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Climate change constraints on horticultural production and emerging consumer

requirements for fresh and processed horticultural products with an increased

number of quality traits have pressured the industry to increase the efficiency,

sustainability, productivity, and quality of horticultural products. The

implementation of Agriculture 4.0 using new and emerging digital technologies

has increased the amount of data available from the soil–plant–atmosphere

continuum to support decision-making in these agrosystems. However, to date,

there has not been a unified effort to work with these novel digital technologies

and gather data for precision farming. In general, artificial intelligence (AI),

including machine/deep learning for data modeling, is considered the best

approach for analyzing big data within the horticulture and agrifood sectors.

Hence, the terms Agriculture/AgriFood 5.0 are starting to be used to identify the

integration of digital technologies from precision agriculture and data handling

and analysis using AI for automation. This mini-review focuses on the latest

published work with a soil–plant–atmosphere approach, especially those

published works implementing AI technologies and modeling strategies.

KEYWORDS

climate change, Agriculture 5.0, digital agriculture, remote sensing, machine/
deep learning
1 Introduction

In the past two decades, agriculture in general has been affected by market challenges

driven by climate change adversities and global consumer pressures pertaining to the

quality and sustainability of agricultural products, which have forced the horticulture

and agrifood industries to be more sustainable and ethical to minimize their

environmental footprints. Implementing Agriculture 4.0 using new and emerging
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digital technologies has enhanced the application of precision

agriculture (PA) through technologies such as remote sensing,

robotics, digital sensor networks, and the Internet of Things (IoT).

The latest technologies have helped to increase the efficiency

of and sustainability targets for horticultural production

(Javaid et al., 2022; Maffezzoli et al., 2022). However, digital

technologies have not been broadly implemented throughout all

horticulture and agrifood production and supply chains. There is

still a disconnect and lack of feedback/forward information among

agricultural processes, food processing, packaging, and consumer

appreciation/acceptability (Fuentes et al., 2021b).

New and emerging technologies, such as artificial intelligence (AI)

and related disciplines, including machine/deep learning, robotics,

computer vision, biometrics for sensory and consumer analysis, and

digital twins, can help to fill the gaps within the agrifood sectors and

production and supply chains. By implementing AI, a new agrifood

revolution, or Agriculture 5.0, can be discussed. These advances reflect

the latest figures reported on AI, which suggest that in nearly 98% of

scientific fields, including agriculture and horticulture, AI has already

been implemented in some capacity, with 5.7% of all peer-reviewed

research papers published worldwide focused on AI applications

(Hajkowicz et al., 2022). Furthermore, it is expected that AI

implementation in agriculture, with the main objectives of

monitoring crops, soil analysis, increasing crop yield, and, ultimately,

reducing costs, will grow by 26% globally between 2019 and 2025

(Research Markets, 2020). Nowadays, some type of technology for

precision agriculture is being used in 15%–40% of large farms in the

United States, 20% of those in Australia and Canada, 85% of those in

Scotland, 43% of those in Ireland, and 30% of those in Germany, along

with 68% of small farms in Western Europe (Kinhal, 2022).

In line with findings from the aforementioned report, there has

been a considerable increase in the number of publications related

to digital agriculture/horticulture in the past 5 years that contain

descriptions of new sensor technologies applied to the agrifood

sector, from production to processing, and acceptability by

consumers using sensory analysis and biometrics (Gonzalez Viejo

et al., 2019). However, much of the research has been limited to

digital technologies and model development for only one or two

crops and specific research sites, with minimal or no deployment of

AI models. Hence, there is a need for future research implementing

AI to focus on the independent deployment options for the different

applications and models developed.

This mini-review focuses on the latest published work based on

a soil–plant–atmosphere approach, especially those published

works implementing AI technologies and modeling strategies. It

discusses the advantages and disadvantages of the methodologies

proposed and how they should be tested, validated, and integrated

throughout agrifood production and supply chains.

2 Digital technologies implemented
for viticulture, pomology, and
soft fruits

This mini-review was based on research papers published in

the past 5 years. As mentioned before, due to the number of
Frontiers in Horticulture 02
publications related to digital technologies in the previous 10

years, it would be impossible to cover all the research on crops

and cultivars that has been conducted so far. Hence, this review

focuses on the information from new and emerging technologies

obtained from the latest papers related to the specific areas of

viticulture (Table 1), pomology (Table 2), and soft fruits (Table 2).
3 Discussion

The research presented in this paper is a fair sample of the latest

research on digital technologies including AI in horticulture.

