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Objective: We developed an extensively general closed-loop system to improve human
interaction in various multitasking scenarios, with semi-autonomous agents, processes,
and robots.

Background: Much technology is converging toward semi-independent processes with
intermittent human supervision distributed over multiple computerized agents. Human
operators multitask notoriously poorly, in part due to cognitive load and limited working
memory. To multitask optimally, users must remember task order, e.g., the most
neglected task, since longer times not monitoring an element indicates greater probability
of need for user input. The secondary task of monitoring attention history over multiple
spatial tasks requires similar cognitive resources as primary tasks themselves. Humans
can not reliably make more than ∼2decisions/s.

Methods: Participants managed a range of 4–10 semi-autonomous agents performing
rescue tasks. To optimize monitoring and controlling multiple agents, we created an
automated short-term memory aid, providing visual cues from users’ gaze history. Cues
indicated when and where to look next, and were derived from an inverse of eye fixation
recency.

Results: Contingent eye tracking algorithms drastically improved operator performance,
increasing multitasking capacity. The gaze aid reduced biases, and reduced cognitive
load, measured by smaller pupil dilation.

Conclusion:Our eye aid likely helped by delegating short-term memory to the computer,
and by reducing decision-making load. Past studies used eye position for gaze-aware
control and interactive updating of displays in application-specific scenarios, but ours
is the first to successfully implement domain-general algorithms. Procedures should
generalize well to process control, factory operations, robot control, surveillance, aviation,
air traffic control, driving, military, mobile search and rescue, and many tasks where
probability of utility is predicted by duration since last attention to a task.

Keywords: eye tracking, gaze tracking, automation, cognitive load, pupil, gaze-aware, human–computer
interaction, human–robot interaction
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1. Introduction

Interactionswith partially autonomous processes are becoming an
integral part of human industrial and civil function. Given semi-
autonomy, many such tasks can often be monitored by a user at
one time. In the course of operating a computer or vehicle, a single
human might manage multiple processes, e.g., search and res-
cue type mobile robots, performing medical supply distribution,
patient checkup, general cleanup, firefighting tasks, as well as pro-
cess control with many dials or readings, security or surveillance
monitoring, or other forms of human-based monitoring or track-
ing tasks. Generally, each automated agent or process only needs
intermittent supervision and guidance from a human to optimize
performance, and thus a single user can remotely operate or super-
vise multiple entities, for efficiency of labor. When controlling
multiple automated processes at once, the usermust decide how to
distribute attention across each task. Even if the operator conducts
the same type of task with each automated process, this form of
human–system interaction requires a multitasking effort.

Unfortunately, most people are notoriously poor multitaskers
(Watson and Strayer, 2010) and can remain unaware of visually
subtle cues that indicate the need for user input. Further compli-
cating the situation, individuals who perform worst at multitask-
ing actually perceive they are better at multitasking, demonstrated
by negative correlations between ability and perception of ability
in large studies (Sanbonmatsu et al., 2013). To make matters
worse, humans often naturally develop a plethora of biases of
attention and perception. To address many of these issues, divided
attention performance has been studied for many years (Kahne-
man, 1973; Gopher, 1993). A further difficulty in multitasking
is that brains rely heavily upon prediction and, fundamentally,
are incapable of knowing what important information they have
missed.

Eye tracking to ascertain point of gaze is a highly effective
method of determining where people orient their attention (Just
and Carpenter, 1976; Nielsen and Pernice, 2010), as well as what
they deem important (Buswell, 1935; Yarbus, 1967). Traditionally,
eye tracking informed post-experiment analysis, rather than help-
ing users in the field in real-time. For example, a study might
analyze optimal gaze strategies in high-performing groups, and
then at a later date, train new users on those previously discov-
ered optimal search strategies (Rosch and Vogel-Walcutt, 2013).
For example, studies have trained novice drivers’ gaze to mimic
experienced drivers with lower crash risk (Taylor et al., 2013).

Alternatively, eye movement strategies can be employed to
optimize real-time task performance, since many eye-movements
are capable of being intentionally controlled. For those eye move-
ments that cannot easily be intentionally controlled, salient “pop-
out” cues (e.g., flashing red box around target) can reliably direct
attention in a more automatic, bottom-up manner. As we discuss
further, many eye tracking systems have been developed for real-
time control, with very few attempting pure assistance, though
none were both successful and domain-general (Taylor et al.,
2015). There appears to be a need for such an assistive system.
Here, we tested a solution, which was uniquely domain-general,
non-interfering, purely gaze-aware, andmost importantly, yielded
large benefits in performance.

