and understanding the underlying biological
mechanisms remain challenging (Wang and Krishnan, 2014;
Fillinger et al., 2019). To data, several miRNAs set functional
enrichment analysis methods have been developed, which can be
divided into two categories based on their data sources and
execution algorithms.

The first category for inferring the functionality of miRNA sets is
based on miRNA target genes. These methods generally involve
three main steps. First, a set of differentially expressed miRNAs is
chosen based on experimental results or select miRNAs of interest to
form an input miRNA list. Second, high-confidence miRNA target
databases or miRNA target prediction tools are used to identify
miRNA target genes. Third, gene enrichment analysis methods are
employed to uncover enriched pathways, functions, or phenotypes
of the target genes, thereby inferring the potential functions of the
miRNA set. One example of this category is miRPath (Papadopoulos
et al., 2009), which is one of the earliest methods released. It has been
updated to miRPath V3.0 which utilizes the TarBase database,
microT-CDS, and TargetScan algorithm to obtain a collection of
miRNA target genes. It performs functional enrichment analysis of
miRNA target genes based on the Gene Ontology (GO) database and
the Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling
pathway database. MiRPath V3.0 not only employs traditional
hypergeometric distribution to calculate enrichment results but
also introduces an unbiased empirical distribution and an
improved meta-analysis statistical method. The tool also supports
reverse searching, allowing for the discovery that regulate miRNAs
regulating genes within specified GO terms or pathways.
Additionally, it can perform functional enrichment analysis for
miRNAs from seven different species. Another tool in this
category is MiRWalk (Sticht et al., 2018), which integrates
miRNA target gene prediction and retrieval of miRNA and gene
interaction information. It can also perform functional enrichment
analysis of miRNA target genes. Its latest data was updated in
January 2022. MiRWalk acquires experimentally validated

miRNA target genes from the miRTarBase (Huang et al., 2022)
and predicts miRNA target genes according to the TargetScan and
miRDB. Finally, the GSEA method is used to conduct gene
functional enrichment analysis and supports enrichment analysis
based on the GO and KEGG databases. However, these methods
have some notable limitations. A single miRNA may be associated
with hundreds of genes, which can lead to the inclusion of multiple
pathways that are only weakly correlated with the user-input
miRNA. This would result in a substantial bias in the enrichment
analysis results (Bleazard et al., 2015; Godard and van Eyll, 2015).

The second category of methods involves performing functional
enrichment analysis directly on miRNAs based on miRNA sets in a
background knowledge database. These miRNA background sets
represent a group of miRNAs that share certain common biological
characteristics. With the continuous advancement of miRNA
research, numerous resources of miRNA background sets have
emerged. Consequently, several methods and tools have been
developed to directly perform enrichment analysis on miRNAs,
leading to significant achievements in this field. TAM (Lu et al.,
2010) is the first tool to conduct functional enrichment analysis
directly on miRNAs using a knowledge base of miRNA sets. TAM
included 362 miRNA sets, comprising 43 miRNA functional sets
and 183 miRNA disease sets. It utilized the hypergeometric
distribution test to assess whether the user-input miRNA list was
enriched in each miRNA set. In 2018, we updated the TAM and
proposed TAM 2.0 (Li et al., 2018). By employing manual collection
and annotation, TAM 2.0 expanded the miRNA sets based on an
extensive review of the relevant literature. It now includes
547 miRNA disease sets and 158 miRNA functional sets.
Currently, TAM 2.0 stands as the most comprehensive
knowledge base of miRNA sets, providing researchers with a
valuable resource for performing functional enrichment analysis
on miRNA lists of interest. Another miRNA functional enrichment
analysis tool is MiEAA (Backes et al., 2016), which supports multiple
species and is set to release its second edition in 2020. MiEAA
conducts functional enrichment analysis not only on miRNA
precursors but also on mature miRNAs. The knowledge base for
miRNA precursors includes miRNA clusters, miRNA families,
miRNA chromosome locations and conserved miRNA sets.
Similarly, the knowledge base for mature miRNAs is derived
from miRNA target gene functions and pathways.

In this study, we introduced a novel model, the miRNA
Functional Enrichment Analysis model based on Multisource
Heterogeneous Information Fusion (MHIF-MSEA), with the aim
of delving into the regulatory function of miRNAs in greater
detail. MHIF-MSEA employs a multi-step approach to construct
an integrated network that combines diverse sources of
information. Initially, a disease-associated miRNA similarity
algorithm was employed to establish a disease-associated miRNA
similarity network. Subsequently, the miRNA similarity algorithm
(MIRGOFS) utilized the miRNA similarity algorithm (MIRGOFS) to
generate a miRNA similarity network based on the Gene Ontology
(GO) annotations of target genes. Additionally, a miRNA similarity
network by considering the target genes and their association with
miRNAs was constructed, taking into account the protein-protein
interactions resulting from the transcriptional activity of these target
genes. By performing pairwise and comprehensive fusion of the
aforementioned three networks, we derived a fused miRNA-

Frontiers in Genetics frontiersin.org02

Li et al. 10.3389/fgene.2024.1375148

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1375148


miRNA association network that integrates heterogeneous
information sources. This fused network served as a basis for
exploring miRNA nodes closely associated with the miRNAs in
the user-input miRNA list. To achieve this, a random walk with
restart algorithm was employed, effectively expanding the user-input
miRNAs according to the fused miRNA-miRNA association network.

