

ICT
TECHNOLOGY REPORT

published: 20 April 2015
doi: 10.3389/fict.2015.00006

AWARE: mobile context instrumentation framework
Denzil Ferreira1*,Vassilis Kostakos1* and Anind K. Dey 2

1 Community Imaging Group (COMAG), Department of Computer Science and Engineering, University of Oulu, Oulu, Finland
2 Ubicomp Laboratory, Human-Computer Interaction Institute, Carnegie Mellon University, Pittsburgh, PA, USA

Edited by:
Javier Jaen, Universitat Politècnica de
València, Spain

Reviewed by:
Carlos Duarte, Universidade de
Lisboa, Portugal
Rubén San-Segundo, Universidad
Politécnica de Madrid, Spain

*Correspondence:
Denzil Ferreira and Vassilis Kostakos,
Community Imaging Group
(COMAG), Department of Computer
Science and Engineering, University
of Oulu, Erkki Koiso-Kanttilan katu 3,
Door E, Oulu FI-90014, Finland
e-mail: denzil.ferreira@ee.oulu.fi;
vassilis@ee.oulu.fi

We present a mobile instrumentation toolkit, AWARE, an open-source effort to develop
an extensible and reusable platform for capturing, inferring, and generating context on
mobile devices. Mobile phones are sensor-rich but resource-constrained, and therefore
several considerations need to be addressed when creating a research tool that ensures
problem-free context collection. We demonstrate how AWARE can mitigate researchers’
effort when building mobile data-logging tools and context-aware applications, with mini-
mal battery impact. By encapsulating implementation details of sensor data retrieval and
exposing the sensed context as higher-level abstractions, AWARE shifts the focus from soft-
ware development to data analysis, both quantitative and qualitative. We have evaluated
AWARE in several case studies and discuss its use, power consumption, and scalability.

Keywords: context-aware systems, ubiquitous data capture framework, mobile toolkit, mobile sensing, user
studies, mobile questionnaires, ESM

INTRODUCTION
Mobile phones have become miniaturized computers that fit in a
pocket. They are inherently personal and their potential to sense
the user’s environment, i.e., context, is appealing to researchers.
The convenience and availability of mobile phones and applica-
tion stores make it easier for a researcher to reach thousands of
users. More importantly, mobile phones have increasingly more
built-in sensors (e.g., accelerometer, gyroscope, luminance). They
are primarily used to enhance the user experience, such as applica-
tion functionality or mobile phone user interaction (e.g., vibration
feedback, screen orientation detection), but are nowadays being
leveraged for research purposes.

Despite the many contributions in mobile computing research,
there are still challenges to overcome. First, it still remains labo-
rious for scientists to conduct human subject studies that involve
mobile devices. Second, developers who wish to create context-
aware applications on mobile phones typically need to start from
scratch. Lastly, end-users need to use multiple and often isolated
(i.e., not sharing data) applications to make their device more
context-aware. We argue that these three important limitations
are due to the same reason: there is a lack of open and reusable
software for creating context-aware applications on mobile device.

To address this need, we designed and created AWARE (acces-
sible at http://www.awareframework.com, since 2011), an open
platform for context-aware mobile computing research, applica-
tion development, and for the end-user. AWARE allows creating
new mobile research tools for data mining, visualization, and
analysis that builds on previous development. More importantly, it
has the potential to enable access to the wider range of interrelated
sources of context information and their relationships, including
the user’s individual and social behavior.

This manuscript includes what were AWARE’s requirements
as a mobile platform for context and data collection, supported
by the related work. We also include an empirical evaluation of

AWARE’s impact on mobile power consumption and server scala-
bility. More importantly, we demonstrate AWARE’s use in several
use-cases (laboratory, small and large-scale deployments), by the
authors and fellow scientists.

RELATED WORK
The Context Toolkit (Dey et al., 2001) is the reference conceptual
framework for developing context-aware applications. It separates
the acquisition and representation of context from the use of con-
text by an application. In other words, context should always be
present, independently its use in applications. However, since the
Context Toolkit was introduced in 2001, computing has become
increasingly mobile and so has the user’s context. Research in the
field of mobile computing is challenging due to the mobile devices’
limited storage, power, and network capabilities. Over the years,
several research tools were developed that weight these challenges
in order to gain a better insight into users’ mobile context. We
categorized contextual functionalities that are desirable on mobile
context middleware based on Context Toolkit’s guidelines on use
of context and referring to previous work’s most notable features.

EVENT-BASED, MANUAL, SEMI- OR FULLY AUTOMATED CONTEXT
GENERATION
It is challenging to fully automate actions based on sensed context
alone. Context can be generated by user rules (i.e., manual), and
triggered by events (i.e., system, user activity) from semi- or full-
automated algorithms. CORTEX (Biegel and Cahill, 2004) uses the
concept of a sentient object model for the development of mobile
context-aware applications. By combining sentient objects and an
event-based communication protocol for ad hoc wireless environ-
ments, CORTEX allows researchers to define inputs and outputs,
contexts, fusion services and rules using an inference engine. On
the other hand, Context Studio (Korpipää et al., 2004) takes into
account users’ mediation and accountability in context inference.