However, most of it did not report any attempt at deployment of

the models developed, and the majority of the studies that did

include it reported low performance (R2 < 0.52; Tables 1, 2), with

the exception of two studies with deployments on yield prediction

~85% (Table 2). These results reflect the main concern of and

criticism articulated by AI scientists, who state that “even a system

that appears to perform spectacularly in training can make terrible

predictions when presented with novel data in the world”

(Crawford, 2021). Therefore, deploying AI models in horticulture

should be a must for future publications.

Creating a successful AI pilot model starts with identifying

Goldilocks problems in horticulture that can be solved by the

application of AI modeling techniques based on digital sensors and

technologies (Rochwerger and Pang, 2021). Most research is focused

on technologies that address problems at the block, orchard, or

regional scales that do not offer significant advantages compared

with other more established technologies from PA, remote sensing, or

data analysis from meteorological stations (i.e., evapotranspiration

estimation for irrigation scheduling or biotic stress management). On

the other hand, AI models offering assessments of targets at the plant-

by-plant scale or sub-meter scales offer little practical management

information if the management is at a block, orchard, or regional

scale. These Goldilocks problems can be identified for specific crops

and environments. One of the most crucial resources in the

production of horticultural crops that must be managed efficiently

is water. Hence, an increased number of models have been developed

to accurately estimate plant water consumption and increase water

use efficiency, and this has direct implications for fruit yield and fruit

quality traits (Tables 1, 2). The other common targets for AI modeling

are fertilization, canopy management and vigor assessment, pest and

disease detection and management, phenotyping for fruit quality

estimations and crop improvement and yield, among other things.

Moreover, as mentioned before, the management scale, in terms of

temporal and spatial scales, should be similar to the one considered by

the AI model development.

The most common and efficient inputs for AI modeling are

based on data that is relatively easy to collect at the orchard level,

either historically (i.e., management and phenology history,

meteorological data, soil–plant–atmosphere-based sensor

technologies) or through the implementation of new and

emerging sensor technologies based on remote sensing employing

long-range remote sensing via unmanned aerial vehicles (UAV) of

short/proximal range, or manned or unmanned terrestrial vehicles

(UTV) (Fuentes and Gago, 2022). In addition, growers should know
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TABLE 1 Recent applications of digital technologies to viticulture displaying the technology used, the accuracy of the methods or models used, and
details regarding deployment experiments (no = not conducted; % = deployment accuracy).

Application Technology Assessment

Statistical
method to

assess
accuracy

Accuracy Deployment Country Reference

Viticulture

Soil

Remote sensing
imaging

Machine learning

Topsoil moisture area
delimitation

Random forest
—classification

60%–85% No Portugal
(Mendes et al.,

2021)

Remote sensing
imaging

Meteorological
data

Machine learning

Root zone soil moisture
Random forest
ensemble—
regression

R2 = 0.85 No
United
States

(Kisekka et al.,
2022)

Remote sensing
imaging

Thermal infrared
imaging

Soil moisture Particle filtering NR No
United
States

(Lei et al., 2020)

Thermal infrared
imaging

Soil surface temperature None NR No Portugal
(Frodella et al.,

2020)

Phenotyping

RGB and NIR
imaging

Drought phenotyping
Correlation
analysis

R2 = 0.71–0.86 No Italy
(Briglia et al.,

2019)

Computer vision
Near-infrared
spectroscopy

Machine learning

Morphocolorimetry
Grapevine cultivar
classification (16

cultivars)

ANN—
classification

92%–94% No Spain
(Fuentes et al.,

2018)

3D-based
phenotypic data

Quantitative Trait Locus
Mapping

Linear
correlation

R = 0.82–0.93 No Germany (Rist et al., 2022)

E-nose
Machine learning

Cultivar identification

DA—
classification

QDA—
classification

SVM—

classification
ANN—

classification

DA: 98%
QDA: 99%
SVM: 92%
ANN: 99%

No Iran
(Khorramifar
et al., 2022)

RGB Imaging
Deep learning

Cultivar identification
CNN

AlexNet transfer
learning

77.30% No Portugal
(Pereira et al.,

2019)

Depth camera
Computational

geometry
Deep learning

Grape bunch detection
VGG19 deep
neural network

92.52% No Switzerland
(Milella et al.,

2019)

UAV
Multispectral

images
Canopy segmentation

Overestimation
based on:
HSV-based
algorithms
k-means
algorithm

Digital elevation
model

HSV most stable No Italy
(Cinat et al.,

2019)

Remote sensing
imaging (optical
and synthetic
aperture radar)

Kc

Leaf Area Index

Correlation
analysis and

RMSE
estimations

Kc: R
2 = 0.18–0.43

LAI: R2 = 0.28–0.31
No Israel

(Beeri et al.,
2020)