To showcase the effectiveness and accuracy of the MHIF-MSEA
model, three case were introduced, which were focused on colon cancer,
breast cancer, and hepatocellular carcinoma. The experimental results
demonstrated that the miRNA-miRNA association network
constructed with miRSN-DA and miRSN-GOA constitutes the
optimal input network. Subsequently, the MHIF-MSEA model
conducts enrichment analysis on differentially expressed miRNAs in
breast cancer and hepatocellular carcinoma. The obtained p-values for
these analyses were 2.17e−75 and 1.50e−77, respectively. Moreover, the
hit rates were improved by 39.01% and 44.68%, respectively. These
results substantiate the usefulness of theMHIF-MSEAmodel in further
exploring the functional characteristics of the user-input miRNA list.
The source code and experimental data for MHIF-MSEA are available
at https://github.com/awesomero/MHIF-MSEA.

2 Materials and methods

2.1 Datasets

In this study, experimentally validated human miRNA-disease
association data were obtained from the HMDD v4.0 database (Cui
et al., 2023), which included 18,732 unique miRNA-disease
associations involving 1,206 miRNAs and 892 diseases.
Subsequently, the similarity between 1,041 miRNAs was derived
from the MISIM v2.0 (Li et al., 2019) web server (see Supplementary
Table S1). In addition, the similarity between 1,063 miRNAs was
calculated using the MIRGOFS method (see Supplementary Table
S2). A protein-protein interaction network (PPIN) containing
11,305 proteins and 69,331 protein-protein interactions was
obtained from the MINT database (Chatr-aryamontri et al.,
2006). In addition, miRNA target gene data validated by rigorous
experimental methods such as reporter assay and western blot were
downloaded from the miRTarbase v9.0 database (Huang et al.,
2022). The mature miRNA format was uniformly converted to
the precursor miRNA format, and a dataset of 10,130 miRNA-
target gene pairs involving 677 miRNA precursors was obtained.
Based on the above data, the similarity between 495 miRNAs was
obtained in our study (see Supplementary Table S3).

2.2 MiRNA similarity network based on
miRNA-disease associations

For each disease name represented by MeSH, it can be
represented as a Directed Acyclic Graph (DAG). For a given
disease, denoted as d, it can be expressed in the DAG using Eq. 1:

DAGd � d, Td, Ed( ) (1)
where Td is the set of nodes composed of d and all its ancestor
nodes, and Ed denotes the set of all edges in the graph. In the DAG

graph of disease d, the semantic contribution value D of disease t to
disease d can be defined using Eq. 2.

Dd d( ) � 1
Dd t( ) � max Δ*Dd t′( ) | t′ ∈ children of t{ } if t ≠ d

{ (2)

Equation 2 indicates that selecting the shortest path is a
necessary step for obtaining the maximum semantic contribution
value when there are multiple paths from disease t to disease d in the
DAG graph. Here, Δ is the semantic contribution decay factor,
which reflects the influence of parent nodes on child nodes in the
DAG structure, with an initial value between 0 and 1. According to
the related research (Xuan et al., 2013), Δ is usually set to 0.5. By
summing up the semantic contribution values of all nodes in the
DAG, the semantic contribution value of a given disease d can be
obtained, and it is shown in Eq. 3.

DV d( ) � ∑
t∈Td

Dd t( ) (3)

With the semantic contribution values for each disease, the
similarity S(di, dj) between any two diseases di and dj can be
calculated according to Eq. 4:

S di, dj( ) � ∑t∈Tdi
∩Tdj

Ddi t( ) +Ddj t( )( )
DV di( ) +DV dj( ) (4)

where t is the diseases associated with disease di and dj
simultaneously in the DAG structure, DV(di) and DV(dj)
represent the semantic contribution values of diseases di and dj
respectively, Ddi(t) and Ddj(t) denote the semantic contribution
values of disease t to diseases di and dj respectively.

Next, the functional similarity between miRNAs based on
disease associations was calculated using the MISIM (Wang et al.,
2010). The core idea of the MISIM algorithm is that the similarity
between miRNAs can be obtained by calculating the similarity
between the diseases associated with the two miRNAs. The
MISIM algorithm defines a set of diseases as D � (d1, d2,/dn).
The similarity S(d,D) between a disease d andD was the maximum
of the semantic similarity between disease d and one disease in the
set D, as shown in Eq. 5:

S d,D( ) � max
1≤ i≤m

S d, di( )( ) (5)

wherem is the number of diseases in the disease setD, di is a disease
in the disease set, di ∈ D, and Sim(d, di) is the similarity between
diseases d and di. For two miRNAs, m1 and m2, their functional
similarity can be expressed by Eq. 6:

MISIM m1, m2( ) � ∑1≤ i≤m S d1i, D2( ) +∑1≤ j≤ n S d2j, D1( )
m + n

(6)

where D1 and D2 represent the sets of diseases associated with m1

and m2,m and n represent the number of diseases in setsD1 andD2,
d1i and d2j represent specific disease elements in the sets D1 and
D2, respectively.

The latest iteration, MISIM v2.0, represents an enhanced version
that incorporates an expanded collection of miRNA-disease
associations. This updated version not only enables more
accurate predictions but also encompasses a broader spectrum of
miRNA similarities. In our study, we leveraged this resource to
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construct a disease-based miRNA similarity network. Additionally,
the semantic similarity between diseases was utilized as well as the
MISIM v2.0 method to calculate the similarity between pairs of
miRNAs. Specifically, we obtained the similarity scores for
1,041 miRNAs through this approach.

2.3 MiRNA similarity network based on GO
annotations of target genes

MIRGOFS was designed to calculate the functional similarity of
miRNAs by utilizing the Gene Ontology (GO) annotations of their
target genes (Yang et al., 2018). Unlike previous approaches,
MIRGOFS considered the entire set of GO annotations for target
genes as a whole, associating each miRNA with a GO set that may
contain redundant terms. The similarity between two miRNAs was
then determined by assessing the similarity between their respective
GO sets. Notably, MIRGOFS demonstrated superior prediction
accuracy compared to existing methods.