www.frontiersin.org April 2015 | Volume 2 | Article 6 | 1

http://www.frontiersin.org/ICT
http://www.frontiersin.org/ICT/editorialboard
http://www.frontiersin.org/ICT/editorialboard
http://www.frontiersin.org/ICT/editorialboard
http://www.frontiersin.org/ICT/about
http://www.frontiersin.org/Journal/10.3389/fict.2015.00006/abstract
http://loop.frontiersin.org/people/180659/overview
http://loop.frontiersin.org/people/152913/overview
http://loop.frontiersin.org/people/182129/overview
mailto:denzil.ferreira@ee.oulu.fi
mailto:vassilis@ee.oulu.fi
http://www.awareframework.com
http://www.frontiersin.org
http://www.frontiersin.org/Human-Media_Interaction/archive

Ferreira et al. AWARE: mobile context instrumentation framework

Users can combine the existing contextual probes to incrementally
add context-awareness to the mobile phone.

USER-GENERATED AND USER-MANAGED CONTEXT
In fact, a human can be a context sensor, e.g., as a user he provides
the data and manages his current context. For example, Momento’s
(Carter et al., 2007) mobile client displays questions to the user
about their location, nearby people, and audio. The researcher has
a desktop client to configure and oversee a remote deployment.
Similarly, MyExperience (accessible at http://myexperience.sf.net,
since 2007) captures both sensor- and human-based data to
understand the user’s motivation, perception, and satisfaction
on mobile technology. The human-based data collection [e.g.,
surveys and experience sampling methods (ESM)] is triggered
off sensor readings and pre-established researcher’s rules, and
later synchronized to a remote server. EmotionSense (accessible
at http://www.emotionsense.org, since 2013) probes the user for
social psychology context, inquiring about individual emotions,
activities, and verbal as well as proximity interactions among
friends using the mobile phone’s microphone.

VISUALIZATIONS OF CONTEXT INFORMATION
Presenting and managing contextual information is imperative
for the end-users. ContextPhone (Raento et al., 2005) empha-
sizes context as an understandable resource to the user. Using
application widgets, users had control over the sensors data collec-
tion. Similarly, AWARENESS (van Sinderen et al., 2006) prioritizes
users’ privacy concerns. It applies the concept of quality of context
(QoC). Users’ privacy concerns would increase or decrease QoC,
depending on how much context is shared at any given time (e.g.,
disabling GPS would reduce the QoC for the context of location).
The context is then shared with previously trusted devices and the
mobile phone user is the sole controller of privacy aspects. “Self-
tracking” users may use Funf (accessible at http://www.funf.org,
since 2011) to collect their personal mobile data.

AD HOC CONTEXT EXTENSIBILITY VIA COMPONENTS (I.E., PLUGINS)
Context sources keep emerging and changing, thus it is impor-
tant that a middleware may be adapted and extended, ideally
without further development. OpenDataKit (accessible at https:
//opendatakit.org, since 2012) simplifies the interface between
external sensors and mobile phones by abstracting the applica-
tion and driver development from user applications and device
drivers, by management of discovery, communication channels,
and data buffers. It is component-based, allowing developers to
focus on writing minimal pieces of sensor-specific code, enabling
an ecosystem of reusable sensor drivers. Integration of new sensors
into applications is possible by downloading new sensor capabil-
ities from an application market, without modifications to the
operating system.

EXCHANGE OF CONTEXT EVENTS AND DATA ACROSS DEVICES AND
PLATFORMS
Also, desirable is a cross-platform data collection middleware.
Leveraging the browser, Ohmage (accessible at http://www.
ohmage.org, since 2012) is a smartphone-to-web toolkit designed
to create and manage experience sampling-based data collection

campaigns, accessible in multiple platforms, in support of mobile
health pilot studies. Similarly, CenceMe (Miluzzo et al., 2008)
infers physical social context and shared information through
social network applications to other devices.

REMOTE CONTROL OF CONTEXT ACQUISITION (I.E., DASHBOARDS,
STUDIES, COLLABORATION)
To enable multidisciplinary collaboration, web-based dashboards
have been created to orchestrate large-scale and distributed stud-
ies. Emotional Monitoring for PATHology (Empath) (Dickerson
et al., 2011) allows to remotely monitor emotional health for
depressive illness. Ginger.io (accessible at http://www.ginger.io,
since 2011) is another behavioral analytics web-based dashboard
that turns mobile data (e.g., movement, call, and texting patterns)
into health insights.

REMOTE DATA OFFLOAD FOR ASYNCHRONOUS CONTEXT INFERENCE
Mobile context may also be inferred externally to the device, asyn-
chronously. For example, CenceMe (Miluzzo et al., 2008) infers
the social context detected locally on the device, then transfers
processing to a backend server to match common shared social
contexts to raise social awareness. Momento’s (Carter et al., 2007)
integrated with a Context Toolkit server to analyze audio segments
to detect proximity of people.

AWARE
AWARE CLIENT
AWARE is inspired by Table 1 references. We would like to empha-
size that AWARE’s novelty lies not on its functionalities individ-
ually, but instead on their collective use. More importantly, it is
a toolkit that builds on previous work’s core functionalities and
makes them available to researchers, developers, and end-users.

