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In this paper, we propose an effective data-adaptive filtering mechanism for sharpening
of noisy and moderately blurred images. We establish the connection of our proposed
data-adaptive filtering procedure with the classic Difference of Gaussians (DoG) operator
widely used in image processing and computer graphics. Our proposed filter renders
a data adaptive and noise robust version of the classical DoG filter. We also discuss
interesting special cases of our general sharpening method. Experimental results verify
the effectiveness of the proposed technique for sharpening real images.
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1. INTRODUCTION

With ever increasing number of images taken by digital/mobile cameras in different lighting
conditions, and with various camera hardware, effective enhancement algorithms are necessary for
producing higher quality images. Noise and blur are two major distortions in images taken with
existing cameras. Any effective image enhancement algorithm should be equipped with appropriate
mechanisms for dealing with visual degradations resulting from noise and blur. Specifically, image
sharpening is a challenging task when the input image is noisy, even when the image is not severely
blurred. The reason is that image sharpening is essentially a high pass filtering operation aiming
at amplifying high frequency details in the input image. On the other hand, noise components in
the input image exhibit high frequency attributes and any attempt to magnify fine details in the
input image will naturally result in amplifying noise as well. For instance, widely used classical linear
unsharp mask filters are very sensitive to the noise in the input image (Polesel et al., 2000). Another
source of visual degradation is the effect of over-sharpening or the so-called overshoot/undershoot
effects (Bilcu andVehvilainen, 2008). It occurs when the sharpening algorithm tries to sharpen parts
of the image which are already in focus, especially edges, which cause unpleasant artifacts in such
high contrast areas of the image.

There is a vast literature on different techniques for image sharpening and contrast enhancement.
There are many methods based on improving the linear unsharp masking technique. Polesel et al.
(2000) are based on the idea of adaptive tuning of the sharpening parameter based on local
characteristics of the input image. Kim and Allebach (2005) tried to learn the strength parameter
of unsharp mask from an external set of training images. In Bilcu and Vehvilainen (2008), sigma
filtering is combined with unsharp masking and a clipping process is added to control the noise
and overshoot effects. Another variant of unsharp masking using an exploratory data model has
been presented in Deng (2011). Also, a non-linear unsharpmask algorithm is used formammogram
enhancement in Panetta et al. (2011). Methods based on the histogram of input images constitute
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another category of algorithms for contrast enhancement (Pizer
et al., 1987; Arici et al., 2009; Wu, 2011). Although the afore-
mentioned methods are simple to implement, they still produce
noise amplification and overshoot artifacts, which deteriorates the
quality of the final results.

Anisotropic diffusion (Perona and Malik, 1990; ter Haar
Romeny, 1994; Weickert, 1998) and shock filters (Osher and
Rudin, 1990) are non-linear scale-space PDE-based approaches
widely used for edge enhancement in different image process-
ing applications. Alvarez and Mazorra (1994) and Gilboa et al.
(2002, 2004) are among variants of those PDE-based seminal
works. PDE-based methods provide a powerful mechanism for
edge enhancement. However, they can lack texture and fine detail
preservation in the final output images. Bilateral filter (Tomasi
and Manduchi, 1998) has been used widely as an edge preserv-
ing smoothing filter for different image processing and com-
puter vision tasks (Kornprobst and Tumblin, 2009). In Zhang
and Allebach (2008) analyses, adaptive bilateral filter is proposed
by introducing an offset to the range kernel definition of the
original bilateral filter. This enables the filter to switch its behavior
from smoothing to sharpening based on the pixel-wise adjust-
ment of the offset parameter using a training procedure (Zhang
and Allebach, 2008). Guided filtering (GF) (He et al., 2013) is
another edge preserving filter that is widely used for different
image processing tasks (Seo and Milanfar, 2012). In Pham et al.
(2012) analyses, a variant of GF based on the same shifting idea
in Zhang and Allebach (2008) is used for sharpness enhancement
and noise reduction. Also, a weighted version of GF is presented
in Li et al. (2015) based on a similar pixel-wise regularization
parameter tuning in Farbman et al. (2008) and Min et al. (2014)
for detail manipulation. In Zhu andMilanfar (2011), a restoration
algorithm for noisy and weakly blurred images based on kernel
regression (Takeda et al., 2007) is introduced. In Choudhury and
Medioni (2011) and Talebi and Milanfar (2014), non-local multi-
scale approaches have been exploited effectively for automatic
sharpness enhancement and image editing, respectively. Diffusion
maps for edge aware image editing are introduced in Farbman
et al. (2010). Graph-based enhancement procedures have been
introduced in Kheradmand and Milanfar (2014) and Liu et al.
(2015). An image enhancement method based on piecewise lin-
ear directional smoothing and sharpening has been proposed in
Russo (2007). Local Laplacian filters in Paris et al. (2011) reduce
the halo artifacts prevalent in methods based on Laplacian pyra-
mid. Also, a fast realization of this technique has been proposed in
Aubry et al. (2014). Although thesemethods produce good results,
there still exists room for performance improvement, especially
when the input image is noisy and the goal is to simultaneously
remove the noise and boost the sharpness. Also, there is a need
for a more general framework to provide a better understanding
of the underlying lowpass and highpass filters involved in the
sharpening operation.