MIRGOFS first calculates the semantic similarity between Gene
Ontology (GO) terms, which can be represented graphically by
directed acyclic graphs (DAGs). The semantic similarity between
GO terms, as shown in Eq. 7.

Sim x, y( ) � IC Lx,y( )
IC x( ) + IC Lx,y( )

IC y( ) + IC Lx,y( )
IC Hx,y( )⎛⎝ ⎞⎠ × IC x( ) + IC y( )( ) (7)

The specific calculation for the Information Content (IC) was
shown in Eq. 8.

IC C( ) � − log
Gx| |
Groot| |( ) (8)

where x is a GO term, Gx is the set of genes associated with term x
and Groot is the set of genes related to the root node. Lx,y and Hx,y

denote the sets of Lowest Common Ancestors (LCA) and Highest
Common Descendants (HCD) for the pair (x, y), respectively.

For the calculation of miRNA similarity, MiRGOFS has also
undergone relevant improvements. The weight wx of each GO term
is calculated based on the cumulative hypergeometric distribution.
Assuming that there are N genes annotated with GO terms in the
database, withM genes annotated with term x and for a given miRNA
with n target genes, where k genes are annotated with term x, the
following Eq. 9 holds.

wx � − log 1 −∑k−1
i�0

Ci
M × Cn−i

N−M
Cn

N

⎛⎝ ⎞⎠ (9)

Finally, the similarity between the sums of two miRNAs was
calculated based on the weighted Euclidean distance, as shown in
Eq. 10:

Simmq,mt �
������������������∑n
i�1

Sim x,B( ) × wx( )2
√

(10)

where n is the number of non-redundant GO terms associated with
miRNA mq andB is the set of GO terms associated withmiRNA mt.
In this study, the MIRGOFS method was employed to calculate the
similarity between 1,063 miRNAs.

2.4 MiRNA similarity network based on
protein-protein interactions of target genes

Protein is the product of miRNA target genes. The
miRFunSim method was proposed based on graph theory (Sun
et al., 2013), utilizing the protein-protein interaction network
(PPIN) and the association between miRNA and target genes to
predict the functional similarity between miRNAs. Given two
miRNAs of interest, denoted as m1 and m2, the miRFunSim
method first obtained the target gene lists for each miRNA. These
target genes were then mapped onto the PPIN, creating a
subnetwork of PPIN relationships of the target genes. Finally,
the shortest path lengths between the target genes were calculated
as the distances between them. The functional similarity between
m1 and m2 was defined as the inverse of the average pairwise
distance between their target gene lists. The specific calculation
equation was expressed in Eq. 11:

miRFunSim m1, m2( ) � N∑i∈Tm1
∑j∈Tm2

Dist i, j( ) (11)

where Tm1 and Tm2 represent the target gene lists for m1 and m2,
respectively. The variables i and j denote specific genes within the
sets Tm1 and Tm2, n is the number of paths in the PPIN subnetwork,
and Dist(i, j) is the distance between target genes i and j. Applying
the aforementioned calculation methods to the two datasets
mentioned earlier, a miRNA similarity network based on protein-
protein interactions with target genes was obtained,
comprising 495 miRNAs.

2.5 Construction of a miRNA-miRNA
association network

In this section, three miRNA similarity networks (miRSN-
DA, miRSN-GOA, and miRSN-PPI) were fused using the
averaging method, and the resulting fused similarity network
served as the miRNA-miRNA association network. For example,
the fusion process of miRSN-DA and miRSN-GOA, is shown as
follows. Firstly, the intersection of the miRNAs from these two
miRNA similarity matrices was obtained. It enabled us to identify
the common miRNAs present in both networks. Secondly, the
two miRNA similarity matrices individually by removing the
similarity information for miRNAs were processed that did not
appear in the intersection. Consequently, two miRNA similarity
matrices with matching row and column dimensions were
obtained. Thirdly, the two similarly shaped miRNA similarity
matrices were averaged to generate a fused similarity matrix
exclusively for the intersecting miRNAs. Finally, we incorporated
the similarity information for miRNAs that existed only in the
individual matrices into the fused similarity matrix. This
integration step allowed us to achieve the desired fused
miRNA similarity matrix for the miRSN-DA and miRSN-GOA
networks. By following this fusion procedure, the miRSN-DA
and miRSN-GOA networks were successfully merged, and
analogous steps were applied to fuse other miRNA similarity
networks as well.
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2.6 Random walk with restart

The random walk with restart algorithm is an effective network
analysis algorithm that captures node proximity within a network. It
has found widespread application in bioinformatics (Valdeolivas
et al., 2019). In this study, we employed this method to identify
closely related nodes in the miRNA-miRNA association network.
The algorithm initiates from a seed node in the network, and at each
step, it randomly selects a neighboring node or returns to the
original node. The ultimate objective of our study was to solve
Eq. 12:

r � cWr + 1 − c( )e (12)
where c is the restart probability, with a magnitude between (0, 1).
W is the transition probability matrix, each element Wij in the
transition probability matrix represents the probability from node i
to node j, in the miRNA-miRNA association network, it represents
the similarity between two nodes, e is the initial vector, and r is the
final vector. As the number of iteration increase, the r node will
eventually converge, resulting in a probability score. A lower score
indicates a weaker association with the seed node of the random
walk. In this study, the differentially expressed miRNAs were
employed as seed nodes for conducting the random walk with
restart method on the miRNA-miRNA association network. The
algorithm was executed until convergence was achieved.
Subsequently, we identified the nodes with non-zero random
walk probabilities, indicating their significance in the network.
These nodes were considered as expanded miRNAs, and their
collective information was utilized to generate the expanded
miRNA list. To further enhance our analysis, the expanded
miRNA list was merged with the user-input miRNA list. This
merged list was then subjected to enrichment analysis using the
MHIF-MSEA method. This comprehensive approach allowed us to
explore the functional enrichment of the combined miRNA set and
gain insights into their potential biological implications.