AWARE is available as a regular Android mobile application.
The collected data is primarily stored locally on the device and it is
not shared remotely, ideal for small scale and local user-studies. For
distributed and large-scale studies, the client uploads sensor and
plugin data to the cloud. The user interface was designed to allow
users to control the sensor (Figure 1 – Sensor Manager) and plugin
functionality (Figure 1 – Stream), thus supporting functional-
ity 2.2. The client also allows the user to further install plugins
(Figure 1 – Plugin Manager), which extend AWARE’s capabilities
(supporting 2.4).

By default, the users are presented with the Sensor Manager
interface, where they can manage the collected sensor data on the
mobile phone. Here, they can see currently active sensors, the sen-
sor’s power-consumption estimation (provided by Android’s API),
the client’s current version, their AWARE device identifier [a uni-
versal unique identifier (UUID) is generated randomly upon every
installation] and a toggle for debugging messages from AWARE’s
sensing.

By pressing to top-left corner icon, i.e., the navigation button,
the users can access the Plugin Manager. Here, they may install any
publicly available plugins (as soon as they are added to the repos-
itory). Moreover, for researchers, AWARE supports study-specific
plugins, thus only the study participants are able to view and install
them. If the client or a plugin is updated on the repository or
missing from the device, the users are prompted to install it.

Frontiers in ICT | Human-Media Interaction April 2015 | Volume 2 | Article 6 | 2

http://myexperience.sf.net
http://www.emotionsense.org
http://www.funf.org
https://opendatakit.org
https://opendatakit.org
http://www.ohmage.org
http://www.ohmage.org
http://www.ginger.io
http://www.frontiersin.org/Human-Media_Interaction
http://www.frontiersin.org/Human-Media_Interaction/archive

Ferreira et al. AWARE: mobile context instrumentation framework

Table 1 | Overview of supported context-related functionalities.

Frameworks Functionalities

2.1 Generation 2.2 User-managed 2.3 Visualizations 2.4 Extensibility 2.5 Exchange 2.6 Remote

control

2.7 Offload

CORTEX
√ √ √

Context Studio
√ √ √

ContextPhone
√ √ √ √

AWARENESS
√ √ √ √ √

Momento
√ √ √ √ √

MyExperience.sf.net
√ √ √

CenceMe
√ √ √ √

EmotionSense.org
√ √ √

Empath
√ √ √ √ √

Funf.org
√ √ √ √

Ginger.io
√ √ √ √

Ohmage.org
√ √ √ √

OpenDataKit.org
√ √

FIGURE 1 | Overview of AWARE client’s interfaces: sensor manager, plugin manager, and stream.

The Stream interface’s purpose is to present contextualized
information from the collected data. These visualizations may
be interactive, present information in real-time and reused for
faster future application development. They also act as a short-
cut to each plugin’s settings. This interface adapts by hiding or
showing more information according to the active sensors and
plugins.

AWARE’s context sensors
AWARE records data from available hardware-, software-, and
human-based sensors as the users carry their smartphones, thus
supporting 2.1 and 2.2. Hardware sensors can be the accelerome-
ter, magnetometer, and photometer, just to name a few. The client
supports the majority of device’s available sensors. New sensors
are constantly added to the framework as they become available

www.frontiersin.org April 2015 | Volume 2 | Article 6 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Human-Media_Interaction/archive

Ferreira et al. AWARE: mobile context instrumentation framework

on newer Android devices. Software sensors include, for exam-
ple, the user’s calendar, email, social activity, and other logs (e.g.,
calls, messages). Human-based sensors are mobile questionnaires
(i.e., for ESM), voice, or gesture input, where users’ actions are
the inputs to algorithms, providing answers for disambiguation,
or supervised data labeling, for example.

AWARE’s context plugins
The locally stored data (in SQLite databases) can then be
abstracted as context using AWARE plugins by means of data
analysis. AWARE plugins’ primary goal is to collect and abstract
sensor data to generate context. They may reuse other sensor
and plugin data and context to create new higher-level contexts
using data mining and machine learning techniques (implemented
within the plugins’ code), and may provide support for a new –
either external or internal – sensor, thus collecting and analyzing
data. Second, AWARE plugins may also present and explain con-
text data to the user using context cards, thus supporting 2.3.
These cards allow end-users to use, explore, and interact with –
and application developers to reuse – context for their smartphone
applications. These plugins extend ad hoc AWARE’s functionality,
thus supporting 2.4.

Context data sharing
The collected context is shared (thus, supporting 2.5) among
AWARE sensors, plugins, and applications using three strategies
simultaneously: broadcasts, providers, and observers:

• Broadcasts quickly update other sensors, plugins, and applica-
tions with user’s context. Each receives a brief description of
user’s current context (i.e., as a string), regardless of the data
captured with such context. Multiple broadcasts can be received
simultaneously from different sources (e.g., sensors, plugins,
applications).

• Providers store sensor data and plugin context data. The data
are stored locally on the device, and if required, remotely on
a MySQL server. Sensors and plugins may request (i.e., pull)
the data by querying the data directly, or subscribe to it using
Observers. Using AWARE’s web API, cloud services, such as
Google’s Cloud and App Engine, Amazon’s EC, and Microsoft’s
Azure may also access and use the context data.

• Observers monitor changes to the sensor data and plugin context
data in real-time, sharing updates to other remote devices using
message queue telemetry transport (MQTT) message callbacks.
Observers provide active (i.e., push) and event-based access to
context. They are energy efficient and support real-time data
labeling.