In this paper, we propose a new sharpening filter based on
the data-adaptive Laplacian matrices for noisy and mildly blurred
images. This approach is general enough to include any valid
construction of smoothing and Laplacian matrices with appro-
priate definition of the similarity measure (Milanfar, 2013b).
We establish the connection between our proposed sharpness

enhancement filter and the classical DoG filters widely used in dif-
ferent image manipulation tasks in the literature, which provides
a better understanding of the mechanism and the functionality
of the underlying parameters in our proposed data-adaptive fil-
ter. Ours can be considered as a data derived and noise robust
variant of the DoG filter. As such, it can be used in various
tasks in which DoG operators are exploited (Marr and Hildreth,
1980; Winnemöller et al., 2006, 2012). We also discuss interesting
simpler special cases of our proposed filter. Experimental results
demonstrate the effectiveness of our approach in dealing with real
examples, namely, the underlying structure-aware mechanism of
our proposed filter enables it to enhance the sharpness in the input
image while reducing noise amplification and other artifacts, such
as halo and false color artifacts.

The rest of the paper is organized as follows. In Section 2,
we define the mathematical model and review the classical
sharpening method based on the notion of DoG operators. We
also introduce our filtering matrix formulation for constructing
smoothing and Laplacian matrices. Taking advantage of the
spectral properties of smoothing and Laplacian matrices, we
define our data-adaptive filter for sharpening. In fact, unlike
the classical DoG-based sharpening operator in Winnemöller
et al. (2012), we start from a filter design framework based on
non-linear smoothing and Laplacian filters. Then, in Section
3, the relationship between the proposed data-adaptive filter
and classical DoG operator is set up. However, we give a better
understanding of the underlying filteringmechanism of the DoG-
based sharpening operator and propose a data-adaptive noise
robust variant of the classical DoG-based sharpening. We also
discuss special cases of our general procedure for different filtering
tasks. Section 4 explains an effective technique for reducing color
artifacts. In Section 5, the effect of different parameters is
investigated via synthetic examples. Also, experimental results
for real image sharpness enhancement are presented compared
to some other existing state of the art algorithms. Section 6 draws
conclusions and summarizes the paper.

2. PROBLEM FORMULATION AND
PROPOSED SHARPENING FILTER

In this section, we describe the underlying model and review the
idea of classical sharpening filters based on the notion of differ-
ence of Gaussians operators. Then, we elaborate on our structure-
aware sharpening filter based on data-adaptive smoothing and
Laplacian matrices.

2.1. Underlying Model
The degradation process in image formation is usually mathemat-
ically modeled as

y = Az+ n. (1)

y is a lexicographically ordered vector representation of the input
n× n blurred and noisy image. z is the latent image in vector form,
and n is a noise vector consisting of independent and identically
distributed zero mean noise with SD ε. Also, A is an n2 × n2
blurring matrix (Hansen et al., 2006). In this paper, we deal with
input images that are noisy but not severely blurred. Without
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deblurring, the goal is to find an appropriate operator F such that
ẑ = Fy is a sharpness enhanced version of the input y without
amplifying noise and other edge related artifacts; and without
explicitly inverting the blur operator. In fact, we do not assume
knowledge of A.