2.7 MHIF-MSEA model

Finally, a functional enrichment analysis model was developed
based on the miRNA-miRNA association network, which integrated
heterogeneous information from multiple sources. This model
aimed to identify functional enrichment patterns associated with
miRNAs. Instead of directly conducting functional enrichment
analysis on the miRNA list, the model employed a mapping
strategy. Initially, the nodes in the miRNA list were mapped onto
the miRNA-miRNA association network, enabling the identification
of seed nodes for subsequent random walks. The random walk with
restart algorithm was then applied to explore network nodes closely
connected to the seed nodes within the miRNA-miRNA association
network. The algorithm iteratively converged until all nodes were
considered. Following convergence, nodes with random walk
probability scores in the top 50% were selected as a set closely
associated with the miRNA list. These nodes were subsequently
merged with the original miRNA list, generating an expanded
miRNA list that encompassed both the seed nodes and the
closely connected nodes from the miRNA-miRNA association

network. To evaluate the functional enrichment of the expanded
miRNA list, enrichment analysis was performed using the Over-
Representation Analysis (ORA) method. This analysis technique
enabled the identification of functional categories or biological
processes that exhibited significant enrichment within the
expanded miRNA list. By applying this comprehensive approach,
valuable insights into the functional implications of the miRNA set
were obtained. Regarding the selection of nodes obtained after the
random walk with restart, we tried four ratios, 30%, 40%, 50%, and
60%. The experimental results show that the enrichment analysis
effect of the 50% ratio is the best (see Supplementary Table S4).

In enrichment analysis, the incorporation of a curated
knowledge base for miRNAs enhances the accuracy of the
analysis. TAM 2.0, which has undergone extensive manual
literature review, has substantially expanded the knowledge base,
making it the most comprehensive and reliable server for
conducting direct miRNA-based enrichment analysis. From TAM
2.0, we extracted a high-quality annotated miRNA collection
knowledge base. This knowledge base consists of 1,412 miRNA
collections, encompassing a total of 1,714 miRNA precursors. The
meticulous curation process employed in TAM 2.0 ensures the
reliability and thoroughness of the miRNA collection
information. Utilizing this rich knowledge base enhances the
quality and reliability of our enrichment analysis, providing a
solid foundation for further investigations.

The miRNA functional enrichment analysis relies on the
application of the hypergeometric distribution and p-value testing
to assess the statistical significance of the overlap between the
miRNA list of interest and the miRNA collection. By calculating
the p-value, the level of statistical significance associated with the
enrichment analysis was determined. A lower p-value indicates a
more significant result, suggesting a higher enrichment of miRNAs
within a specific pathway or category. In this analysis, the commonly
adopted threshold for p-values is set at 0.05. This threshold helps
determine whether the observed overlap between the miRNA list
and the miRNA collection is statistically significant. If the calculated
p-value is below this threshold, it suggests that the observed
enrichment is unlikely to have occurred by chance alone. Thus, a
p-value below 0.05 indicates a meaningful enrichment of miRNAs in
the particular pathway or category under investigation. The formula
for calculating the p-value is shown in Eq. 13:

P − value � ∑M
i�m

Ci
MC

n−i
N−M

Cn
N

(13)

where n is the number of miRNAs in the differentially expressed
miRNA list or the miRNA list of interest, N is the total number of
miRNAs in the reference miRNA collection, M is the number of
miRNAs in a specific functional set, and m is the intersection set
between the input miRNA list and the specific miRNA functional
set. After deriving the P-value, the Benjamini-Hochberg method was
used to calculate the corrected p-value, referred to as the False
Discovery Rate (FDR), to mitigate the problem of false positives.
Smaller p-values and FDR values indicate a more significant
enrichment result, and an FDR threshold of < 0.05 is used as the
criterion for filtering significantly enriched results.

In this study, we developed a novel model called MHIF-MSEA,
and the flowchart of it is shown in Figure 1.
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3 Results

In this study, miRNA differential expression profiles for breast
cancer, hepatocellular carcinoma, and colon cancer were collected
and subjected to preprocessing steps. From these profiles, a list of
differentially expressed miRNAs was extracted, specifically for

subsequent case analysis investigations. In the comparative
analysis and selection of fused miRNA similarity networks, we
identified four distinct fusion networks of interest. These
included the fusion of miRSN-DA and miRSN-GOA, the fusion
of miRSN-DA and miRSN-PPI, the fusion of miRSN-GOA and
miRSN-PPI, and the overall fusion of miRSN-DA, miRSN-GOA,

FIGURE 1
Flowchart of the MHIF-MSEA model. (A) Two miRNA similarity networks were constructed based on miRNA-disease associations and GO
annotations of target genes, respectively. (B) Two miRNA similarity networks were fused by taking the average. The fused network served as the miRNA-
miRNA association network for theMHIF-MSEAmodel. (C) The expandedmiRNA list was obtainedwith network randomwalkwith the restart method and
merged with the original miRNA list, followed by functional enrichment analysis.
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and miRSN-PPI. To identify the optimal fused network for miRNA-
miRNA association network, we contrasted the results of the
enrichment analysis across the three different case scenarios.
Following the selection of the optimal fused network, we
conducted enrichment analysis on two specific cases: breast
cancer and hepatocellular carcinoma. The MHIF-MSEA model
was employed for this analysis. Subsequently, a detailed
discussion of the experimental outcomes was presented,
highlighting the implications of the results.