The work described here maintained several hypotheses and
operational predictions. When a user manages multiple tasks in
the real world, the primary task must be performed, while a sec-
ondary task of correctly remembering their attention history also
often contributes to optimizing performance. Here, we provided
participants a computerized system to perform the secondary task
of remembering, processing, and then displaying actions derived
from gaze history. This treatment was predicted to increase users’
ability to perform any task requiring semi-random gaze patterns
over a large mufti-faceted display or set of dials and readouts.
Supplying participants with this highlighted inverse of eye gaze
recency may improve user performance by delegating short-term
workingmemory for attention history to the computer. This could
generalize to many multitasking scenarios where probability of
needed action on a given single task increases over duration since
last interaction with the task.

2. Materials and Methods

We designed an eye tracking system to assist users in a moni-
toring and search task with multiple simulated agents. Assistance
was specified by an algorithm to highlight in real-time the most
neglected task elements. The game-like task designed for partici-
pants required human monitoring and interaction with multiple
rescue robots at one time. Our algorithm helped users determine
where to look, to improve performance and reduce cognitive load.
Our goal was to create a game task, which tested more a general
utility of design, to extrapolate to many future tasks, in which the
probability of need per task increases with time.

2.1. Experimental Task for Human Subjects:
Ember’s Game
To participants, the experimental task was presented as “Ember’s
Game.” It was used to test our short-term working memory aid.
A user managed from 4 to 10 mobile virtual agents (robots) on a
computer monitor at one time, in sequential experimental blocks
(trials). The game provided a measurable means to assess visual-
spatial multitasking. Beyond the experimental questions it asked,
the simulation was designed to be engaging for the user, practi-
cally oriented, and to represent a broad variety of human–robot,
human–computer, or process-control tasks encountered in the
fields of human factors and engineering psychology for industrial,
civil, or military applications.

In each task, a human operator directed a firefighting robot to
move semi-autonomously through a natural building-like envi-
ronment, to rescue people and pets from a fire elsewhere in the
building (Figure 1). Three types of objects were included in the
game: (1) firefighting robots, which autonomously explored the
space via a semi-random walk, saving firefighting victims upon
contact, (2) primary targets, which were human rescue victims,
when saved earned the operator 10 points, and (3) secondary
targets, which were puppies, earned the operator 5 points when
saved. The instructed goal of the game was to obtain as many
points as possible by saving rescue victims within a fixed time
limit. The user could improve on the robot’s performance by
assuming control of the semi-random walk behavior to send
the robot more directly to targets. This human intervention
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FIGURE 1 | The experimental task: Ember’s Game. (A) Participants were
instructed to control remote firefighting robots (top left) to save rescue
targets (top right), on map-panel tasks (2 displayed at bottom). During the
experimental trials, these robots were represented by red firefighter hats
(above), with each traveling through one separate building floor to find
rescue targets. The primary rescue targets were children (pictured) and the
secondary targets were puppies (pictured). The participant was awarded
points for each rescue target the robot contacted (10 points for primary child
targets, 5 points for secondary dog targets). Each robot stayed within its
own separate map-panel task, moved independently of the other robots on
other panels, and needed to navigate around walls to get to a target.

The semi-autonomous movement of the robot was controlled by the
specified decision probabilities above, unless the human intervened to send
the robot directly to a location. The participant had an opportunity to
intermittently control multiple robots, each on a separate “building floor”
(shown as a map-panel task above and in the experimental trials).
Occasional human intervention could improve on semi-autonomous
movement. Over the course of the experiment, more and more map-panel
tasks were added for participants to simultaneously monitor (4–10 maps).
(B) Gaze tracking assistive system design. Dark red frame outlined the frame
looked at longest ago (most neglected frame), and pale red frame that which
was looked at second longest ago.

would accelerate rescue times over the less targeted random walk
movement.

Participants were instructed to manage multiple independent
sections of the burning building at one time, where each building
section had its ownmaze, firefighter, and rescue targets (Figure 1).
The set of building map-panel tasks were arrayed across a com-
puter screen in a grid formation (Figure 1). Since the robots were
semi-autonomous and could follow human instructions, yet take
around 1–10 s to reach their targets, each map-panel task only
required user interaction intermittently. When a user interacted
with a building map-panel task and satisfied task requirements
(“saves” a rescue target), new rescue targets could appear after-
wards, which was an opportunity to gain more points. Thus, the
probability of these points having re-appeared on that map panel
increased with time. Consequently, the user could optimize their
own behavior by switching between these tasks to interact with
themap-panel task, which required intervention. Each user played
multiple experimental blocks of the experiment, first with 4 map-
panel tasks, then 5, with up to 10 map tasks, requiring optimal
switching between map panels to score well.

While Ember’s game is simple, it particularly taxes spatial
working memory used in visual screen monitoring environments
and should generalize well to many tasks in which the proba-
bility of task utility increases as a function of time since user
intervention with the given task element. These methods are
potentially beneficial, in part because theymay yield improvement

via a simple visual reminder for many types of working memory
intensive spatial monitoring tasks.