2.2. Classical DoG Operator
The idea of classical DoG filter is that the difference of two Gaus-
sian kernels is able to produce a range of different kernels with
various desired frequency responses. InMarr andHildreth (1980),
the standard DoG operator is introduced as an approximation to
Laplacian of Gaussian operator for edge detection1

DoGσ,k(x, y) = Gσ(x, y)− Gkσ(x, y), (2)

where σ is the SD of the Gaussian function defined as Gσ(x, y) =
1

2πσ2 exp{− x2+y2
2σ2 }. k> 1 is a positive factor. Also, x and y are spa-

tial coordinates. An extension of the standard DoG filter in Marr
and Hildreth (1980) is defined in Winnemöller et al. (2006) as

DoGσ,k,τ (x, y) = Gσ(x, y)− τGkσ(x, y), (3)

in which the parameter τ ∈ (0,1) determines the sensitivity of the
edge detector (Winnemöller et al., 2006). For instance, for small
values of τ , the DoG operator in equation (3) is less sensitive
to noise at the expense of losing some edges in the input image.
Equation (3) can be rewritten in terms of the standard DoG
operator in equation (2) as

DoGσ,k,τ (x, y) = (1− τ)Gσ(x, y) + τDoGσ,k(x, y). (4)

Note that the Gaussian operator preserves the average intensity
of the input image whereas the average response of the stan-
dard DoG operator DoGσ,k(x,y) is zero. Therefore, changing the
parameter τ in equation (4) for achieving the desired effects,
inadvertently alters the average brightness of the input image2.
Using a simple reparameterization, the authors in Winnemöller
et al. (2012) describe the following family of sharpening filters

Sσ,k(x, y) =
DoGσ,k,τ (x, y)

1− τ
= (1+β)Gσ(x, y)−βGkσ(x, y), (5)

in which β = τ
1−τ . Compared to the formulation in equation

(3), whereas the average brightness in the input image is retained,
the level of sharpening can also be controlled by the parameter
β in equation (5). This average intensity-preserving sharpening
operator has been derived mostly through a heuristic approach.
It is intrinsically linear and not data dependent. In the following
subsections, we start from a filter design framework based on the
spectral properties of the data-driven Laplacian operators. Then,
in Section 3, we elaborate on its relationship with classical DoG-
based sharpening operators described here in this section. This
helps explain the properties of the DoG-based operators from a
filtering point of view. It also provides a powerful structure-aware
mechanism for dealing with more complicated real-world images
where there is a need to incorporate non-linear filters for better
performance.

1The relationship between DoG operator and the Laplacian of Gaussian has been
discussed in the Supplementary Material.
2Preserving the average values of the input image is a desired property for filtering
tasks in image processing (Milanfar, 2013b).

2.3. Structure-Aware Sharpening Filter
Since any sharpening operator is inherently a highpass filter, it
inadvertently leads to amplifying high frequency noise compo-
nents in the input image and causes artifacts related to over-
sharpening high contrast regions in the input image. Therefore,
there is a need to incorporate an effective smoothing mechanism
in the sharpening operator to alleviate these shortcomings while
preserving image structures. Exploiting the existing self similar-
ity in natural images tends to be an effective way to take into
account the underlying structure of images when constructing
such operators (Buades et al., 2005; Milanfar, 2013b), and thereby
reducing the related artifacts. In the following, we first provide
our matrix formulation for constructing data-adaptive smoothing
and Laplacian matrices as the main building blocks for creating
the final sharpening filter. Then, we introduce our data-adaptive
sharpening filter.