3D imaging Phenotypic traits SVM R2 = 0.70–0.91 No Germany (Rist et al., 2019)
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TABLE 1 Continued

Application Technology Assessment

Statistical
method to

assess
accuracy

Accuracy Deployment Country Reference

Abiotic stress

Robotics
Infrared thermal

radiometry
Environmental

sensor
Multispectral

sensor

Water status monitoring
and mapping

PLS—regression R2 = 0.42–0.57 No Portugal
(Fernández-
Novales et al.,

2021)

Multispectral
imagery

Environmental
data

Infrared thermal
thermography

Stem water potential
Spatial variability

PLS—regression
LDA—

classification

PLS: R2 = 0.63
LDA: 74%

No Spain
(Diago et al.,

2022)

UAV
Aerial shortwave

infrared
Multispectral

imagery

Water stress geospatial
mapping

Linear and
exponential
regression

General model:
R2<0.30

Model per variety:
R2>0.80

No Greece
(Kandylakis
et al., 2020)

VIS-NIR
spectroscopy

Machine learning

Predawn leaf water
potential

ANN-PCA R2 = 0.85 No Portugal
(Tosin et al.,

2022)

Satellite images Stem water potential
Multivariable

linear regression
R2 = 0.84 No Israel

(Helman et al.,
2018)

Hyperspectral
images

Machine learning
Drought

PLS-SVM
PLS-DA

>97% No Croatia
(Zovko et al.,

2019)

NIR
Viticanopy—RBG

images
Machine learning

Berry cell death
ANN—
regression

NIR: R = 0.87
Viticanopy: R =

0.98
No Australia

(Fuentes et al.,
2021a)

NIR
Machine learning

Berry cell death
ANN—
regression

R = 0.94 No Australia
(Fuentes et al.,

2020)

NIR
Machine learning

Volatile phenols and
glycoconjugates

ANN—
regression

R = 0.98 No Australia
(Summerson
et al., 2020)

Thermal infrared
imaging (TI)

NIR
Machine learning

Smoke contamination
detection in leaves

Guaiacol
glycoconjugates in
berries and wine

TI: ANN—
classification
NIR: ANN—
regression

TI: 96%
NIR: R = 0.97

No Australia
(Fuentes et al.,

2019)

Biotic stress

Thermal imaging
Machine learning

Downey mildew early
detection

SVM—

classification
81.6% No Israel

(Cohen et al.,
2022)

Machine vision
(MV)

Hyperspectral
imaging (HI)

Machine learning

Downey mildew
detection

MV: Linear
correlation
HI: CNN

MV: R2 = 0.76
HI: 81%

No Spain
(Hernández
et al., 2021)

UAV
Computer vision
Machine learning

Mapping of Cynodon
dactylon

Decision tree 98% No Spain
(de Castro et al.,

2019)

UAV
Multispectral

imaging
Machine learning

Detection of Flavescence
doreé

SVM—

classification
DA—

classification

SVM: 88%–98%
DA: 88%–100%

No France
(Al-Saddik et al.,

2019)

(Continued)
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if they have the correct data to assess the targets of interest at the

required temporal and spatial resolution. For example, the use of AI

models based on Landsat multispectral data (30 m× 30 m pixel) to

assess the incidence of water stress at the plant-per-plant level of a

tomato crop would be ineffective, since at the spatial resolution scale

the pixel footprint considers over 200 plants, and from the temporal

resolution having an image every 15 days (satellite overpass) may

not be appropriate for detecting water stress with daily fluctuations.

One of the main principles to consider when modeling using AI

is the parsimony of input data compared with the targets
Frontiers in Horticulture 05
considered. In other words, the inputs for AI modeling should be

simpler to acquire than the targeted information. Furthermore, AI

models developed should offer a certain level of automation in data

acquisition, processing, and decision-making information

to growers.