2.2. Manipulated Independent Variable: Cue-Type
We employed eye tracking to produce contingent highlighting via
gaze history across the set of all maps (Figure 1). This gaze history
was inverted compared to traditional heat-maps for gaze history;
in this study, themost neglectedmap-panel tasks were highlighted
for the user. In this gaze-aware display, elements in the display
array were highlighted in color-steps, like a gradient of time since
the user last looked at the display, with the elements looked at
longest ago highlighted most saliently. This gradient estimated
probabilities of utility, which notably, need not be independently
discoverable by the computer (e.g., via computer vision).

The experiment was a between-subjects design with three
groups of participants (one test and two control), determined
by three “frame types” that were employed: (1) helpful frame
cues, (2) randomly moving frames (“active” control), and (3) no
frames (“absent” control). These three experimental groups of
participants are detailed further here:

1. Helpful frame cues (“On” experimental condition): our short-
term working memory aid algorithm drew a red frame cue
around the most neglected map-panel task looked at longest
ago, which may thus have been most in need of the user’s
attention, and drew a pale red line around the map-panel
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task looked at the second longest ago in time. To do so,
every monitor-refresh, the eye tracker notified the com-
puter and game of the location of gaze. Frame cues for the
most neglected map panels were removed and re-updated
if the user glanced at or interacted with a map panel. As
a backup for eye tracker error, if the user clicked on a
map-panel task, the frame was removed, since the user had
manually interacted with that map-panel task. In summary,
a map-panel task glanced at recently was not highlighted,
while a neglected map-panel task glanced at longest ago was
brightly highlighted. This history of successive gazes was then
used to provide real-time visual cues for more effective task
switching between maps, throughout the entire course of
the game.

2. Randomlymoving frame highlighting (“Random” control con-
dition): mimicked the Helpful condition (On) frames in most
other aspects, other than their relationship to user gaze. Using
the same physical stimulus as the Helpful condition, two ran-
domly chosen map-panel tasks were highlighted at any given
time, and stayed highlighted for a random amount of time
between 1 and 2 s, closely approximating the amount of time
a frame stays highlighted when a user looks at a given map-
panel task. Random highlighting helped to control for novelty
or pop-out effects using the same physical stimulus as during
Helpful frames, but without the helpful information. Users
were notified before they started playing that the red frames
were random and irrelevant to the game, and the user was able
to choose their own strategy for switching between maps.

3. No map-panel task frame highlighting (“Off ” control condi-
tion): was employed in the second control condition, and the
user chose their own strategy for switching betweenmap-panel
tasks.

Each group experienced the same progression of 4 simultane-
ous maps to manage, up to 10, creating 6 levels of the map-panel
task number factor.

2.3. Experimental Procedure
The experimental sequence was as follows: before starting, each
participant received and signed an informed consent. Partic-
ipants were randomly assigned to conditions (Helpful frame
cues, Random frames, Off frames). The eye tracker apparatus
was explained to participants. Where possible, all experimental
groups received identical instructions (except as required for
condition-differences) for playing Ember’s game, and any ques-
tions were answered (instructions included in Supplementary
Material). Before starting, lights were dimmed to a level consistent
across participants, for calibration reliability and pupil dilation
consistency. Participants were given practice playing, first training
1 building map-panel task at a time, then training with 2 maps
at the same time, followed by 3 maps, with 60 s for each block.
Then, experimental trials began (different highlighting for each
group), with participants playing an experimental block contain-
ing 4 map-panel tasks simultaneously, and subsequent blocks
containing 5 through 10 maps simultaneously (150 s each block),
adding 1 map-panel task per block.

2.4. Measurement and Dependent Variables
A variety of measures were recorded to index working memory
load, cognitive load, and distribution of humans’ visual attention.
Behavioral performance and reaction times were measured to
analyze strategies. Point of gaze was recorded throughout the task.
Measures of pupil dilation indexed cognitive load. Many studies
have shown that pupil dilation is a reliable measure of cognitive
load under certain conditions (Hess and Polt, 1964; Kahneman
and Beatty, 1967), with more mental effort typically assumed to
be associated with larger pupil size; expanded in the Discussion.

Data logging included: the status of all experimental variables
on every refresh (at 30Hz) during experimental trials. Behavioral
datawere indexed by location and status of all game elements, such
as robot location, path location, target location, and time of target
detection. Eye data were indexed by left and right point of gaze
on the screen (x, y coordinates) at the refresh rate frequency, the
calibration quality data (error quantity) before every new block,
and pupil dilation of left and right eye diameter in milliliters at
every time-step. Mouse location (x, y coordinates) was recorded
at the same frequency for comparison to gaze data.