2.3.1. Kernel Similarity, Smoothing, and
Laplacian Matrices
As depicted in Figure 1, the degree of correspondence between a
given pixel i and any other pixel j in an image is measured using an
appropriate similarity criterionK(i,j). Various definitions ofK(i, j)
have been used in the literature for this purpose (Tomasi and
Manduchi, 1998; Buades et al., 2005; Takeda et al., 2007; Zhang
and Allebach, 2008; He et al., 2013). Any symmetric, positive
definite kernel is valid in our framework. So, without loss of
generality, we use non-local means (NLM) definition (Buades
et al., 2005) in which the structure of patches around different
pixels are taken into account to compute the similarity score as

K(i, j) = exp

(
−
∥ zi − zj∥2

h2

)
, (6)

where zi and zj are patches around pixels i and j in the image z,
and h is a scaling parameter. Putting all these weights together,
we build the corresponding affinity (or similarity) matrix K,
which is symmetric and non-negative by definition (Kherad-
mand and Milanfar, 2014). This matrix is then normalized using
a fast symmetry-preserving matrix scaling algorithm based on
Sinkhorn matrix balancing (Sinkhorn and Knopp, 1967) as

W = C−1/2KC−1/2, (7)

where C−1/2 is the diagonal normalizing matrix derived from
matrix balancing algorithm inKnight and Ruiz (2013). The result-
ing smoothing filter W is a symmetric and doubly stochastic

FIGURE 1 | Construction of similarity matrix K, smoothing matrix W
and Laplacian I –W.
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matrix3. Since W is stochastic, its largest eigenvalue would be
λ1 = 1 corresponding to the constant eigenvector, which high-
lights its lowpass filtering properties (Kheradmand and Milanfar,
2014)4. It also preserves the average brightness when applied to an
image (Milanfar, 2013b). On the other hand, the Laplacian matrix
is defined as I –W with zero eigenvalue corresponding to the
constant eigenvector. As such, it returns zero vector when applied
to a constant signal. Therefore, it can be considered as a data-
adaptive high pass operator. Note that thesematrices are evaluated
based on the similarity information among different parts of
an image and encode the underlying structures of images in an
effective manner. A spectral graph theoretic point of view of such
matrices has been discussed in Gilboa and Osher (2008), Shuman
et al. (2013), and Kheradmand and Milanfar (2014). Specifically,
I –W is our proposed definition of graph Laplacian with advan-
tages described in Kheradmand and Milanfar (2014)5. We have
summarized the spectral properties of our definition of graph
Laplacian in comparison with some other widely used normalized
graph Laplacians in Table 1 (Kheradmand and Milanfar, 2014).
Note that we are able to define the data-adaptive unsharp mask
filter using this definition of Laplacian as I+ β (I –W), which
essentially adds a weighted highpass filtered version of the input
image to itself to highlight the high frequency details. The problem
with direct application of this filter is that it suffers from noise
amplification and edge artifacts. We discuss how to improve its
performance next.

2.3.2. Proposed Data-Adaptive Sharpening Filter
For any effective sharpness enhancement operator, two require-
ments need to be satisfied: first, noise amplification should be
avoided. Second, the level of contrast in the image should be
increased without introducing overshoot and gradient reversal
(halo) artifacts along edges. To this end, and inspired by DoG
filtering idea, we propose a three stage filtering approach as shown
in Figure 2. We first apply a non-linear smoothing operator to
the input noisy image. This filter is aimed to data adaptively
reduce the effect of the noise in the input image while avoiding
over-smoothing. The smoothing operation is followed by a data
derived unsharp masking operation controlled by the parame-
ter β > 0. Finally, the smoothing filter is applied again in order
to further control the effect of amplified noise and overshoot
artifacts due to the unsharp mask filter. More formally, hav-
ing the lowpass smoothing and highpass Laplacian operators at
our disposal, we propose the following data-adaptive sharpening
filter

F = W1{I+ β(I−W2)}W1, (8)

where W1 and W2 are constructed from similarity matrices K1
and K2 with scaling parameters h1 and h2, respectively. This pro-
vides us with the flexibility to better control the smoothing and

3Amatrix with non-negative entries is doubly stochastic if each of its rows and each
of its columns sum to 1.
4As discussed in Milanfar (2013a), this procedure has performance and filter anal-
ysis advantages as compared to traditional normalization D−1K with D a diagonal
matrix whose ith diagonal element is the sum of the elements of the ith row in K.
5Also, our proposed filtering procedure is general in the sense that other graph based
definitions of smoothing and Laplacian matrices can be incorporated within the
same framework.