3.1 Collection of differential expression
miRNA sets of diseases

The miRNA expression profile data for breast cancer,
hepatocellular carcinoma, and colon cancer were collected from
The Cancer Genome Atlas Program (TCGA). Subsequently, we
conducted differential expression analysis on these datasets to
identify miRNAs that exhibited significant expression changes
across different cancer types. This analysis aimed to uncover
miRNAs that could potentially serve as biomarkers or play
crucial roles in the development and progression of these
cancers. The miRNA progenitor expression profile data for breast
cancer were downloaded from TCGA, comprising 1,085 tumor
tissue samples and 104 normal tissue samples. For hepatocellular
carcinoma, the expression profile data consist of 374 tumor tissue
samples and 50 normal tissue samples, while colon cancer
expression profile data consisted of 195 tumor tissue samples and
198 normal tissue samples. Differential expression analysis of the
downloaded miRNA expression profiles was performed using the
DESeq2 package (Love et al., 2014) in the R platform. Figure 2 shows
volcano plots illustrating differentially expressed miRNAs in breast
cancer and hepatocellular carcinoma. The x-axis represents log2 FC,
with larger absolute values indicating more significant differential
expression of miRNAs. The y-axis represents − log10(FDR), with

higher values indicating more significant differential expression of
miRNAs. Green, red, and black dots in the figures represent
miRNAs with low expression, high expression, and normal
expression in tumor tissues, respectively. In breast cancer,
195 differentially expressed miRNAs were identified, including
121 upregulated and 74 downregulated miRNAs. For
hepatocellular carcinoma, 175 differentially expressed miRNAs
were identified, including 152 upregulated and 23 downregulated
miRNAs. In colon cancer, 199 differentially expressed miRNAs were
identified, including 142 upregulated and
57 downregulated miRNAs.

3.2 MiRNA-miRNA association network

In this study, four fusion scenarios were investigated, namely the
fusion of miRSN-DA and miRSN-GOA, the fusion of miRSN-DA
and miRSN-PPI, the fusion of miRSN-GOA and miRSN-PPI, and
the total fusion of miRSN-DA, miRSN-GOA, and miRSN-PPI. The
focus of our experiments was on three cancer cases: colon cancer,
breast cancer, and hepatocellular carcinoma. The objective was to
explore differentially expressed miRNAs within these cancer types.
For each case, we employed single miRNA similarity networks and
various fused miRNA similarity networks as input networks. These
networks were then utilized in combination with random walk with
restart algorithms to expand the original miRNA lists specific to
each cancer type. We compared the performance of the enrichment
analysis results when the similarity coefficient of the random walk
with restart was 0.6, 0.7, 0.75, 0.8, and 0.85. In the miRNA-miRNA
association network, the edges greater than the similarity coefficient
were retained and those less than the similarity coefficient were
deleted. The experimental results showed that choosing 0.6 as the
similarity coefficient achieved the optimal effect for enrichment
analysis (see Supplementary Table S5). Subsequently, enrichment
analysis was conducted on the expanded miRNA lists. To compare

FIGURE 2
Volcano plot of differentially expressed miRNAs in breast cancer (A) and hepatocellular carcinoma (B).
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the outcomes of the enrichment analysis, key evaluation metrics
such as p-value, FDR value, and hit counts were employed. The
results of the enrichment analysis for the three cases are presented in
Tables 1–3. The first row of each table, labeled as “None,” represents
the enrichment analysis performed on the original list of
differentially expressed miRNAs. The subsequent rows illustrate
the results of the enrichment analysis conducted on the expanded
miRNA lists using the respective miRNA similarity networks.
Within each table, the p-values, FDR values, and hit counts are
specific to the enrichment analysis results corresponding to the
particular cancer type mentioned. For instance, in Table 1, all the
p-values, FDR values, and hit counts are associated with the
“Carcinoma, Colon” entry in the enrichment analysis results.
Similarly, in Table 2, these metrics pertain to the “Carcinoma,
Breast” entry in the enrichment analysis results.

The colon cancer miRNA set consisted of 315 miRNAs, out of
which only 91 miRNAs overlapped with the original list of
differentially expressed miRNAs, resulting in a hit rate of 28.89%.
When using miRSN-DA to expand the colon cancer miRNA list, we
observed an increase to 173 overlapping miRNAs. Similarly, miRSN-
GOA and miRSN-PPI resulted in 170 and 173 overlapping miRNAs,
respectively. However, when employing the fusion network of
miRSN-DA and miRSN-GOA for miRNA list expansion, we

obtained 204 overlapping miRNAs with the colon cancer miRNA
set. This increased the hit rate to 64.76%, indicating a significant
improvement of 35.87%. The utilization of the fused miRNA
similarity network as input for the random walk with restart
allowed for a more comprehensive exploration of differentially
expressed miRNAs in colon cancer. This approach improved the
hit rate and enhanced the power of the enrichment analysis. However,
when the network fused from all three networks was used to expand
the list of differentially expressed miRNAs for colon cancer, the hit
rate did not improve. In fact, both the p-value and FDR value
increased. This trend was more evident in the enrichment analysis,
where the number of hit miRNAs decreased by 3, and the p-value and
FDR increased. There are a couple of possible explanations for these
observations. Firstly, miRSN-PPI contains information on only
495 miRNA-miRNA similarity pairs, whereas miRSN-DA and
miRSN-GOA include a larger number of miRNAs with 1,041 and
1,063, respectively. It is likely that the miRNA similarity information
in miRSN-PPI is already covered by these two networks, resulting in
no improvement in the enrichment analysis after fusion with the third
network. Secondly, miRSN-PPI might contain some redundant
miRNA similarity information, which slightly reduces the
effectiveness of the enrichment analysis when using the fusion of
all three networks.