2.5. Participants
A total of 44 human subjects participated in Ember’s game. All
procedures complied with departmental and university guidelines
for research with human participants and were approved by the
university institutional review board. Participants were compen-
sated for their time with $5 USD. Data were not excluded based
on behavioral task performance, in order to obtain a generalizable
sample of individual variation on performance of the task, while
avoiding a restriction of range (Myers et al., 2010). Two partici-
pants with vision correction causing poor calibration quality for
entire blocks were excluded, leaving 42 subjects. No data were
excluded within this pool of subjects. Minimal pilot data were col-
lected using extended game-play and testing on the experimenters
themselves, though these data were not included due to their
short length and differing parameters from the experimental sub-
jects. Between-subjects design was selected, to avoid “order” and
“training” effects which are present in within-subjects designs,
particularly with 2 of 3 groups being controls. Each participant
reported past video game experience, current vision correction,
age, and sleep measures for the previous several days; this was
done after rather than before experimental task participation to
prevent bias.

2.6. Technical Implementation
We used a desk-mounted GazePoint GP3 eye tracker to pinpoint
the users’ point of gaze, i.e., the point on the screen the user is
fixating. This eye tracker has an accuracy of [0.5–1] degrees of
visual angle and 60Hz update rate. Nine-point calibration was
performed immediately before every 150 s new block. Python and
PyGame were used to program the experiment, and interfaced
with the eye tracker’s open standard API via TCP/IP, generously
provided by GazePoint (http://www.gazept.com). Gaze on a panel
(for the Helpful frames condition) was inferred if the user had
been looking at a map-panel task continuously for 10 frames
(about 1/3 of a second). Fixations are generally considered to be
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roughly 80–100ms, and this 300ms duration was chosen because
it approximated the amount of time a player had to look at a map-
panel task to focus on it and obtain the information they need,
while also being long enough to significantly reduce the effect of
eye tracker error.

2.7. Statistical Analysis
Most statistics are displayed within figures themselves, either
(1) as standard error of the mean (SEM) bars, which, in our
experiment, conservatively indicate statistically significant differ-
ences between groups by approximating t-tests if SEM bars are
not overlapping between conditions, as explained below, (2) as
pairwise t-tests superimposed on map bias task arrays, (3) as
Pearson’s product moment correlation coefficient r and p-values
superimposed on scatter-plots, and (4) as effect sizes calculated
via Cohen’s d (Table S1 in Supplementary Material).

The t-statistic is defined as the difference between the means of
two compared groups, divided by the SEM, (u1–u2)/SEM. Thus,
within the parameters of this experiment (and above any typical
n) it is a mathematical necessity that when the SEM bars do not
overlap, a t-test on those same data would be significant above an
alpha criterion of around p< 0.03 for a one-tailed t-test for effects
in the expected direction (as they were this experiment).

The low number of tests within proposed statistical families,
the presence of consistent global trends, and guidelines discussed
below, all argue against correcting p-values themselves for mul-
tiple comparisons (Rothman, 1990; Saville, 1990; Perneger, 1998;
Feise, 2002; Gelman et al., 2012). Further, many statisticians do
not recommend numerically correcting for multiple comparisons
(Rothman, 1990; Saville, 1990). Rather, it is often recommended to
document individual uncorrected p-values, while being transpar-
ent that no correction was performed for multiple comparisons.
In light of the differing opinions of what defines a statistical fam-
ily, we provided Bonferroni-corrected alpha thresholds, though
these are known to be overly conservative (Perneger, 1998), espe-
cially for measures predicted to be correlated, as ours were. The

p-values presented for these experiments in Table S2 in Supple-
mentary Material should be interpreted while considering that
alpha thresholds would traditionally be significant at p< 0.05,
while with seven hypothetical measures in a family the Bonfer-
roni threshold was adjusted to around p< 0.007, with 21 hypo-
thetical tests per family measure the Bonferroni alpha would be
adjusted to approximately p< 0.002, or with an evaluation more
similar to Dunnett’s method, a corrected measure for 10 tests
was around p< 0.004. When these corrections were applied to
the p-values found in Table S2 in Supplementary Material, no
conclusions were changed. Post hoc, the percentage of significant
tests out of the set of all tests can be observed, and evaluated as
to whether it deviates or conforms to the statistically expected
percentage. This is similar tomethods, such as Holm’s, which rank
p-values, or methods which evaluate the percentage of significant
tests out of the set of total tests, and it should be noted that
our conclusions rested not upon a single test, but upon globally
uniform patterns.

Data processing and plotting were programed in the R-project
statistical environment (Core Team, 2013).