TABLE 1 | Properties of different graph Laplacians.

Reference Graph
Laplacian

Symmetric DC
eigenvector

Stochastic
property

Chung (1997)
Bougleux et al. (2009) I –D−1/2

KD−1/2
Yes No No

Meyer and Shen (2014)

Chung (1997)
Szlam et al. (2008) I –D−1 K No Yes D−1K is row-

stochasticGilboa and Osher (2007)

Ours I –C−1/2

KC−1/2
Yes Yes W is doubly

stochastic

Note that D=diag{K1}, with 1 a vector of all ones.

FIGURE 2 | Block diagram of the proposed enhancement algorithm.
y is the input image and ẑ is the enhanced output image.

ALGORITHM 1 | Sharpness enhancement algorithm.

Input: noisy blurry image y

Output: sharpness enhanced image ẑ

– Convert the RGB color image y to YCbCr color space.

– Compute similarity matrices K1 and K2 from the Y channel using equation (6).

– Apply matrix scaling algorithm in Knight and Ruiz (2013) to K1 and K2 to get the
diagonal matrices C−1/2

1 and C−1/2
2 , and compute the filtering matrices

W1 = C−1/2
1 K1C−1/2

1 and W2 = C−1/2
2 K2C−1/2

2 .

– Construct the sharpening filter F = (1 + β)W2
1 − βW1W2W1.

– Compute luminance channel estimate Ŷ by applying F to Y.

– Compute chroma channel estimates Ĉb and Ĉr by applying F to Cb and Cr with
smaller value of β.

– Convert the resulting estimated luminance and chroma channels back into the
RGB color space to obtain the final sharpened image ẑ.

sharpening operations. The parameters of the filter need to be
tuned for the desired effects. Selection of these parameters will
be discussed later. Furthermore, as will be shown in subsequent
sections, our proposed filter based on the spectral properties of
smoothing and Laplacian matrices exhibits nice connections to
the classical DoG operator. Algorithm 1 summarizes different
steps of the proposed sharpening algorithm.

3. INTERPRETATION OF THE PROPOSED
FILTER AS DATA-ADAPTIVE DIFFERENCE
OF SMOOTHING OPERATOR

In this section, we demonstrate the relationship between our
proposed noise and edge aware sharpening filter and classical
Difference of Gaussians filter. This analysis sheds light on the
properties of the proposed filter and gives a better understanding
of the underlying parameters. Specifically, we provide a data-
adaptive noise and edge aware version of the classical DoG-based
operators for use in different applications. Note that the proposed
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filtering matrix F in equation (8) can be rewritten as

F = (1+ β)W2
1 − βW1W2W1. (9)

If we defineG(W1) = W2
1 andH(W1, W2)=W1W2W1, thenG

can be considered as double application (diffusion operator) of the
filter generated from data-adaptive Gaussian kernel in equation
(6). On the other hand, H can be thought of as a cascade of
data-dependent Gaussian filters with a larger bandwidth com-
pared to that of G. The difference in bandwidth of the filters G
and H is determined by the scaling parameters h1 and h2 in the
NLM kernel used for defining the smoothing filters W1 and W2,
respectively. In fact, our proposed sharpening filter in equation
(9) can be viewed as the data-derived version of the DoG-based
filter in equation (5). Here, we use the NLM kernel definition of
equation (6) for producing matrices W1 and W2. However, any
other edge aware kernel definition in the literature (Tomasi and
Manduchi, 1998; Buades et al., 2005; Takeda et al., 2007; Zhang
and Allebach, 2008; He et al., 2013) can also be exploited within
the proposed filtering scheme.