Many early criticisms of AI modeling were that they were “black

boxes”, in the sense that there was no option to see how models

treated the data that arrived at specific targets, especially in cases of

unsupervised machine learning or deep learning, in which the

machine automatically extracts parameters of importance from
TABLE 1 Continued

Application Technology Assessment

Statistical
method to

assess
accuracy

Accuracy Deployment Country Reference

Computer vision
Deep learning

Differentiation between
downy mildew and
spider mite in leaves
with visible signs

CNN 0.94 No Spain
(Gutiérrez et al.,

2021)

RGB imaging
Deep learning

Detection of diseases CNN 67%–83% No Greece
(Morellos et al.,

2022)

Hyperspectral
sensors

Detection of grapevine
leaf stripe disease

NR NR NR Brazil
(Junges et al.,

2018)

RGB imagery
Multispectral

imaging
Thermal infrared

imaging
Machine learning

Pest and disease
detection

Multi-source
data fusion

96% No China
(Yang et al.,

2021)

Hyperspectral
images

Machine learning

Red blotch virus and
grapevine leafroll-
associated viruses

CNN
Random forest

(RF)

CNN = 77.7%
RF = 76.9%

No
United
States

(Sawyer et al.,
2023)

UAV
Hyperspectral

imaging
Multispectral

imaging
RGB imaging

Detection of Phylloxera
infestation

Digital vigor
model

Digital surface
model

NR—presented as a
preliminary study

NR Australia
(Vanegas et al.,

2018)

Fruit
yield and
quality

UAV
Computer vision
Multispectral

imaging
Machine learning

Yield estimation
ANN—
regression

R2 = 0.60–0.96 R2 = 0.32 Spain
(Ballesteros et al.,

2020)

Robotic—imaging Yield estimation
Pearson

correlation

Low accuracy with
higher coefficient of
variation for image

analysis

No Portugal
(Victorino et al.,

2020)

Image analysis
Machine learning

Yield estimation Boolean model R2 = 0.78–0.81 No Spain
(Millan et al.,

2018)

Hyperspectral
imaging

Machine learning
Yield and quality traits

Extreme
learning
machine

Yield: R2 = 0.68
Quality traits:
R2 = 0.52–0.68

No
United
States

(Maimaitiyiming
et al., 2019)

Remote sensing
Proximal sensing
(canopy sensor)

Grape yield and quality
Correlation
analysis

Remote sensing:
R = 0.52–0.63

Proximal sensing:
R = −0.56–0.68

No Greece
(Anastasiou
et al., 2018)
NR, not reported; R, correlation coefficient; R2, determination coefficient; DA, discriminant analysis; LDA, linear discriminant analysis; QDA, quadratic discriminant analysis; SVM, support
vector machine; ANN, artificial neural networks; e-nose, electronic nose; CNN, convolutional neural networks; UAV, unmanned aerial vehicle; HSV, hue saturation value; PLS, partial least
squares; PCA, principal components analysis; NIR, near-infrared; RGB, red, green, and blue.
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inputs to model target responses. However, the advances made in

machine/deep learning have made this argument obsolete. The

latter statement is less applicable in the case of supervised

machine-learning modeling since an essential initial step is
Frontiers in Horticulture 06
parameter engineering, in which the modeler decides which

parameters/data are more relevant to model the patterns of

behavior for a specific target (i.e., specific meteorological data for

specific biotic/abiotic stress detection). Hence, modelers should
TABLE 2 Recent applications of digital technologies to pomology displaying the technology used accuracy of the methods or models and
deployment (No = not conducted; % = deployment accuracy).

Application Crop Technology Assessment

Statistical
method to

assess
accuracy

Accuracy Deployment Country Reference

Pomology

Soil

Plum

Capacitive
sensors

Automatic
irrigation

Automated
irrigation schedule

ANOVA—
Duncan’s test

“Automatic
irrigation

avoided water
stress.”

No Spain (Millán et al., 2019)

Mango
Wireless sensor

network
Soil moisture
monitoring

NR NR NR Malaysia
(Nooriman et al.,

2018)

Apple

Moisture
sensors

Dendrometer
Data

transmitter
Deep learning

Soil moisture and
trunk diameter

Deep neural
networks

R = 0.98 No NR (Ionescu et al., 2019)

Apple

Soil moisture
sensors

Long range
wide area
networks

Soil moisture
monitoring

NR NR NR Italy (Wenter et al., 2021)

Phenotyping

Citrus

UAV
Machine vision

Machine
learning

Tree segmentation SVM 76%–95% No China (Chen et al., 2019a)

Apple
UAV

RGB imaging
Tree architecture

Pearson’s
correlation

R = 0.75–0.94 No
United
States

(Zhang et al., 2021)

Apple

Robotics
3D light

detection and
ranging

Canopy
Pearson’s
correlation

R = 0.51–0.81 No
United
States

(Chakraborty et al.,
2019)

Apple

Multispectral
dynamic
imaging
Machine
learning

Apple recognition
SVM—

classification
72%–92% No

United
States

(Feng et al., 2019)

Apple
Multispectral

imaging
Deep learning

Leaves
segmentation

CNN
Precision:
0.70–0.72

No Russia
(Uryasheva et al.,

2022)