3. Results

Below we detailed the practically relevant results with bearing for
applications in human factors and related fields. For a cognitive
and mechanistic deconstruction of the effect of our cuing sys-
tem on human participants, we provided an additional elaborate
analysis in Taylor et al. (2015).

3.1. Helpful Frame Cues Improved Performance
Most importantly, our results demonstrated large performance
improvements in mean game scores for operators using our
memory aid, as compared to the two control groups (Figure 2).
The Random frames control condition showed slightly reduced
scores as compared to theOff frames control condition, indicating
that the randomly moving frames may have been distracting
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FIGURE 2 | Total number of targets acquired (Y-axis), averaged by
condition (bottom X-axes) and across number of maps monitored at
once (top X-axis in dark gray). Helpful frames were plotted as green triangles,
Random as orange squares, and Off frames as blue circles. Error bars show
SEM in this and all following figures, and thus, if each is not overlapping
between conditions, these indicate statistically significant differences between

the groups (t-test equivalent, explained in text). The benefit of Helpful frame
cues varied as a function of the number of maps on the screen, and by proxy,
the amount of information provided by the Helpful frames. Our Helpful frame cue
eye aid demonstrated large improvements in direct performance, as measured
by large effect sizes for seven maps and up (Cohen’s d values around 1;
Table S1 in Supplementary Material).
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to the users, and validating the importance of a second con-
trol. The benefit of the eye tracker appears largest for larger
numbers of maps, likely because the eye tracking system com-
pensated for the inability to optimize switching across seven or
more panels.

3.2. Reaction Times were Improved
As would be predicted by higher scores, participants were also
faster at managing their task, measured in several ways. First,
reaction times were faster to targets, as measured by the delay
from a target appearing, to the user directing the robot toward
it (Figure 3A). Second, participants were faster to assist waiting

robots, which required user input to actually save the primary tar-
gets (Figure 3B). Third, the delay from the time a target spawned
until the target was actually acquired for points was shorter in the
Helpful frame cue condition (Figure 3C). Interestingly, though
total scores in the Off frames control were only marginally better
than Random frames control (above), reaction times were reliably
worse for the Random condition than the Off frames condition;
compare Figure 2 with Figure 3.

3.3. Global Bias was Reduced
When interactingwith this simulation, likemany real-world tasks,
it is often important to eliminate biases when these biases are
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FIGURE 3 | Participants were faster to manage their game tasks.
(A) Users were faster to set paths to send robots toward targets after the
target’s appearance, (B) robots waited less time for human input at the primary

target, and (C) users were faster to actually acquiring points after target
appearance. These results indicated that participants more quickly satisfied task
requirements with the Helpful frame cue aid.
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either artifactual or irrational. In this case, a bias would take the
form of greater time spent attending to a single map-panel task,
over the time spent looking at equally relevant other map-panel
tasks on the screen at the same time. We employed two possible
measures of bias. The first measure averaged the duration of time
spent on each map-panel task, with a set of averages for each
map-panel task in each experimental block (each experimental

block has a different number of map-panel tasks). This first mea-
sure took the formof a heat overlay displaying the cumulative time
the gaze spent on each map-panel task during the entire block
(Figure 4A). In this exemplar case of 10 map-panel tasks, most
subjects in Random and Off conditions were biased toward the
maps in the middle of the screen (darker colors in the middle
squares), while attention was more evenly spread in the Helpful

A

B

C

FIGURE 4 | Helpful frame group was less biased to particular frames.
(A) Total duration of time spent on each map in block with 10 map-panel tasks.
Conditions were represented by three diagonal-super-arrays of 10 maps (Off,
On, Random; blocks 4–9 not depicted), while each individual square was a
map-panel. Dark panels were looked at for longer times than light panels.
Statistical comparisons (t-test; p-values in squares) of each map and condition
at matrix intersection in bottom left three super-arrays (On versus Off;

Random vs. Off; On vs. Random). Random and Off controls were biased toward
the center map-panel task, with more even distribution in Helpful frames.
(B) Which map is biased toward may vary across subjects. A bias measure
insensitive to which map was biased, variability (SD), was increased in both
control groups, and when compared to Helpful assistance, illustrated lesser bias
in the Helpful (On) condition. (C) Helpful eye tracking frames reduced variability
(bias) in mouse duration per map.
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frame experimental condition (more evenly spread heat map over
thewhole array). Thismeasure agreedwith previous literature that
human subjects have an “edge effect,” being biased toward the
center (Parasuraman, 1986). One limitation of this grand-mean
measure is that variability is primarily sensitive to spatial biases
which occur across all subjects.