3.1. Special Cases of the Proposed
Sharpening Framework
There is a nice connection with other image filter design
paradigms when we consider the simple case where
W1 =W2 =W. In this case, the filter F in equation (9) takes the
following form

F = (1+ β)W2 − βW3. (10)

Specifically, with β= 2, equation (10) boils down to F= 3W2 –
2W3. This filter is the data-adaptive version of the classical sharp-
ened (linear) smoothing filer of Kaiser and Hamming (1977).
This polynomial function of the symmetric smoothing filter
W=VSVT provides a way for improving the spectral properties
of the initial filter (W) by manipulating its spectrum λ with a

polynomial6 function f (λ)= 3λ2 – 2λ3. This polynomial function
is also well-known as the smoothstep function broadly used in
computer graphics (Boreskov and Shikin, 2013). Also, note that
for different values of the parameter β in equation (10) different
band pass filters are generated. As an illustration, if we start
from the spectrum of the lowpass symmetric filter W=VSVT

constructed from a 91× 91 image in Figure 3A, the spectral mod-
ifications due to the polynomial function f (λ)= (1+ β)λ2 – βλ3

are shown in Figure 3B for different values of the parameter β.

4. REDUCING COLOR ARTIFACTS

Any sharpness enhancement operator intends to increase the
contrast and enhance the details in the input image. Besides high
frequency noise components present in the input image, there are
other high contrast artifacts in color images usually called false
color artifacts (Park et al., 2009; Chang et al., 2013). These sorts
of color artifacts are created during the image formation process
and are amplified when using a compression scheme like JPEG.
Due to their high frequency, and structured nature, theymight get
amplified by the sharpening operation. This phenomenon causes
unpleasant color artifacts in the final image which degrades the
visual quality. There exist some recent works trying to alleviate
such distortions mostly as post processing algorithms (Choud-
hury and Medioni, 2009; Rabin et al., 2011; Chang et al., 2013).
We do not delve into the details of these methods. Instead, we opt
for a simple mechanism within our filtering framework to avoid
amplification of color artifacts. It is well-understood that human
visual system is less sensitive to fine changes in chroma channels
than those details in luminance channel (Chang et al., 2013). In
order to reduce these artifacts in the final output, we use a similar

6λ’s are the eigenvalues ofW as the diagonal elements of the diagonalmatrix S. Also,
the columns of the orthonormal matrix V are the eigenvectors ofW which serve as
a data-adaptive basis for filtering purposes (Talebi and Milanfar, 2014).

A B

FIGURE 3 | (A) Top left: original 91×91 image, (A) Top right: output with f (λ)=3λ2 – 2λ3, (A) Bottom left: output with f (λ)= 6λ2 – 5λ3, (A) Bottom right: output
with f (λ)= 11λ2−10λ3, and (B) The eigenvalues of the smoothing matrix W constructed from (A) Top left along with the eigenvalues corresponding to sharpened
smoothing filter 3W2 – 2W3 and band pass filters 6W2 – 5W3 and 11W2 – 10W3.
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A B C D

E F G H

FIGURE 4 | First row: (A) Input JPEG image and its different channels: (B) Luminance Y channel, (C) Chrominance Cb channel, and (D) Chrominance
Cr channel. Second row: (E) Output of our sharpening filter and its different enhanced channels: (F) Enhanced luminance Y channel, (G) Enhanced chrominance Cb
channel, and (H) Enhanced chrominance Cr channel.

A B C

FIGURE 5 | Set of images (A), (B), and (C) used in synthetic experiments.

strategy to the one in Zhu and Milanfar (2011). Strictly speaking,
we convert the input RGB color image to a suitable luminance-
chrominance color space, i.e., YCbCr. Then, the kernel similarity
coefficients computed for the luminance channel Y can also be
used for filtering the chroma channels. This prevents the false
color artifacts in color channels from contributing to the filtering
coefficients and is effective in reducing such distortions in the final
output. However, a less aggressive sharpening is applied to color
channels by choosing a smaller value of the sharpening parameter
β for chroma channels. This will further avoid amplification of
false color artifacts in the sharpened image. Figure 4 illustrates the
input JPEG image alongwith its different channels in YCbCr color

space and their enhanced versions using our proposed algorithm7.
As can be seen, our proposed sharpening filter is able to reduce
the color artifacts while avoiding noise amplification in the final
output.

