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In the Big Data era, informational systems involving humans and machines are being 
deployed in multifarious societal settings. Many use data analytics as subcomponents 
for descriptive, predictive, and prescriptive tasks, often trained using machine learning. 
Yet when analytics components are placed in large-scale sociotechnical systems, it 
is often difficult to characterize how well the systems will act, measured with criteria 
relevant in the world. Here, we propose a system modeling technique that treats data 
analytics components as “noisy black boxes” or stochastic kernels, which together with 
elementary stochastic analysis provides insight into fundamental performance limits. An 
example application is helping prioritize people’s limited attention, where learning algo-
rithms rank tasks using noisy features and people sequentially select from the ranked 
list. This paper demonstrates the general technique by developing a stochastic model of 
analytics-enabled sequential selection, derives fundamental limits using concomitants of 
order statistics, and assesses limits in terms of system-wide performance metrics, such 
as screening cost and value of objects selected. Connections to sample complexity for 
bipartite ranking are also made.

Keywords: concomitants of order statistics, data analytics, fundamental limits, sequential selection, sociotechnical 
systems, stochastic kernels

1. iNtrODUctiON

There is an emerging ubiquity to data analytics that have multifarious machine learning and data 
mining algorithm subcomponents and that are embedded in sociotechnical systems, such as firms 
and cities. When these systems are deployed in society, they bring together humans and machines 
in increasingly complex configurations, despite algorithms often being hidden from view. They 
particularly allow people to thrive in the era of large-scale data rather than being overwhelmed by 
the cacophonous din of information overload.

Data analytics have emerged as a key driver of value in business operations and allow firms 
to differentiate themselves in competitive markets (Apte et al., 2003; Davenport and Harris, 2007; 
Varshney and Mojsilović, 2011). This use of data, statistical and quantitative analyses, explanatory 
and predictive models, and fact-based management has been driving decisions and actions both 
for the internal processes of firms, such as human resource management (Cao et al., 2011), and for 
customer-facing processes.

Data can not only bring insight into urban phenomena, such as pollution (Jain et al., 2014) or 
provide the basis for establishing a science of cities (Bettencourt, 2013), but also can in fact be 
incorporated into city analytics systems that improve quality of life through real-time monitoring 
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and control (Kitchin, 2014; Townsend, 2014) or by providing 
policy insights to human actors (Appel et al., 2014).

Although data analytics is becoming a key part of sociotechni-
cal systems, the academic literature in the machine learning and 
data mining field does not typically focus on the system-level 
impact of data analytics. Consequently typical measures of 
performance that are optimized and reported – accuracy, recall, 
and precision – do not always align with domain experts’ assess-
ment of performance (Wagstaff, 2012; Rudin and Wagstaff, 2014). 
Indeed, when data analytics are used in real applications, success 
is often not due to detailed differences in performance between 
individual algorithms (according to typical measures) but by how 
well the solution fits the unique aspects of the domain and its 
evaluation measures (Rudin and Wagstaff, 2014). At the same 
time, there is now a zoo of algorithmic possibilities, each with a 
life of its own.1

Given this state of affairs, it is important to develop an 
approach to sociotechnical system modeling and analysis that 
abstracts away from the specifics of particular algorithms and 
obtains systems-level understanding. The approach should han-
dle the complex interconnections of data analytics components 
that interact with each other and with people (de Weck et  al., 
2011). The approach should provide insight into how algorithmic 
improvements translate into gains that “matter to the world out-
side of machine learning research, … [in terms of] dollars saved, 
lives preserved, time conserved, effort reduced, quality of living 
increased, and so on” (Wagstaff, 2012). Indeed in business, one of 
the long-standing questions has been to characterize the return 
on investment in data systems (Spira, 2002), likewise for voter 
data in elections (Parsons and Hennessey, 2012) and a multitude 
of other societal settings. Hence, the approach should also yield 
fundamental limits that demarcate what is possible from what is 
impossible in data analytics systems (Varshney, 2014b), no matter 
how much effort engineers exert in improving algorithms.