AWARE SERVER
The client may upload sensor and plugin data to the cloud
(Figure 2), if the user signed-up for a study. A study can
be managed on AWARE’s dashboard (accessible at https://api.
awareframework.com, supporting 2.6). For application develop-
ers and researchers, new plugins can be shared by uploading
the compiled package (e.g., a digitally signed.APK file) to their
dashboard. The AWARE server offers the following data han-
dling functionalities: data replication, issue remote commands to

AWARE devices and exchange context’s data, and visualize the data
online.

Remote data synchronization
The data replication takes place within the sensor and plugin data
synchronization code, and is transparent to the users and devel-
opers. The replication process can be scheduled, triggered locally
with an event, or remotely on-demand. The clients’ data are sent as
JavaScript Object Notation (JSON) objects via hypertext transfer
protocol secure (HTTPS) POSTs, replicating the devices’ data into
a MySQL database. Different strategies are in place to attempt to
minimize data collection loss, such as the use of processor wake-
locks to keep the sensors alive even when the phone is idle, multi-
threading to reduce delays in context storage and allow cooper-
ation between multiple sensors and exception fallbacks to decide
what to do if one sensor is unavailable or is, for some reason, faulty.

AWARE uses MQTT for exchanging context messages in a pub-
lish/subscribe approach between mobile phones and other servers
and devices. MQTT is designed for constrained devices and low-
bandwidth, high-latency or unreliable networks, and supports
persistence, both on the server and mobile phone, i.e., if the device
or the server is unreachable, the data are queued locally for deliv-
ery at a later time. The built-in MQTT infrastructure provides
support for distributed context and provides real-time context
data exchange to available AWARE devices. MQTT servers can be
clustered to support load-balance. For added security, MQTT also
supports secure and authenticated connections. Using MQTT as a
delivery mechanism, the dashboard can issue commands that are
delivered to other AWARE devices and servers (supporting 2.7).
On the other hand, AWARE devices can also issue commands to
other devices and exchange context data as MQTT messages.

Human-based sensing
AWARE supports a flexible ESMs questionnaire-building schema
(defined in JSON) for in situ human-based context sensing.
Diverse ESM questions can be chained together to support a step-
by-step questionnaire. ESM can be triggered by context events,
time, or on-demand, locally (with broadcasts) or remotely from
the dashboard and servers (with MQTT). Although it collects sub-
jective user input, it allows us crowdsourcing information that is
challenging to collect through physical sensors, as follow:

• Free text : allows the user to provide free text input as context.
This can be leveraged to capture sensor-challenging context,
such personal opinions, moods, and others;

• Radio: allows the user to select a single option from a list of
alternatives. One of the options can be defined as “Other,” which
will prompt the user to be more specific, replacing “Other” with
the users’ input;

• Checkbox : allows the user to select one or more options from a
list of alternatives. Similar to the Radio ESM, one of the options
can be defined as “Other”;

• Likert : allows the user to provide ratings, between 0 and 5/7, at
0.5/1 increments. The Likert-scale labels are also customizable.
The default rating is no rating;

• Quick: allows the user to quickly answer the ESM by pressing a
simple button.

Frontiers in ICT | Human-Media Interaction April 2015 | Volume 2 | Article 6 | 4

https://api.awareframework.com
https://api.awareframework.com
http://www.frontiersin.org/Human-Media_Interaction
http://www.frontiersin.org/Human-Media_Interaction/archive

Ferreira et al. AWARE: mobile context instrumentation framework

Privacy and security
AWARE has been approved for several research projects by the
Institutional Review Board (IRB) of our university (Europe), and
also in US. Keeping users’ privacy in mind, AWARE obfuscates
and encrypts the data using a one-way hashing of logged personal
identifiers, such as phone numbers. Increased security is achieved
with application permissions, certificates, user authentication, and
the use of secure network connections to access and transfer the
logged data between the client and the dashboard.

CREATING CONTEXT-AWARE APPLICATIONS
AWARE follows Android architecture and development guide-
lines. In other words, AWARE is available from MavenCentral
repository1 (“compile com.awareframework:aware-core:*@aar”)
as an open-source (Apache 2) library, which can be added to
any Android development application or plugin using Android
Studio’s Gradle mechanism. The source code of the client is also
available in GitHub2 and we encourage fellow researchers to report
any issues, discuss strategies, and further extend our work.

We offer more detailed tutorials and documentation on
AWARE’s website. In summary, once added to the application’s
Gradle, a developer has full access to AWARE’s API public methods
[e.g., Aware.startPlugin(), Aware.stopPlugin(), Aware.setSetting(),
Aware.getSetting(), and many others], Providers (i.e., Content-
Provider databases), Broadcasts (i.e., Intents), Services, and
Observers. Since we followed Android architecture, a Provider
is a ContentProvider, a Plugin is a Service, and an Observer is
a ContentObserver, and so on. For an Android developer, using
AWARE should is an extension to Android’s native classes and
API, with increased number of functionalities. As an example,
if the user is available (i.e., not in a call and not using the

1http://search.maven.org - replace * with the updated version code (e.g., 3.3.3 as of
19/3/2015).
2http://github.com/denzilferreira/aware-client

device), a high-level context broadcast (e.g., ACTION_AWARE_
USER_NOT_IN_CALL)3 is automatically broadcasted. An appli-
cation simply needs to listen to this broadcast and may act
upon it.