Thus, to systematically quantify any biases at an individual
subject level, we calculated the standard deviation (SD) of total
times on each panel, across all map-panel tasks. This described the
variation in cumulative time the eyes spent on each of the maps in
an experimental block and map number condition (Figure 4B).
For example, in the seven maps Helpful condition, the set of
cumulative times across each of the ten maps had a low vari-
ability and thus each map-panel task was looked at for a similar
amount of time, while in the control conditions the set of cumu-
lative times across each of the ten maps had a higher variability
indicating that there was greater bias toward some maps away
from others. Confirming the eye gaze results, a similar reduction
in bias was observed for the time the mouse spent over each
map-panel task (Figure 4C). This decreased variability of total
time spent on any single map-panel task compared to the rest
indicated improved consistency of time spent on each map-panel
task with the eye tracker, while participants favored some map-
panel tasks (robots) irrationally when they did not have the eye
tracker’s help.

It is notable that not all bias is bad, since some task elements
may be more important or require more frequent input than
others. Current experiments in our lab automated rational biases
by unevenly weighting delay for elements of the array panel, pro-
viding a gaze-contingent system to distribute gazes accordingly.

3.4. Measures of Cognitive Load were Reduced
To assess measures of cognitive load, pupil dilation was recorded,
both over the course of each block and averaged across blocks.
We demonstrated the dynamics of pupil dilation over the course
of a trial, using data from the “7 map-panel tasks” block as
an exemplar, since this is where behavioral benefits started to
convincingly appear. To do so, three time-traces for pupil dila-
tion for each condition were plotted over time (Figure 5A). For
7 map-panel tasks, the Helpful condition had the lowest pupil
dilation relative to the other conditions, while Off frames was
in the middle, and Random frames had the largest pupil dila-
tion. Pupil dilation was then collapsed over the entire trial, for
each condition and number of maps. Pupil dilation was reliably
smaller with Helpful frames than in the Random frames condi-
tion (Figure 5B); though not predicted, pupil dilation did not
significantly differ between the Off frames and Helpful frames
condition. This finding confirmed the benefit of including a
second control group using the same physical condition with
no information (Random frames). It is possible that the Ran-
dom frames were distracting, and took cognitive effort to ignore,
compared to the Helpful frames. Variations in pupil dilation
over map number could be generally explained by experience,
novelty, fatigue, or training, though since this factor was not
experimentally manipulated to explore the effect of number of
items on the screen, reliable interpretations ofmap number effects
can not be drawn. Interestingly, when pairing pupil dilation and
score for each individual subject, within the Helpful condition,

larger pupils were associated with higher total scores (Figure 5C).
These results suggest operators exerting more “effort” had larger
pupils.

3.5. Participant Sample Statistics
Lastly, we thoroughly confirmed there were no incidental dif-
ferences between subject groups in each condition for features
known to influence experimental performance. To do so, we tested
the null hypothesis that each group had the same population
mean using ANOVA for the following measures: (A) hours of
sleep in the previous week did not differ (F= 0.2, p< 0.8), (B)
age in years (mean= 26) did not differ (F= 1.2, p< 0.3), and (C)
multiple measures of video game experience did not vary between
conditions, as measured by post-experimental surveys assess-
ing multiple measures of gaming frequency (F= 0.8, p< 0.5 –
days/year; F= 0.8, p< 0.5 – h/week), and gaming history (F= 0.1,
p< 0.9 – duration; F= 0.5, p< 0.6 – age started playing).

4. Discussion

4.1. Real-World Performance
Our gaze tracking algorithms improved human operator perfor-
mance, with very large effect sizes, both for pure performance
scores, and for reaction times (Cohen’s d; Table S1 in Supple-
mentary Material). These improvements have a good chance of
being reflected in real-world applications of such an algorithm,
because the scenarios tested here were designed to have realistic
features and be difficult. For example, humans are reliably worse at
dual-target compared to single target searches, even though such
search needs arise in every day life and in some work settings, e.g.,
when scanning x-rays for both explosive devices andmetal objects
(Menneer et al., 2012). To relate, our task employed such a dual-
target search for conjunction targets. While pop out type searches
(a stand-out object) are fast and hypothesized to be performed
quickly in parallel pre-attentively, conjunction searches (multiple
features) are serial and slow (Treisman and Gelade, 1980). Our
study included conjunction stimuli that required a more difficult
serial search to find. Conversely, the red frame cue acted as a pop
out stimulus and was thus very easy to find.