Apple
Image analysis

Machine
learning

Morphometric
analysis

Random forest 0.82–0.92 No Spain (Dujak et al., 2023)

Pomegranate
Aerial imaging
Deep learning

Canopy
segmentation

Mask Region-
based CNN

41%–97% No
United
States

(Zhao et al., 2018)

Apricot
RGB imaging
Machine
learning

Variety
classification

Adaptive
network-based
fuzzy inference

system

81%–89% No NR
(Mirnezami et al.,

2020)

Mango and
avocado

UAV
RGB imaging
Multispectral

imaging
Satellite
imaging

Height estimation Linear regression

Mango:
R2 = 0.50–0.80

Avocado:
R2 = 0.45–0.81

No Australia (Wu et al., 2020)

(Continued)
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TABLE 2 Continued

Application Crop Technology Assessment

Statistical
method to

assess
accuracy

Accuracy Deployment Country Reference

Abiotic
stress

Olive
Thermal
infrared
sensors

Water status Linear regression R2 > 0.80 No Portugal (Noguera et al., 2020)

Khasi
mandarin
orange

E-nose
Machine
learning

Water stress
SVM—bagging
ensemble—
classification

85% No India
(Choudhury et al.,

2019)

Almond
Thermal
infrared
imaging

Water status
Linear

correlation
analysis

R2 = 0.76–0.95 No Spain
(Garcıá-Tejero et al.,

2018)

Almond and
pistachio

Satellite images
Thermal
infrared
imaging

Evapotranspiration
Linear

correlation

Almonds:
R2 = 0.92
Pistachios:
R2 = 0.70

No
United
States

(Bellvert et al., 2018)

Mandarin
Thermal
infrared
imaging

Crop water stress
index

Linear regression R2 = 0.75 No China (Appiah et al., 2022)

Cherry
Thermal
infrared
imaging

Water status
ANN—
regression

R = 0.81–0.83 No Chile
(Carrasco-Benavides

et al., 2022)

Biotic stress

Citrus fruits
Whole-cell-

based
biosensor

Penicillium
digitatum
detection

NR NR NR NR
(Chalupowicz et al.,

2020)

Mandarin
orange

E-nose
Machine
learning

Citrus tristeza
virus detection

KNN—bootstrap
ensemble—
classification

99% No India (Hazarika et al., 2020)

Pear
UAV

Hyperspectral
imaging

Fire blight
monitoring

Logistic
regression

85% 52% Belgium (Schoofs et al., 2020)

Pear

UAV
Multispectral

imaging
Machine
learning

Fire blight
detection

SVM—

classification
95% No Iran (Bagheri, 2020)

Apple

Multispectral
imaging
Thermal
infrared
imaging

3D imaging

Scab infections
detection

NR
Reported as
“accurate”

NR
United
Kingdom

(Bleasdale et al., 2022)

Avocado

RGB imaging
Multispectral

imaging
Thermal
infrared
imaging
Machine
learning

White root rot
detection

Logistic
regression
ANN

82.5% No Spain
(Pérez-Bueno et al.,

2019)

Avocado

Multispectral
imaging
Machine
learning

Laurel wilt
detection

MLP 99% No
United
States

(Abdulridha et al.,
2019)

Avocado

RGB imaging
Satellite
imaging

Image analysis

Severity of
Phytophthora root

rot disease

Multivariate
stepwise linear
regression

RGB imaging:
R2 = 0.89
Satellite
imaging:
R2 = 0.96

No Australia (Salgadoe et al., 2018)
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TABLE 2 Continued

Application Crop Technology Assessment

Statistical
method to

assess
accuracy

Accuracy Deployment Country Reference

Citrus fruits
E-nose
Machine
learning

Bactrocera dorsalis
infestation

LDA 98.21% No China (Wen et al., 2019)

Fruit
Yield and
quality

Sweet
Cherry

UAV
Multispectral

imaging
Machine
learning

Yield estimation
ANN—
regression

R2 = 0.67 No Spain (Blanco et al., 2020)

Kaffir lime E-nose Aroma profile NR NR NR NR (Ravi et al., 2020)

Mango

Satellite
imaging
Machine
learning

Yield estimation
Number of fruits

ANN—
regression

R2 = 0.68–0.70 No Australia (Rahman et al., 2018)

Mango

IoT
Temperature
and humidity

sensor
Gas sensor

Quality traits

Pearson
correlation (PC)

Spearman
correlation (SC)

Kendall
correlation (KC)

PC: 72%–98%
SC: 66%–99%
KC: 57%–91%

No India (Bardhan et al., 2020)