TABLE 1 Enrichment analysis results for the expanded differentially expressed miRNA lists in colon cancer using various miRNA similarity networks.

miRNA similarity network p-value FDR value Hit counts

None 3.22e−23 1.01e−20 91

miRSN-DA 6.41e−39 1.37e−36 173

miRSN-GOA 3.21e−31 1.03e−28 170

miRSN-PPI 1.82e−34 5.83e−32 173

miRSN-DA + miRSN-GOA 1.51e−55 2.43e−53 204

miRSN-DA + miRSN-PPI 4.28e−37 9.18e−35 171

miRSN-GOA + miRSN-PPI 1.69e−30 5.44e−28 170

miRSN-DA + miRSN-GOA 1.67e−50 2.69e−48 198

+ miRSN-PPI

TABLE 2 Enrichment analysis results for the expanded differentially expressed miRNA lists in breast cancer using various miRNA similarity networks.

miRNA similarity network p-value FDR value Hit counts

None 2.92e−29 6.11e−27 103

miRSN-DA 2.44e−47 7.84e−45 193

miRSN-GOA 1.18e−32 1.89e−30 182

miRSN-PPI 2.28e−36 3.66e−34 187

miRSN-DA + miRSN-GOA 2.17e−75 6.95e−73 238

miRSN-DA + miRSN-PPI 6.81e−47 2.18e−44 194

miRSN-GOA + miRSN-PPI 1.68e−29 2.07e−27 179

miRSN-DA + miRSN-GOA 3.92e−75 1.62e−72 238

+ miRSN-PPI
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For the original differentially expressed miRNA list in colon
cancer, the enrichment analysis yielded a p-value of 3.22e−23 and an
FDR value of 1.01e−20. In contrast, the colon cancer miRNA list
expanded through MHIF-MSEA showed significantly improved
results in enrichment analysis, with a p-value of 1.51e−55 and an
FDR value of 2.43e−53. This indicated that the enrichment analysis
results for the expanded miRNA list were more pronounced.
Furthermore, the experimental results presented in Tables 2, 3
demonstrated that the expansion of the original differentially
expressed miRNA lists for breast cancer and hepatocellular
carcinoma using the fused similarity network of miRSN-DA and
miRSN-GOA yielded the highest hit counts. Simultaneously, these
expansions resulted in the smallest p-value and FDR value. These
observations suggest that the miRNA list expanded through the
fused miRNA similarity network outperforms the original list in
terms of enrichment analysis for breast cancer and hepatocellular
carcinoma. Consequently, in the subsequent specific study and
analysis of the cases, the fused network of miRSN-DA and
miRSN-GOA was chosen as the miRNA-miRNA association
network for the MHIF-MSEA model (see Supplementary Table
S6). This fused network served as the input for the random walk
with restart, which expanded the differentially expressed miRNA
list. Subsequently, the MHIF-MSEA model performed enrichment
analysis on the expanded differentially expressed miRNA list.

3.3 Case studies of miRNA set
enrichment analysis

In the previous section, we have already verified that selecting
the fused network of miRSN-DA and miRSN-GOA as the miRNA-
miRNA association network for the MHIF-MSEA model provides
optimal enrichment analysis results. To provide further validation of
the effectiveness of the MHIF-MSEA model, we conducted a
comprehensive and detailed analysis of the enrichment analysis
results for the breast cancer and hepatocellular carcinoma cases.
This analysis involved comparing the results obtained from the
original differential expression list with those obtained using the
expanded miRNA list generated by the MHIF-MSEA model.

The original breast cancer differential expression gene list
overlapped with the 103 miRNAs from the breast cancer miRNA
set, which consisted of 346 miRNAs, resulting in a hit rate of 29.77%.
After expansion by MHIF-MSEA, the expanded miRNA list
overlapped with 238 miRNAs from the breast cancer miRNA set,
achieving an increased hit rate of 68.78%, representing an
improvement of 39.01%, as shown in Figure 3A. In the original
differential expression miRNA list, the p-value for breast cancer
enrichment analysis was calculated to be 2.92e−29, with an FDR value
of 6.11e−27. In contrast, the expanded miRNA list enriched by
MHIF-MSEA yielded a significantly lower p-value of 2.17e−75 and
an FDR value of 6.95e−73. Therefore, the MHIF-MSEA expanded
miRNA list showed a more pronounced enrichment for breast
cancer compared to the original list.

In addition, when examining the top 15 significantly enriched
disease entries in the original differentially expressed miRNA list for
breast cancer, the enrichment analysis results for the list expanded
by MHIF-MSEA were found to be even more significant. This is
evident from the data presented in Table 4.

The MHIF-MSEA model not only successfully identified all
286 significantly enriched disease entries in the original breast
cancer differential expression gene list but also discovered an
additional 96 disease entries enriched in the expanded list
generated by MHIF-MSEA. Table 5 provides an overview of the
top 10 significantly enriched disease entries uniquely identified by
the MHIF-MSEA model. Notably, diseases such as Leukemia,
Stroke, Idiopathic Pulmonary Fibrosis, and others were
exclusively recognized by the MHIF-MSEA model.