AWARE’s OVERVIEW
In summary, AWARE’s infrastructure (Figure 2) allows:

• Researchers to:
o Self-host or use AWARE-hosted databases;
o Manage multiple, concurrent studies;
o Publish study-specific or public plugins;
o Specify and manage active sensors and plugins for a study;
o Enroll participants via a QRCode or a direct link;
o Collaborate with registered co-researchers;
o Oversee studies in real-time (e.g., amount of data, user

participation);
o Label and group sets of participants’ devices;
o Remotely create and request a mobile questionnaire (i.e.,

ESM);
o Remotely request or clear a participant’s study data from the

databases (on the client and server).
• Developers to: embed AWARE and plugins as libraries, thus

facilitating the creation of a context-aware application;
• Users to: to collect personal data and visualize contextualized

information of their daily lives directly on their smartphones.

CASE STUDIES AND EVALUATION
By encapsulating implementation details on sensor retrieval and
exposing the sensed data as higher-level abstractions, we shifted
our focus from software development to research and analyz-
ing the collected data, both quantitative and qualitative. For
brevity, please refer to the case studies references for further

3http://www.awareframework.com/communication/

FIGURE 2 | Overview of AWARE’s infrastructure.

www.frontiersin.org April 2015 | Volume 2 | Article 6 | 5

http://search.maven.org
http://github.com/denzilferreira/aware-client
http://www.awareframework.com/communication/
http://www.frontiersin.org
http://www.frontiersin.org/Human-Media_Interaction/archive

Ferreira et al. AWARE: mobile context instrumentation framework

details on AWARE’s active sensors and plugins combinations and
usage.

In Dey et al. (2011), AWARE was used to abstract several built-
in mobile sensors together (e.g., location, Wi-Fi, network, and
more) and external Bluetooth sensors to capture users’ proximity
habits to their mobile devices. For each data source (e.g., sensor),
several metrics of user proximity were created. For example, the
Bluetooth phone-sensor RSSI readings and distance calibrations
allowed us to investigate the amount of time a phone was at arm,
and/or room reach; the accelerometer’s axial forces allowed us to
determine device’s on-body/free moments. Using a decision tree
classifier and a time window of 1 min, we were able to create a
predictive model accurate up to 83% on whether the device is
close/far from the user. The main objective was to understand
how often context information can be visually presented to the
user. Contrary to our intuition, the device is not really with the
user all the time (approximately only 50% of the time). In Ickin
et al. (2012), AWARE is used to investigate the quality of experi-
ence (QoE) of commonly used mobile applications depending on
user’s current location, social, and mobility context. AWARE’s ESM
functionality allowed users to rate in situ multiple applications’
QoE using the mean opinion score (MOS) ranking, obtain a high-
level description of the users’ current location (e.g., home, work),
social (e.g., alone, with someone, with a group), and mobility
context (e.g., sitting, standing, walking, driving). By data min-
ing network and phone performance data (i.e., network signal,
available battery), several metrics were created to support the best
applications’ QoE.

In Ferreira et al. (2011), we used AWARE as a library in a battery
user-study application on the Google Play application store, down-
loaded, and used by thousands of users, where we studied users’
concerns regarding battery life and charging behavior. In Ferreira
et al. (2013), and reusing Ferreira’s sensors (Ferreira et al., 2011)
(e.g., battery and application usage sensors), we identified appli-
cations’ battery impact in its depletion (using linear regression),
thus creating a new interactive battery interface for power manage-
ment on smartphones. In Ferreira et al. (2014), AWARE’s screen,
application usage, and ESMs functionalities provide insight on the
context in which applications are micro-used (i.e., within 15 s) and
in Van den Broucke et al. (2014), AWARE’s device, location, and
network sensors were used to investigate the users’ struggles when
using mobile cloud computing on their smartphones and tablets.

BATTERY IMPACT AND RESOURCE MANAGEMENT
As a toolkit, it is challenging to evaluate AWARE for all possi-
ble scenarios. However, to evaluate AWARE’s mobile client battery
impact, we accounted for three sensing, storage, and network-
ing scenarios: sensing only (S); sensing and local storage (SL);
sensing, local, and remote storage (SLR). In S, we simply enable
the sensors but do not record data, thus isolating any stor-
age operations’ overheads; and we account for them with SL.
In SLR, we also capture the network operations’ overheads by
uploading the collected data to our AWARE’s server over 3G
every 30 s. We conducted our experiments on an off-the-shelf
LG Nexus 4 (2100 mAh, 4.2 V battery). To reduce a potential
measurement bias, we used a minimal version of Android (e.g.,
AOSP) with no third-party applications (i.e., Google, appstore

applications) or background synching. Before deploying AWARE,
this reference device’s battery on average depletes at a rate of
18.45 mAh (Min= 4.64; Max= 92.66; SD= 12.62). With AWARE,
and monitoring sensors’ and plugins’ statuses (i.e., check if active
or updated at 5-min intervals), battery depletion increases to
19.74 mAh (Min= 4.86; Max= 118.2; SD= 13.87), however, not
statistically significant [Welch t (11841)=−0.753, p= 0.45], i.e.,
a negligible difference in battery life when AWARE is not in
active use.