Apple

Satellite
imaging
Machine
learning

Yield prediction
Backpropagation
neural networks

92%–95% No China (Gao et al., 2023)

Apple

UAV
Light detection
and ranging
imaging

Multispectral
imaging
Machine
learning

Yield prediction
Ensemble
learning

R2 = 0.81 No China (Chen et al., 2022)

Soft fruits

Soil Strawberry

IoT
Weather
station
Moisture
sensor
Machine
learning

Automatic
irrigation based on

soil moisture

ANN—
classification

80% No Philippines
(Macabiog and Cruz,

2019)

Phenotyping

Strawberry

High spatial
and temporal
resolution
imaging

Dry biomass and
leaf area index

(LAI)

Multiple
regression

Dry biomass:
R2 = 0.84

LAI: R2 = 0.79
No

United
States

(Guan et al., 2020)

Strawberry

UAV
Multispectral

imaging
Machine
learning

Dry biomass
ANN—
regression

R2 = 0.89–0.93 No
United
States

(Zheng et al., 2022)

Strawberry
High

resolution
imaging

Canopy
delineation and

metrics

Multiple linear
regression

R2 = 0.76–0.77 No
United
States

(Abd-Elrahman et al.,
2020)

Strawberry

Multispectral
images
Machine
learning

Crop productivity
(fruit weight,

number of fruits
and leaves)

SVM 84%–98% No Brazil (Oliveira et al., 2023)
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TABLE 2 Continued

Application Crop Technology Assessment

Statistical
method to

assess
accuracy

Accuracy Deployment Country Reference

Juniper

UAV
RGB imagery
Multispectral

imagery
Machine
learning

Density and
canopy cover

SVM—

classification
77%–81% No

United
States

(Durfee et al., 2019)

Abiotic
stress

Blueberry

UAV
Hyperspectral

imaging
Machine
learning

Water stress
Random forest—
classification

R2 = 0.62 No
United
States

(Chan et al., 2021)

Blueberry

Hyperspectral
imaging
Machine
learning

Frost damage
PLS discriminant
—classification

Sensitivity:
>0.80

Specificity:
>0.75

No
United
States

(Gao et al., 2019)

Blueberry
Hyperspectral

imaging
Frost damage Linear regression 64%–82% No

United
States

(Gao et al., 2021)

Strawberry

Hyperspectral
imaging
Machine
learning

Heat stress
Water stress

Random forest—
classification

94% No
Republic
of Korea

(Poobalasubramanian
et al., 2022)

Biotic stress

Strawberry

IoT
Proximal
sensors

Computer
vision

Deep learning

Disease detection CNN 92% No Brazil (Cruz et al., 2022)

Strawberry
RGB imaging
Deep learning

Disease detection CNN 98%–100% No Taiwan (Xiao et al., 2020)

Strawberry
RGB imaging
Deep learning

Disease detection CNN
Precision:
>0.68

No NR (Lee et al., 2022)

Strawberry
Machine vision

Machine
learning

Powdery mildew
detection

ANN 85%–98% 85%–88% Canada
(Mahmud et al.,

2020)

Blueberry
RGB imaging
Machine
learning

Septoria spot
detection

SVM—

classification
Precision: 0.95 No NR

(Latha and Jaya,
2019)

Blueberry
Hyperspectral

imaging
Disease detection

PLS discriminant
—classification

99%–100% No NR (Huang et al., 2020)

Fruit
yield and
quality

Strawberry

UAV
High-

resolution
orthoimages
Deep learning

Yield prediction
Region-based

CNN
Precision:
0.72–0.83

84.1%
United
States

(Chen et al., 2019b)

Strawberry

Hyperspectral
imaging
Machine
learning

Quality traits
prediction

PLS—regression
SVM—regression
Locally weighted

regression
(LWR)

PLS: 0.72–0.92
SVM: 0.66–

0.84
LWR: 0.78–

0.94

No China (Weng et al., 2020)

Blueberry
3D imaging
Computer
vision

Number of fruits
Maturity

Mask Region-
based CNN

Linear regression

Number of
fruits: 97.3%
Maturity:
R = 0.91

No
United
States

(Ni et al., 2021)

Blueberry

Hyperspectral
imaging
Machine
learning

Maturity

Spectral angle
mapping (SAM)
Multinomial

logistic

SAM: 82.1%
MLR: 88.5%
CT: 89.8%

No China (Ma et al., 2019)
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have detailed knowledge of the physical and biological processes

affecting particular crops and their effects on the fruit yield and fruit

quality traits required.

Growers should also be aware of the realistic steps involved in

the production of AI models and the level of dependence for the

maintenance and modification of the models implemented.