5. EXPERIMENTAL RESULTS

In this section, we demonstrate the performance of the proposed
sharpening filter via a number of examples. Also, using synthetic

7The input image is from the test examples in http://www.neatimage.com/
examples.html.
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A B

C D

FIGURE 6 | Effect of the parameter h1 via synthetic examples withβββ =1.5, k =3: (A) Input noisy and blurry image, (B) Output of our sharpening
algorithm with h1 =0.8, (C) Output image with h1 =1.2, and (D) Output image with h1 =2.

A B C D

FIGURE 7 | Effect of the parameterβββ via synthetic examples with h1 =1.4, k =3: (A) Input noisy and blurry image, (B) Output of our sharpening
algorithm withβββ =1.5, (C) Output image withβββ =2.5, and (D) Output image withβββ =3.5.

examples the effects of different parameters are investigated. The
performance of the proposed method is compared with those of
Bilcu and Vehvilainen (2008), Zhu and Milanfar (2011), and He
et al. (2013) for real images.

5.1. Investigating the Effect of Different
Parameters via Synthetic Examples
In this subsection, we use the test images in Figure 5 to show the
effect of different parameters. Slight out-of-focus blur and additive
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A B C D

FIGURE 8 | Effect of the parameter k via synthetic examples with h1 =1.4,βββ =1.5: (A) Input noisy and blurry image, (B) Output of our sharpening
algorithm with k =2, (C) Output image with k =3.5, and (D) Output image with k =6.

A B

C D E

FIGURE 9 | (A) Input image, (B) Output of Bilcu and Vehvilainen (2008), (C) Output of He et al. (2013), (D) Output of Zhu and Milanfar (2011), and (E) Output of our
sharpening algorithm with h1 = 0.7, k= 4, β= 1.6.
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A B

C D E

FIGURE 10 | (A) Input image, (B) Output of Bilcu and Vehvilainen (2008), (C) Output of He et al. (2013), (D) Output of Zhu and Milanfar (2011), and (E) Output of our
sharpening algorithm with h1 = 2.7, k= 4, β= 1.7.

white Gaussian noise are added to test images in Figure 5. For
this purpose, each image is convolved with a 3× 3 disk function.
Then, additive white Gaussian noise with SD equal to 5 is added
to generate synthetic noisy and blurry examples.

The parameters h1 and h2 play an important role in the low-
pass characteristics of the corresponding filters W1 and W2,
respectively. These parameters control the level of sharpening and
smoothing achieved by the proposedDoG-based filter in equation
(9). We adopt h2 = kh1 with a positive factor k> 1 which controls
the level of contrast enhancement in the output image. Also, note
that the larger the parameter h1 the smoother is the resultant
image. In fact, we control the level of noise reduction by the
parameter h1. It also helps to avoid the unpleasing halo artifacts
in the output image. On the other hand, the parameter β controls
the amount of sharpening in the image as it appears in the unsharp
mask part of the filter F in equation (8). In Figure 6, we fix the
parameters k and β to be equal to 3 and 1.5, respectively. Then,
we change the value of the scaling parameter h1. As can be seen,
by increasing this parameter the level of smoothing is increased
resulting in more noise reduction. On the other hand, increasing
the parameter β increases the detail enhancement level of the
filter, as depicted in Figure 7. The parameter k provides the algo-
rithm with finer control over the degree of contrast enhancement,
as illustrated in Figure 8 with fixed parameters β and h1.

In this paper, we rely on subjective evaluation to tune these
parameters according to the level of noise and blur in the input
image. However, any appropriate metric can be exploited to come

up with automatic parameter tuning for the proposed framework.
For instance, sharpness metrics in Ferzli and Karam (2009) and
Zhu and Milanfar (2009) could be used for automatic parameter
selection. However, this topic is outside the scope of this paper.