During the tests, we consistently kept the device’s display off,
while 3G, Wi-Fi, GPS, and Bluetooth were active as to better sim-
ulate device’s every day use. With Qualcomm’s Trepn Profiler, a
diagnostic tool for evaluating in real-time the performance and
power consumption of Android applications, we measured the
power consumption (mA) and processor load (%, normalized to
account all cores) of each high-performance sensor (i.e., capable
of several samples per second – accelerometer, gyroscope, etc.)
when in individual use and at two sampling rates: 5 and 100 Hz, in
10-min long tests. For low-performance sensors, i.e., that require
frequent polling for updates – applications (refresh background
processes), Bluetooth (scanning), locations (update requests), net-
work (amount of traffic), processor (processing load), and Wi-Fi
(scanning) – we tested them at 5-, and at 60-s intervals. The
remaining sensors are only event-based and therefore it is chal-
lenging to measure their power consumption as these events are
triggered exclusively by the operating system (Figure 3).

Across all the sensors and sampling rates, AWARE’s client over-
all battery impact is,on average,19.69 mA (SD= 23.34) for sensing
only; 24.69 mA (SD= 23.88) with local storage; and 138.03 mA
(SD= 29.92) if also connected to AWARE’s server. In other words,
if a researcher would run a study where participants upload their
data automatically (SLR condition) every 30 s, and if they used the
same reference device, they could theoretically provide 15 h and
21 min worth of sensor data. More importantly, in our real-world
deployments, our participants did not report a significant decrease
in their device’s battery life or performance.

We have built-in several strategies to reduce power-
consumption of AWARE: event-based sampling and opportunistic
analysis (e.g., only when charging or the battery is above a cer-
tain amount) and scheduled synching. Similar to the literature
review (Biegel and Cahill, 2004; Falaki et al., 2011), this suggests
that AWARE’s event-based sensing approach is more efficient than
periodic polling. We also expect that novel battery technology
and power-efficient sensors will reduce even further AWARE’s
battery impact in newer devices. During all the tests, AWARE
consumed on average approximately 32.9 MB of internal memory
(Min= 27.4; Max= 33.19; SD= 1.53), regardless of the sampling
rate, as Android’s memory management reclaims unused resources
automatically. Noteworthy, the data are scheduled for weekly or
monthly space maintenance (i.e., remove data that is already repli-
cated on the server) if required, releasing the storage space back to
the device.

SCALABILITY AND PERFORMANCE
We also evaluated AWARE’s server dashboard scalability and per-
formance with an increasing number of participants (e.g., 1 thou-
sand, 10 thousand, 100 thousand, 1 million, 10 million), and

Frontiers in ICT | Human-Media Interaction April 2015 | Volume 2 | Article 6 | 6

http://www.frontiersin.org/Human-Media_Interaction
http://www.frontiersin.org/Human-Media_Interaction/archive

Ferreira et al. AWARE: mobile context instrumentation framework

FIGURE 3 | Battery consumption per active sensor and sampling condition.

Table 2 | AWARE’s server dashboard performance per amount of devices.

Amount of devices

1Thousand 10 Thousand 100 Thousand 1 Million 10 Million

Functionalities

Page load 1.43 s 1.66 s 1.75 s 2.82 s 10.23 s

Devices 0.12 s 0.13 s 0.29 s 0.81 s 7.09 s

Visualization 0.19 s 0.22 s 0.59 s 0.68 s 2.07 s

Sort 0.32 s 0.44 s 0.99 s 1.73 s 14.16 s

Pagination 0.35 s 0.42 s 0.91 s 1.59 s 9.17 s

Search 0.31 s 0.29 s 0.68 s 1.67 s 9.23 s

measured the amount of time of: page load (load the whole dash-
board’s interface); devices (load the devices’ data); visualization
(visualize the devices’ data); sort (e.g., order by device ID, by
amount of data); pagination (switch to next group of devices);
and search (lookup query for specific data or device). To test these
conditions, we used a Python script that mimics the client’s JSON
object synching mechanism to the server and inserts 100 thousand
data points per device in all the sensors’ databases. Our evaluation
was conducted on a modest researcher server machine: Linux-
based, 4-core central processing units (CPUs), 8 GB of random
access memory (RAM), and 300 GB of storage (Table 2).

We found that up to 1 million participants, the dash-
board’s overall performance takes on average 0.85 s (Min= 0.12;
Max= 2.82; SD= 0.71) to be fully operational, and degrades
upon 10 million participants, with an acceptable average of
8.66 s (Min= 2.07; Max= 14.16; SD= 3.98). We optimized the

dashboard’s performance by only loading the data if it is requested
by its user, pagination is limited to groups of 50 devices, or only
request the data for a given day. Using cloud-computing services
such as Amazon EC or Google Cloud, one could run multiple
instances of AWARE servers and do load-balance.