Currently, these services are offered by several digital and AI

agricultural companies, which makes access to specific models

complex and accompanied by the risk that applicability may not

be the most efficient for particular grower conditions. However, this

last bottleneck could be solved in the next decade since high-

ranking educational institutions and universities are offering more

and more agricultural science and agronomy educational programs

that incorporate digital agriculture principles and specific training

on digital technologies, sensors, and remote sensing platforms,

including data analysis using AI and decision-making automation

through the use of digital twins (Ahmad et al., 2022).

Finally, one of the most common bottlenecks for AI technology

adoption by growers has historically been the ownership of data.

Even before full-scale research on AI modeling strategies for

horticulture and other digital technologies was conducted, data

ownership was a concern for PA from the mid-1980s. However, it

has been proposed that this issue can be solved by treating data as

currency through blockchain technology and implementing a

digital ledger that will allow growers to know how the data

obtained from their orchards have been used and who is using

them, to grant permissions and relevant rights through licenses, and

to obtain royalties (Fuentes and Gago, 2022).

There is a growing interest in the use of drones and computer

vision as aids to monitor farm conditions and to support

management strategies to increase the quality traits of produce.

These have been developed and offered by either researchers or

external companies such as Blue River Technology, Ilumina, and

Trace Genomics based in California, United States, for famers, and

these technologies have contributed to farmers obtaining higher

yields and achieving higher-quality production (Walch, 2019; USM,

2022). The latter applications, using digital technologies and remote

sensing, are collectively known as Agriculture 4.0. Currently, the

implementation of AI in agriculture in the form of data handling

and modeling using machine/deep learning has been successful in

enabling farmers to handle large amounts of historical and real-time

data (big data), such as those on weather information, soil
Frontiers in Horticulture 10
conditions, and water usage (among other management

strategies), which have aided in their timely decision-making.

Farmers have also been using AI in Precision Agriculture for

pests and diseases, nutrition needs detection, and management

strategies. Precision Agriculture is considered an advancement on

Agriculture 4.0, and combining AI with digital agriculture has

advanced the terminology to Agriculture 5.0 (Fuentes et al., 2023).

The implementation of AI in the future could be ubiquitous and

necessary to deal with an increased amount of data produced by

new and emerging digital sensor technologies applied to the

horticulture and agrifood sectors. This could be the case for

producing horticultural crops using vertical farming systems, in

which fully controlled conditions can be simulated using digital

twins to manipulate the phenotype and genotype plasticity of

different crops to vary fruit quality traits (Kugler, 2022; Siregar

et al., 2022). These technologies and AI applications can not only

decrease world hunger by increasing the efficiency needed to handle

the growing demand for food based on the forecasted population

growth (Revanth, 2019), maximizing fruit production efficiency and

minimizing food waste and the environmental footprint associated

with food production, but also be the basis for food production

outside Earth. For long-term space missions, such as the NASA

Artemis program from Earth to the Moon (by 2030) and from the

Moon to Mars (by 2040), the use of advanced biological and genetic

technologies will be required if plants are to be grown in space.

Food, beverages, materials, and pharmaceuticals should then be

produced using AI digital twins developed using research based on

the experience of Agriculture 5.0. The latter plan may seem

extremely futuristic; however, these are the current aims of the

Australian Research Council (ARC) Centre of Excellence in Plants

for Space with the University of Melbourne, Australia, as one of the

five Australian universities with more than 38 additional partners,

including international universities and space agencies (e.g.,

Australian Space Agency and NASA), and companies such as

Axiom (ARC, 2022).
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TABLE 2 Continued

Application Crop Technology Assessment

Statistical
method to

assess
accuracy

Accuracy Deployment Country Reference

regression (MLR)
Classification
tree (CT)

Raspberry
Satellite
imaging

Deep learning
Yield prediction

Voting regressor
ensemble

R2 = 0.78 No NR
(Chaudhary et al.,

2021)
NR, not reported; ANOVA, analysis of variance; R, correlation coefficient; R2, determination coefficient; LDA, linear discriminant analysis; SVM, support vector machine; ANN, artificial neural
networks; e-nose, electronic nose; KNN, k-nearest neighbors; CNN, convolutional neural networks; MLP, multilayer perceptron; UAV, unmanned aerial vehicle; HSV, hue saturation value; RGB,
red, green, and blue; PLS, partial least squares; IoT, internet of things.
frontiersin.org

https://doi.org/10.3389/fhort.2023.1282615
https://www.frontiersin.org/journals/horticulture
https://www.frontiersin.org