4.2. Bias
There are a myriad of biases which can be adopted by a user,
and visual biases are some of the most well known. For example,
search tends to be biased toward central regions of available visual
space, coined an “edge effect” (Parasuraman, 1986). We observed
this type of effect in the two control conditions, and our assistive
system greatly reduced this bias (Figure 4A). Visual biases, likely
derived from reading, have also been observed for the upper left of
a display (Megaw and Richardson, 1979), which we may have also
observed. Further, individuals may vary in biases for or against
different task elements, but these may not be present in group
means. To address this issue, we demonstrated that the variability
in looking time at each task was reduced in the assistive frames
condition compared to either control, confirming more strongly
that our system reduced user bias. It should be noted that not all
bias is undesirable, and we extended these concepts in the Future
Directions Section below.
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FIGURE 5 | Pupils were larger in the Random frames condition. (A) Y-axis
was pupil dilation (in pixels) across time (X-axis) for an entire 150 s trial for
7 maps. Each line trace was plotted as a condition mean (Off, On, Random). (B)
For a more fine-grained analysis, pupil size was averaged across each condition

for each block (number of maps). (C) Each dot represented one participant’s
data, with score on the Y-axis and pupil dilation on the X-axis. Within the Helpful
frames condition, larger pupils associated with better performance, perhaps
due to greater cognitive effort.

4.3. Task Switching
Human operators appear to be unable to reliably make greater
than two decisions per second (Craik, 1948; Elkind and Sprague,
1961; Fitts and Posner, 1967; Debecker and Desmedt, 1970). Our
system potentially eliminates one decision per second, or per map
switch, a non-trivial benefit. Visual cues for task switching may

assist operators (Allport et al., 1994; Wickens, 1997); this is partic-
ularly true when cuing important tasks (Wiener and Curry, 1980;
Funk, 1996; Hammer, 1999). However, we are the first to imple-
ment such reminders via eye tracking in a manner that can easily
be implemented across domains and platforms. Inmanymultitask
scenarios, like 8 or more maps here, it is likely optimal to have
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an automated task-management strategy. Our algorithm leverages
these phenomena to optimize the primary task, while secondary
tasks (remembering order) are also beneficial to perform, this
can be automated reliably. Our frame cue aid appeared to assist
participants to more fully attend to a single map at a time, with
efficient task switching between maps. Further, decision-making
contributes to cognitive load.

4.4. Cognitive Load
In addition to attention, eye tracking can also be used to asses
several nebulous mental states, including that of cognitive effort.
For example, over 50 years of research suggests measuring pupil
dilation over time (pupillometry) is a reliable measure of cog-
nitive load, where larger pupils indicate greater load or arousal
in controlled lighting conditions (Hess and Polt, 1964; Kahne-
man and Beatty, 1966, 1967; Bradshaw, 1968; Simpson and Hale,
1969; Goldwater, 1972; Hyona et al., 1995; Granholm et al.,
1996; Just et al., 2003; Granholm and Steinhauer, 2004; Van
Gerven et al., 2004; Haapalainen et al., 2010; Piquado et al.,
2010; Laeng et al., 2012; Wierda et al., 2012; Hwang et al., 2013;
Zekveld and Kramer, 2014; Zekveld et al., 2014). Our system
also appeared to reduce cognitive load, as illustrated by reduced
pupil size (lower cognitive effort) in the Helpful condition com-
pared to the Random control (Figure 5). These results, in par-
ticular, were not unequivocal, though the general trend matched
expectations.

4.5. Novelty of the Real-Time Eye Tracking
System
Previous work has used point of gaze to update displays in real-
time, contingent on pupil size or on location of gaze. Both types
are summarized here.

4.5.1. Pupil Size in Real-Time
The DARPA augmented cognition initiative primarily evaluated
pupil dilation as a measure of cognitive load, some in real time
(Marshall, 2002; Marshall et al., 2003; St John et al., 2003; Taylor
et al., 2003; Raley et al., 2004; St. John et al., 2004; Johnson et al.,
2005; Mathan et al., 2005; Russo et al., 2005; Ververs et al., 2005;
De Greef et al., 2007; Coyne et al., 2009). Though some attempted
to use gaze location (Barber et al., 2008), none were successful.

4.5.2. Real-Time Eye Tracking as an
Experimental Tool
Contingent eye tracking modifies computer displays in real-
time based on gaze location and was traditionally used in psy-
chology experiments, though usually to impede users, not to
optimize performance. During the development of eye tracking
technology, psycholinguists used methods, such as the moving
window paradigm (Reder, 1973; McConkie and Rayner, 1975),
which interferes with the participant by turning the upcom-
ing periphery into noise or random stimuli while reading, to
reduce parafoveal preview. Many other paradigms have been
employed to impede participants, such as the moving mask
paradigm (Rayner and Bertera, 1979; Castelhano and Henderson,
2008; Miellet et al., 2010), the parafoveal magnification paradigm

(Miellet et al., 2009), or a central hole (Shimojo et al., 2003).
Interfering with performance can successfully function to probe
participant’s abilities in experiments. However, none attempted to
improve performance, instead degrading it.