Recent research studies have provided supporting evidence for
the findings of the MHIF-MSEA model, demonstrating its ability to
identify diseases that may be missed by traditional enrichment
analysis methods with high accuracy. For instance, a study
identified the HER2 pathway in breast cancer as a potential
driver of pulmonary fibroblast invasion, highlighting its relevance
as a target for idiopathic pulmonary fibrosis treatment and
intervention (Liu et al., 2022). Moreover, a research has
confirmed a significant increase in the risk of stroke in female
patients with a history of breast cancer (Nilsson et al., 2005).
Another study confirmed the association between chemotherapy

TABLE 3 Enrichment analysis results for the expanded differentially expressed miRNA lists in hepatocellular carcinoma using various miRNA similarity
networks.

miRNA similarity network p-value FDR value Hit counts

None 2.81e−22 1.74e−19 86

miRSN-DA 3.81e−52 2.44e−49 196

miRSN-GOA 1.37e−32 4.39e−30 181

miRSN-PPI 1.65e−30 5.31e−28 174

miRSN-DA + miRSN-GOA 1.50e−77 9.61e−75 237

miRSN-DA + miRSN-PPI 6.29e−48 4.05e−45 193

miRSN-GOA + miRSN-PPI 5.61e−33 3.60e−30 183

miRSN-DA + miRSN-GOA 3.44e−75 2.21e−72 234

+ miRSN-PPI
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in breast cancer patients and an elevated risk of leukemia (Cole and
Strair, 2010). Additionally, a study reported a case of basal cell
carcinoma following radiotherapy for breast cancer in 2021
(Marques-Antunes et al., 2021). Moreover, the associations
between breast cancer and pulmonary sarcoidosis, ischemic
diseases, spinal cord injuries, Ewing’s sarcoma and Lymphoma
have been validated in the literature (Dong et al., 2021; Sawatzky
et al., 2021; Altshuler et al., 2023). Collectively, these findings
provide further confirmation of the MHIF-MSEA model’s ability
to accurately identify diseases that traditional enrichment analysis
methods may overlook.

The other case analysis in our study is hepatocellular carcinoma,
the enrichment analysis was performed with both the original

differentially expressed miRNA list and the list expanded by
MHIF-MSEA. As shown in Figure 3B, the hepatocellular
carcinoma disease miRNA set contained 338 miRNAs and only
86 miRNAs from the original differentially expressed miRNA list,
with a hit rate of 25.44%. Conversely, the expanded miRNA list by
MHIF-MSEA showed an overlap of 237 miRNAs with the
hepatocellular carcinoma miRNA set, resulting in an increased
hit rate of 70.12%, marking a 44.68% improvement. In the
original differentially expressed miRNA list, hepatocellular
carcinoma yielded a calculated p-value of 2.81e−22 and an FDR
value of 1.74e−19. In contrast, the hepatocellular carcinoma miRNA
list expanded through MHIF-MSEA showed a calculated p-value of
1.50e−77 and an FDR value of 9.61e−75. The MHIF-MSEA expanded

FIGURE 3
Percentage of miRNA hits in the original differentially expressed miRNA list and MHIF-MSEA expanded list for breast cancer (A) and hepatocellular
carcinoma (B).

TABLE 4 Comparison of the top 15 significantly enriched diseases in breast cancer original differentially expressedmiRNA list and theMHIF-MSEA expanded
list.

Disease p-value of origin
list

FDR value of origin
list

p-value of expanded
list

FDR value of expanded
list

Carcinoma, Hepatocellular 1.72e−34 1.08e−31 3.47e−83 2.22e−80

Carcinoma, Breast 2.92e−29 6.11e−27 2.17e−75 6.95e−73

Osteosarcoma 7.18e−29 1.13e−26 3.22e−49 2.29e−47

Carcinoma, Lung. Non-Small-
Cell

1.22e−28 1.53e−26 1.97e−55 2.52e−53

Carcinoma, Gastric 3.39e−28 3.55e−26 2.28e−63 3.66e−61

Carcinoma, Colon 1.23e−27 1.10e−25 3.16e−65 6.75e−63

Carcinoma, Prostate 7.96e−27 6.24e−25 5.60e−51 5.12e−49

Glioma 2.45e−24 1.54e−22 5.96e−47 3.47e−45

Carcinoma, Lung 1.96e−23 1.12e−21 3.52e−48 2.26e−46

Carcinoma, Ovarian 1.69e−21 8.84e−20 4.77e−43 2.55e−41

Carcinoma, Cervical 3.71e−20 1.79e−18 1.85e−39 7.92e−38

Adenocarcinoma, Lung 2.84e−19 1.28e−17 4.03e−36 1.52e−34

Carcinoma, Pancreatic 1.21e−18 4.48e−17 1.10e−42 5.44e−41

Glioblastoma 1.29e−17 4.48e−16 8.17e−33 2.28e−31

Carcinoma, Bladder 2.51e−17 8.29e−16 1.23e−32 3.28e−31
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miRNA list provided a more significant enrichment in
hepatocellular carcinoma compared to the original list.

In this study, the MHIF-MSEA model was applied to
investigate key biological pathways in hepatocellular
carcinoma, resulting in the identification of 84 significantly
enriched functional pathways. The results of the significantly
enriched pathways, both for the MHIF-MSEA expanded list and
the original list, are depicted in Figure 4. The findings revealed
that hepatocellular carcinoma is associated with a significant
enrichment of pathways related to apoptosis, inflammation, cell

cycle, immune response, cell death, regulation of stem cells, cell
proliferation, and more. These pathways have been validated in
the existing literature and are closely linked to the occurrence and
progression of hepatocellular carcinoma (Matsuda et al., 2013;
Chang et al., 2018; Keenan et al., 2019; Liu et al., 2020; Demirtas
and Gunduz, 2021; Hu et al., 2022). The results of the enrichment
analysis not only demonstrated high consistency between the
expanded list generated by MHIF-MSEA and the original list but
also indicated better performance for the expanded list by
exhibiting significantly higher enrichment levels.