CONTRIBUTIONS
As a research tool, AWARE encapsulates and reuses sensors and
plugins for different research questions. More importantly, it
is a toolkit that supports collaboration with other researchers.
Because it can be packaged as a library, application developers
can request context data from AWARE’s sensors and plugins, and,
with the users’ consent, have access to high-level context infer-
ences provided by the context sharing mechanisms. The AWARE
API follows the reference conceptual Context Toolkit (Dey et al.,
2001) context-aware application development requirements:

www.frontiersin.org April 2015 | Volume 2 | Article 6 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Human-Media_Interaction/archive

Ferreira et al. AWARE: mobile context instrumentation framework

• Separation of concerns: each sensor and plugin collects data,
independently of where it is used or how it is used;

• Context interpretation: abstractions of multiple layers of context
are transparent to the researcher and developer, using the
Providers and the Broadcasts;

• Transparent, distributed communications: the context sharing
mechanisms (e.g., Provider, Observer, Broadcast, MQTT) offer
transparent communication between context sensors, plugins,
applications, and devices;

• Constant availability of context acquisition: the context sensors
operate independently from the applications that use them;

• Context storage: context is stored locally, and optionally
remotely, and can be used to establish trends and predictions of
context;

• Resource discovery : for an application to communicate with a
provider, it needs to know where the context is stored, provided
by the content URI.

The plugins allow developers to work independently – or to
collaborate with others – by isolating plugins’ core functionality
from their ultimate research and application development use.
The toolkit abstracts sensor data acquisition and processing into
reusable context components, from local and external sensors.
Moreover, AWARE’s context sharing mechanisms offer transpar-
ent context data exchange between other plugins and applications,
both locally and remotely. AWARE plugins provide the building
blocks to extend the toolkit to support novel contexts and sensors,
on an ad hoc basis. The AWARE server supports server cluster-
ing for load-balance and scaling up the number of instances of
the servers as required. Furthermore, we note that mobile phones
remain resource-constrained environments, in terms of network,
storage, battery life, and processing power. Thus, AWARE relies
on MQTT messaging protocol resilience mechanisms to exchange
context data between different devices while being network effi-
cient. This allows it not only to overcome storage limitations but
also support redundancy: context data can be stored locally and
synchronized remotely.

LIMITATIONS
Despite our best efforts, we cannot guarantee a problem-free
mobile data collection tool. AWARE is designed as an Android
accessibility service to increase its importance to the OS task
manager and reduce termination likelihood. AWARE supports
Android 2.3 or higher; however, sensor deprecation might limit
or replace, as needed, some functionality as the toolkit and
Android evolves. Also, more robust security procedures must be
considered to protect context data, since encryption and obfus-
cation can be circumvented. As a fallback, AWARE does not
collect personal data and hashes personal identifiers to pro-
tect users’ privacy. Nonetheless, this alone might not be enough
for other more privacy strict domains and procedures, such
as in health-care. Lastly, for the moment, the AWARE mobile
application is only available for Android devices (e.g., tablets,
Google Glass, smartphones, Android Wear). However, the AWARE
server and MQTT functionalities allow exchange and use of con-
text information across platforms with the support of JSON
and MQTT.

CONCLUSION
Making the transition from mobile phones to “smartphones,” in
the true sense of the word, requires more tools that offer pro-
graming and development support. However, the development
of context-aware applications still remains challenging because
developers have to handle with the raw sensor data, analyze it to
produce context, and often are forced to start from scratch. There
is a lack of a coherent and modular repository of relevant tools,
which motivated AWARE.

We must acknowledge that AWARE is no single ready-to-use,
fits-all, “silver bullet” solution that would meet the requirements
of all possible researchers. Research fragmentation is the biggest
challenge for such toolkits. As such, we argue that a mobile instru-
mentation toolkit must support multidisciplinary research and
collaboration from the ground-up. We believe that AWARE plu-
gins provide a mechanism for extending, adapting, and evolv-
ing on an ad hoc basis, potentially withstanding the test of
time.

Some of the key characteristics of AWARE include the ability to

• combine sensor data from multiple plugins to create new context
abstractions in real-time;

• dynamically configure plugins, update plugins, or install new
plugins from an online repository;

• store data locally and/or remotely;
• provide an API that any application can use to access high-level

context (e.g., “is the user sitting?”) and take action.

However, having access to context information is just a first
step. Context-aware applications must do a lot more: present
information, acquire and store context information, and relate
new information to other captured information. AWARE not
only collects, manages, shares, and presents context data but also
reuses context information. Naturally, there are still open chal-
lenges for AWARE, but we leave that for future work and invite
fellow researchers to contribute at http://www.awareframework.
com.

ACKNOWLEDGMENTS
Funded by the Academy of Finland project 137736, 276786, and
TEKES project 2932/31/2009.

REFERENCES
Biegel, G., and Cahill,V. (2004). “A framework for developing mobile, context-aware

applications,” in PerCom (Orlando, FL: IEEE), 361–365.
Carter, S., Mankoff, J., and Heer, J. (2007). “Momento: support for situated ubicomp

experimentation,” in Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (San Jose, CA: ACM), 125–134.

Dey, A. K., Abowd, G. D., and Salber, D. (2001). A conceptual framework and a
toolkit for supporting the rapid prototyping of context-aware applications. Hum.
Comput. Interact. 16, 97–166. doi:10.1207/S15327051HCI16234_02

Dey, A. K., Wac, K., Ferreira, D., Tassini, K., Hong, J.-H., and Ramos, J. (2011). “Get-
ting closer: an empirical investigation of the proximity of user to their smart
phones,” in Ubicomp (Beijing: ACM), 163–172.