4.5.3. Real-Time Gaze Control
Gaze-based systems to control computer displays, wheelchairs,
or other robots have been extensively developed. These methods
often aimed to move cursors, wheelchairs, accessories, graphical
menus, zoom of windows, display context-sensitive presentation
of information, while also including systems for mouse clicks
(Jacob, 1990, 1991, 1993a,b; Jakob, 1998; Zhai et al., 1999; Tan-
riverdi and Jacob, 2000; Ashmore et al., 2005; Laqua et al., 2007;
Liu et al., 2012; Sundstedt, 2012; Hild et al., 2013; Wankhede
et al., 2013). Such systems have also been employed for robot
and swarm robot control (Carlson and Demiris, 2009; Couture-
Beil et al., 2010; Monajjemi et al., 2013). Many of these methods
were primarily for control, though could be interpreted to have
some assistive component, such as displaying context-sensitive
information. Our gaze-aware system can improve performance,
without direct input, and may assist operators in a variety of
scenarios, both control and non-control. This purely assistive
(rather than control) algorithm may complement some of these
control systems.

4.5.4. Gaze-Aware Assistive Systems
Gaze-aware systems are both much less common, and the inter-
faces have been domain specific, such as those used for read-
ing, menu selection, view scrolling, or information display (Bolt,
1981; Starker and Bolt, 1990; Sibert and Jacob, 2000; Hyrskykari
et al., 2003; Fono and Vertegaal, 2004, 2005; Iqbal and Bailey,
2004; Ohno, 2004, 2007; Spakov and Miniotas, 2005; Hyrskykari,
2006; Merten and Conati, 2006; Kumar et al., 2007; Buscher
et al., 2008; Bulling et al., 2011). Few human–robot studies have
taken gaze location into consideration for improving human task
performance (DeJong et al., 2011), with such studies also being
limited to application-specific industrial goals. Often such sys-
tems predict the participants’ gaze location in tasks like map
scanning, reading, eye-typing, or entertainment media (Goldberg
and Schryver, 1993, 1995; Salvucci, 1999; Qvarfordt and Zhai,
2005; Bee et al., 2006; Buscher and Dengel, 2008; Jie and Clark,
2008; Xu et al., 2008; Hwang et al., 2013). Some studies have
succeeded at domain-generalmethods of prediction (Hwang et al.,
2013); however, these methods all require advanced computa-
tional methods, such as image processing and machine learning.
We argue that eliminating prediction and focusing on describing
gaze history yields more general utility. Very few studies have
attempted to create domain-general assistive systems via real-
time eye tracking. However, such attempts have had drawbacks,
for example, by obscuring the display permanently (e.g., make
everything glanced at obscured), or only applying to search, rather
than monitoring or control tasks (Pavel et al., 2003; Roy et al.,
2004; Bosse et al., 2007). The system presented here improves
upon these previous deficiencies; it is domain-general, easy to use,
closed-loop, non-predictive, does not require advanced computa-
tional methods, such as computer vision, and most importantly,
is effective. Despite the need and benefit from this situation-blind

Frontiers in ICT | www.frontiersin.org September 2015 | Volume 2 | Article 1710

http://www.frontiersin.org/ICT
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive


Taylor et al. EyeFrame

multitasking aid, and the seeming obviousness of our solution,
no domain-general solutions such as this exist to date. The
experimental results showed large benefits, and there is potential
for wide generalization.

4.6. Behavioral Mechanisms and In-Depth
Discussion
We provide an extended in-depth eye tracking analysis of these
studies, as well as further discussion of prior assistive systems,
divided attention, bias, supervisory sampling, search, task switch-
ing, working memory, augmented cognition, contingent eye
tracking, gaze-control, gaze-aware displays, and other topics in
Taylor et al. (2015).

4.7. Conclusion and Future Directions
Our real-time gaze aid was successfully domain-general in an
unprecedented way, succeeding where previous studies fell short,
either by being application-specific, control oriented, or by inter-
fering with the user in a non-intuitive manner. It is likely that our
algorithm, of displaying the inverse of gaze recency, could ben-
efit many multi-monitoring or tracking tasks where probability
of utility relates to duration since last attention to an element.
These applications might include process control, multitasking
factory operations, multi-robot control, multi-panel surveillance,
aviation, air traffic control, driving, military, mobile search and
rescue, or others.

For future work, user-assisting systems should be flexible to
the task needs, i.e., should be able to choose and change how
frequently the cues appear, depending on the frequency with
which agents need input. Currently, our lab has developed a

platform-independent general overlay application, which includes
weighting the value of each task in the array to be looked at.
For example, some dials might be more important than others
or require more frequent input. Further, to ensure compatibility
with a variety of tasks, we incorporated varying colors, levels of
visual transparency, and types of cue. Also, user-assisting systems
should be practical and able to be implemented broadly, and thus
we incorporated the use of the mouse rather than eye in a similar
application, for broad use without eye tracking.
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