Fuentes et al. 10.3389/fhort.2023.1282615
Funding

The author(s) declare that no financial support was received for

the research, authorship, and/or publication of this article.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Frontiers in Horticulture 11
The authors CGV and SF declared that they were editorial

board members of Frontiers, at the time of submission. This had no

impact on the peer review process and the final decision.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
Abd-Elrahman, A., Guan, Z., Dalid, C., Whitaker, V., Britt, K., Wilkinson, B., et al.
(2020). Automated canopy delineation and size metrics extraction for strawberry dry
weight modeling using raster analysis of high-resolution imagery. Remote Sens. 12,
3632. doi: 10.3390/rs12213632

Abdulridha, J., Ehsani, R., Abd-Elrahman, A., and Ampatzidis, Y. (2019). A remote
sensing technique for detecting laurel wilt disease in avocado in presence of other biotic and
abiotic stresses. Comput. Electron. Agric. 156, 549–557. doi: 10.1016/j.compag.2018.12.018

Ahmad, A., Noor, S. E., Cassinello, P. C., and Núñez, V. M. (2022). Artificial
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M. (2020). A new low-cost device based on thermal infrared sensors for olive tree
canopy temperature measurement and water status monitoring. Remote Sens. 12, 723.
doi: 10.3390/rs12040723

Nooriman, W., Abdullah, A., Rahim, N. A., and Kamarudin, K. (2018). Development
of wireless sensor network for Harumanis Mango orchard's temperature, humidity and
soil moisture monitoring. 2018 IEEE Symposium on Computer Applications & Industrial
Electronics (ISCAIE). 28-29 April 2018. (Penang, Malaysia: IEEE), 263–268.
frontiersin.org

https://doi.org/10.3390/rs13142830
https://doi.org/10.3390/rs13142830
https://doi.org/10.3390/s20092444
https://doi.org/10.3390/s20092444
https://doi.org/10.3390/s21217312
https://doi.org/10.1016/j.compag.2018.06.035
https://doi.org/10.3390/beverages6020039
https://doi.org/10.3390/s19153335
https://doi.org/10.1016/j.cofs.2021.03.014
https://doi.org/10.3390/rs15030642
https://doi.org/10.3233/JBR-211506
https://doi.org/10.1016/j.compag.2019.105025
https://doi.org/10.1016/j.scienta.2018.04.045
https://doi.org/10.3390/beverages5040062
https://doi.org/10.1016/j.isprsjprs.2020.02.021
https://doi.org/10.1016/j.isprsjprs.2020.02.021
https://doi.org/10.1016/j.compag.2021.105991
https://doi.org/10.1109/TIM.2020.2997064
https://doi.org/10.3390/rs10101615
https://doi.org/10.3390/rs10101615
https://doi.org/10.3390/horticulturae7050103
https://doi.org/10.3390/s20205783
https://doi.org/10.1016/j.ijin.2022.09.004
https://doi.org/10.14601/Phytopathol_Mediterr-22862
https://doi.org/10.3390/rs12152499
https://doi.org/10.3390/chemosensors10040125
https://cid-inc.com/blog/precision-agriculture-policy-adoption-outlook-2023/
https://doi.org/10.1007/s00271-022-00775-1
https://doi.org/10.1145/3503779
https://doi.org/10.21917/ijivp.2019.0286
https://doi.org/10.3389/fpls.2022.991134
https://doi.org/10.1016/j.rse.2019.111622
https://doi.org/10.25165/j.ijabe.20191203.4325
https://doi.org/10.1016/j.futures.2022.102998
https://doi.org/10.3390/agronomy10071027
https://doi.org/10.3390/rs11070740
https://doi.org/10.17221/101/2019-SWR
https://doi.org/10.1016/j.compag.2018.11.026
https://doi.org/10.3390/w11102061
https://doi.org/10.1155/2018/9634752
https://doi.org/10.3390/rs14184648
https://doi.org/10.1016/j.isprsjprs.2020.11.010
https://doi.org/10.3390/rs12040723
https://doi.org/10.3389/fhort.2023.1282615
https://www.frontiersin.org/journals/horticulture
https://www.frontiersin.org


Fuentes et al. 10.3389/fhort.2023.1282615
Oliveira, L. S. D., Castoldi, R., Martins, G. D., and Medeiros, M. H. (2023).
Estimation of strawberry crop productivity by machine learning algorithms using
data from multispectral images. Agronomy 13, 1229. doi: 10.3390/agronomy13051229

Pereira, C. S., Morais, R., and Reis, M. J. (2019). Deep learning techniques for grape
plant species identification in natural images. Sensors 19, 4850. doi: 10.3390/s19224850
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