Dickerson, R. F., Gorlin, E. I., and Stankovic, J. A. (2011). “Empath: a continuous
remote emotional health monitoring system for depressive illness,” in Proceedings
of the 2nd Conference on Wireless Health (San Diego, CA: ACM), 5:1–5:10.

Falaki, H., Mahajan, R., and Estrin, D. (2011). “SystemSens: a tool for monitoring
usage in smartphone research deployments,” in Proceedings of the Sixth Interna-
tional Workshop on Mobiarch (Washington, DC: ACM), 25–30.

Frontiers in ICT | Human-Media Interaction April 2015 | Volume 2 | Article 6 | 8

http://www.awareframework.com
http://www.awareframework.com
http://dx.doi.org/10.1207/S15327051HCI16234_02
http://www.frontiersin.org/Human-Media_Interaction
http://www.frontiersin.org/Human-Media_Interaction/archive

Ferreira et al. AWARE: mobile context instrumentation framework

Ferreira, D., Dey, A. K., and Kostakos, V. (2011). “Understanding human-
smartphone concerns: a study of battery life,” in Pervasive (Berlin: Springer-
Verlag), 19–33.

Ferreira, D., Ferreira, E., Goncalves, J., Kostakos, V., and Dey, A. K. (2013). “Revisit-
ing human-battery interaction with an interactive battery interface,” in Ubicomp
(Zurich: ACM), 563–572.

Ferreira, D., Goncalves, J., Kostakos, V., Barkhuus, L., and Dey, A. K. (2014). “Con-
textual experience sampling of mobile application micro-usage,” in MobileHCI
(Toronto: ACM), 91–100.

Ickin, S., Wac, K., Fiedler, M., Janowski, L., Hong, J.-H., and Dey, A. K. (2012). Fac-
tors influencing quality of experience of commonly used mobile applications.
IEEE Comm. Mag. 50, 48–56. doi:10.1109/MCOM.2012.6178833

Korpipää, P., Häkkilä, J., Kela, J., Ronkainen, S., and Känsälä, I. (2004).“Utilising con-
text ontology in mobile device application personalisation,” in Proceedings of the
3rd International Conference on Mobile and Ubiquitous Multimedia (Maryland:
ACM), 133–140.

Miluzzo, E., Lane, N. D., Fodor, K., Peterson, R., Lu, H., Musolesi, M., et al. (2008).
“Sensing meets mobile social networks: the design, implementation and evalu-
ation of the cenceme application,” in Proceedings of the 6th ACM Conference on
Embedded Network Sensor Systems (Raleigh, NC: ACM), 337–350.

Raento, M., Oulasvirta, A., Petit, R., and Toivonen, H. (2005). ContextPhone: a pro-
totyping platform for context-aware mobile applications. IEEE Pervasive Com-
put. 4, 51–59. doi:10.1109/MPRV.2005.29

Van den Broucke, K., Ferreira, D., Goncalves, J., Kostakos,V., and De Moor, K. (2014).
“Mobile cloud storage: a contextual experience,” in MobileHCI (Toronto: ACM),
101–110.

van Sinderen, M. J., van Halteren, A. T., Wegdam, M., Meeuwissen, H. B., and
Eertink, E. H. (2006). Supporting context-aware mobile applications: an infra-
structure approach. IEEE Comm. Mag. 44, 96–104. doi:10.1109/MCOM.2006.
1705985

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 25 February 2015; accepted: 31 March 2015; published online: 20 April 2015.
Citation: Ferreira D, Kostakos V and Dey AK (2015) AWARE: mobile context
instrumentation framework. Front. ICT 2:6. doi: 10.3389/fict.2015.00006
This article was submitted to Human-Media Interaction, a section of the journal
Frontiers in ICT.
Copyright © 2015 Ferreira, Kostakos and Dey. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use, dis-
tribution or reproduction in other forums is permitted, provided the original author(s)
or licensor are credited and that the original publication in this journal is cited, in
accordance with accepted academic practice. No use, distribution or reproduction is
permitted which does not comply with these terms.

www.frontiersin.org April 2015 | Volume 2 | Article 6 | 9

http://dx.doi.org/10.1109/MCOM.2012.6178833
http://dx.doi.org/10.1109/MPRV.2005.29
http://dx.doi.org/10.1109/MCOM.2006.1705985
http://dx.doi.org/10.1109/MCOM.2006.1705985
http://dx.doi.org/10.3389/fict.2015.00006
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org
http://www.frontiersin.org/Human-Media_Interaction/archive

	AWARE: mobile context instrumentation framework
	Introduction
	Related work
	Event-based, manual, semi- or fully automated context generation
	User-generated and user-managed context
	Visualizations of context information
	Ad hoc context extensibility via components (i.e., plugins)
	Exchange of context events and data across devices and platforms
	Remote control of context acquisition (i.e., dashboards, studies, collaboration)
	Remote data offload for asynchronous context inference

	AWARE
	AWARE client
	AWARE's context sensors
	AWARE's context plugins
	Context data sharing

	AWARE server
	Remote data synchronization
	Human-based sensing
	Privacy and security

	Creating context-AWARE applications
	AWARE's overview

	Case Studies and evaluation
	Battery impact and resource management
	Scalability and performance
	Contributions
	Limitations

	Conclusion
	Acknowledgments
	References