5.2. Real Sharpening Examples
Next, we verify the performance of our algorithm for dealing
with different real scenarios. We compare the quality of images
produced by our method with those of other existing algorithms
for sharpness and contrast enhancement in Bilcu and Vehvilainen
(2008), Zhu andMilanfar (2011), andHe et al. (2013). The param-
eters of all algorithms are set for best subjective performance.
Figure 9A depicts the input image with moderate noise and
blur. Figure 9E shows the output of our sharpening algorithm
compared to those of algorithms (Bilcu and Vehvilainen, 2008;
Zhu and Milanfar, 2011; He et al., 2013) in Figures 9B–D. In all
experiments the sharpening parameter β is selected to be equal
to 0.2 for chroma channels in our proposed algorithm. As can
be seen, our algorithm is better able to restore the fine details
while controlling the effect of noise compared to the enhancement
algorithms in Bilcu and Vehvilainen (2008) and He et al. (2013).
Compared to the result of Zhu and Milanfar (2011), our method
avoids noise amplification artifacts while reducing the unpleasant
halo effects along edges. Figure 10 illustrates another real example
with stronger noise and color artifacts. As is evident from the
results, the sharpening algorithm in Bilcu and Vehvilainen (2008)
produces noise amplification artifacts when the amount of noise
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A B

C D E

FIGURE 11 | (A) Input image, (B) Output of Bilcu and Vehvilainen (2008), (C) Output of He et al. (2013), (D) Output of Zhu and Milanfar (2011), and (E) Output of our
sharpening algorithm with h1 = 1.4, k= 4.5, β= 1.2.

is high in the input image. Also, the enhancement method in
He et al. (2013) does not effectively perform noise reduction and
sharpening operations simultaneously in this case. The sharpen-
ing method in Zhu and Milanfar (2011) produces edge artifacts
as can be seen in Figure 10D. However, our proposed algorithm
is able to effectively sharpen the edges while avoiding noise and
edge artifacts and reducing the color distortions, as can be seen in
Figure 10E. The example in Figure 11 is even more challenging
as it contains more severe noise and moderate blur along with
color artifacts, especially across edges. The algorithm in Bilcu and
Vehvilainen (2008) does not carefully control the effect of noise in
the input image and produces noise-related unpleasant artifacts.
Similarly, the enhancement code in He et al. (2013) does not
effectively deal with artifacts due to the noise in the input image.
The algorithm in Zhu and Milanfar (2011), however, is able to
provide a good level of noise reduction and contrast enhancement
(Figure 11D). As regards visual quality, our result in Figure 11E
is more effective in reducing the color artifacts.

5.3. Computational Complexity
For computational efficiency, we compute the similarity coeffi-
cients for constructing filteringmatricesW1 andW2 using a 9× 9
search neighborhood around each pixel. Moreover, in equation

TABLE 2 | Running times in seconds for un-optimized MATLAB implemen-
tations of our algorithm for different RGB color images.

Image Size Run-time

Figure 4 244×233×3 35
Figure 6 533×800×3 263
Figure 7 768×512×3 240
Figure 8 768×512×3 240
Figure 9 700×459×3 197
Figure 10 651×651×3 262
Figure 11 480×400×3 117

(6) zi and zj are selected as 5× 5 patches around pixels i and j.
Also, note that our proposed sharpening algorithm is not an itera-
tive procedure. This attribute lessens its computational demands.
Table 2 summarizes the running times for un-optimized MAT-
LAB implementations of our algorithm for the RGB color images
used in this paper. We have run all the experiments on a 2.8GHz
Intel Core i7 processor. It is also possible to further reduce the
computational cost of our proposed filtering algorithm by exploit-
ing integral images (Darbon et al., 2008) for evaluating the kernel
similarity coefficients in equation (6). In this paper, however, our
focus is on the analysis and performance aspects of the algorithm.
Speeding up the implementation will be the next step.
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6. CONCLUSION

We have proposed a new sharpening filter based on the spectral
properties of data-adaptive smoothing andLaplacianmatrices.We
have established an analysis framework that explains the relation-
ship between our proposed sharpening procedure and classical
DoG filter. This analysis further sheds light on the underlying
parameters in our proposed formulation and introduces a data
dependent and noise robust version of the DoG operator for
use in relevant applications. We have also shown special cases of

our more general approach. We verified the effectiveness of the
proposed method for sharpening real noisy and blurry images.
Automatic parameter tuning and faster implementation will be
considered as future works within the proposed framework.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at http://journal.frontiersin.org/article/10.3389/fict.2015.00022
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