TABLE 5 The top 10 significantly enriched diseases only identified by MHIF-MSEA among breast cancer differentially expressed miRNAs.

Disease p-value of expanded list FDR value of expanded list

Leukemia, Lymphocytic, Chronic, B-Cell 2.07e−11 1.01e−10

Stroke 4.49e−8 1.40e−7

Idiopathic Pulmonary Fibrosis 2.43e−6 5.48e−6

Focal Segmental Glomerulosclerosis 3.15e−6 6.99e−6

Carcinoma, Basal Cell 5.98e−5 1.08e−4

Pulmonary Sarcoidosis 2.49e−4 4.03e−4

Ischemic Diseases 2.63e−4 4.15e−4

Spinal Cord Injuries 2.63e−4 4.15e−4

Ewing’s Sarcoma 7.58e−4 1.13e−3

Lymphoma, Burkitt’s 1.87e−3 2.67e−3

FIGURE 4
The top 20 significantly enriched functional entries exported by MHIF-MSEA among hepatocellular carcinoma differentially expressed miRNAs.
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The MHIF-MSEA model not only successfully identified all
46 significantly enriched functional pathways in the original list but
also discovered an additional 21 biological pathways that were
exclusively enriched in the MHIF-MSEA model. This can be
observed in Figure 5, which highlights the pathways uniquely
identified by MHIF-MSEA. These findings indicate that the
MHIF-MSEA model has the capability to uncover novel and
distinct pathways that may not be captured by traditional
enrichment analysis methods. Notably, pathways such as “Tumor
Suppressor MiRNAs” (FDR = 1.28e−13) and “Innate Immunity”
(FDR = 1.29e−9) were exclusively identified by MHIF-MSEA.

Hepatocellular carcinoma is closely associated with alterations
in glucose metabolism, as hepatocellular carcinoma cells exhibit
increased glucose uptake through glucose transporters to support
their high proliferation rate (Mossenta et al., 2020). Innate immune
cells have been identified as key contributors to early symptoms of
hepatocellular carcinoma, such as liver cirrhosis, making them a
promising therapeutic target for hepatocellular carcinoma
(Roderburg et al., 2020). Additionally, the significantly enriched
functional pathways identified by the MHIF-MSEA model include
Insulin Resistance, Adipogenesis, and Hepatotoxicity, among others.
These pathways have been validated in the literature (Siddique and
Kowdley, 2011; Jiang et al., 2021; Singh et al., 2023). The findings
from this study demonstrate that MHIF-MSEA has the capability to
identify important biological pathways that are often overlooked by
conventional methods. This provides new perspectives and insights
for exploring the functional roles of miRNAs and devising
appropriate treatment strategies for diseases such as
hepatocellular carcinoma.

4 Conclusion and discussion

In this study, we proposed the miRNA set enrichment analysis
model based on multi-source heterogeneous information fusion
(MHIF-MSEA). For this research, three distinct types of miRNA
functional similarity networks were collected initially. Then, various
fusion strategies were applied to combine the three miRNA
functional similarity networks, selecting the best fused miRNA
similarity network as the miRNA-mRNA association network.
Finally, the miRNA-miRNA association network was analyzed
using a random walk with restart algorithm to identify miRNAs
closely related to the miRNA list of interest. This expanded the
original miRNA list for subsequent enrichment analysis. TheMHIF-
MSEA model offers a novel approach to miRNA functional
enrichment analysis, overcoming the limitations of existing
methods. The miRNA-mRNA association network was
constructed using the fusion network of miRSN-DA and miRSN-
GOA, which was identified as the optimal choice for the MHIF-
MSEA model based on three cancer cases (colon cancer, breast
cancer, and hepatocellular carcinoma). Further analysis of the
enrichment results from breast cancer and hepatocellular
carcinoma confirmed the effectiveness and reliability of the
MHIF-MSEA model.

Although MHIF-MSEA has demonstrated satisfactory results in
functional enrichment analysis, there are opportunities for further
improvement. Firstly, the construction of the miRNA-miRNA
association network in this study only considered three miRNA
functional similarity networks, neglecting other types of miRNA
functional annotation networks, such as expression-based miRNA

FIGURE 5
Significantly enriched functional entries only identified by MHIF-MSEA among hepatocellular carcinoma differentially expressed miRNAs.

Frontiers in Genetics frontiersin.org12

Li et al. 10.3389/fgene.2024.1375148

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1375148


functional annotation networks. This omission may lead to the loss
of relevant miRNA association information. To address this
limitation, it is essential to collect and integrate diverse
heterogeneous miRNA functional annotation networks. By
incorporating a broader range of miRNA functional information
sources, a more comprehensive understanding of miRNA
associations can be achieved, thereby better representing the
intricate network relationships between miRNAs. Furthermore,
the method used to integrate miRNA similarity networks in this
study was relatively simplistic and requires further refinement. To
enhance the accuracy and comprehensiveness of miRNA functional
enrichment analysis, advanced techniques like Graph Convolutional
Networks (GCN) can be employed to fuse different types of miRNA
functional annotation networks. GCN-based approaches can
effectively capture the complex association information between
miRNAs, leading to more comprehensive and accurate results in
miRNA functional enrichment analysis.

In summary, there is still potential for improvement in MHIF-
MSEA regarding functional enrichment analysis. Future versions of
MHIF-MSEA should consider incorporating additional categories of
miRNAs, integrating various miRNA functional information
sources into the miRNA-miRNA network, and developing more
efficient methods for expanding miRNA lists of interest. These
advancements will contribute to enhancing the performance and
capabilities of MHIF-MSEA in miRNA functional
enrichment analysis.
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