Here, we describe an approach to encapsulate machine 
learning and data mining algorithms as stochastic kernels with 
specified probabilistic input–output relationships, “noisy black 
boxes” as it were. The transition probability assignment can be 
related to traditional machine learning performance metrics, if 
desired. As far as we know, this is a novel approach to studying 
analytics systems, cf. Kuncheva (2004). When several algorithms 
are linked together, perhaps also with people, we would have a 
stochastic network – representable as a block diagram – which 
can be studied using methods from stochastic analysis.

The easy theoretical approach is meant to yield insights for 
consumption by potential users of data systems, such as business 
executives or city government officials. Such users are interested 
in understanding the basic trade-offs present in these systems 
under metrics they care about, knowing how much value an 
algorithm deployment effort can provide, and determining 
whether it is worthwhile spending time/energy in developing 
specific advanced algorithms. They are typically not interested in 
detailed evaluation of specific algorithm performance, which has 

1 See any textbook on machine learning, e.g., Marsland (2014), but also the no free 
lunch theorems (Wolpert, 1996).

been the main focus in published research in machine learning 
and data mining.

This method of encapsulation has strong analogies with the 
way communication channels are cast as stochastic kernels in 
information theory or observers are cast as stochastic kernels 
in estimation and control theory. In fact, block diagrams as 
cognitive tools have been of utmost importance in the historical 
development of information theory and communication system 
design, from Claude Shannon onward (Varshney, 2014a). As has 
been noted, “Shannon came up with a unifying, general theory 
of communication. It did not matter whether you transmitted 
signals using copper wire, an optical fiber, or a parabolic dish. 
It did not matter if you were transmitting text, voice, or images. 
Shannon envisioned communication in abstract, mathematical 
terms” (Guizzo, 2003). This unified the zoo of communication 
technologies into a single framework and allowed the determina-
tion of fundamental limits, just as we aim to do for data analytics 
systems here.

In addition to the ability to characterize sociotechnical 
system performance, encapsulation creates strong abstraction 
boundaries that lead to modular software engineering and 
easily modified/maintained systems, cf. Mozafari et  al. (2014). 
Otherwise, a large amount of hidden technical debt may be 
incurred in using machine learning components in larger systems 
due to unintended system-level couplings (Sculley et al., 2014). 
Moreover, factoring data analytics systems into smaller blocks 
can even improve performance. Breaking a learning problem 
into two subproblems and pretraining each model separately led 
(Gülçehre and Bengio, 2013) to a solution of a task that seemed 
impossible otherwise.

One common criticism of black box components is that they 
are not interpretable by system users, but this is a statement 
about algorithms that are not understandable. Here, the “noisy 
black boxes” actually reduce the cognitive load for the large-scale 
sociotechnical system designer, who understands exactly what is 
happening at a suitably abstract level.

In the remainder of this paper, we demonstrate the approach 
of treating machine learning components as stochastic kernels in 
analyzing the performance of sociotechnical systems, through an 
example of sequential selection. The best theories are said to be 
practical. Hence, to evaluate the proposed stochastic approach, 
we see whether users are able to use it to gain useful insight. 
We describe how the approach was in fact successfully used by 
human resource executives in a large multinational corporation 
and by government officials in a medium-sized American city.

2. DAtA ANALYtics tO PriOritiZe 
HUMAN AtteNtiON

When there is an overload of data and information (Spira, 2011; 
Anderson and de Palma, 2012), it causes a scarcity of human 
attention and energy (Simon, 1971; Davenport and Beck, 2001). 
Data analytics systems can prioritize people’s limited attention by 
ranking items. Some typical examples of sociotechnical import 
from my own work, beyond simple information retrieval, include 
the following.

http://www.frontiersin.org/ICT/archive
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FiGUre 1 | General sociotechnical sequential selection system. (A) Block diagram and (B) schematic trade-off between cost and quality, as parameterized 
by selection threshold. The use of data analytics can yield performance gains by shifting the performance curve to the left.
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•	 Large companies in high-growth markets receive tens of 
thousands of job applications per month, and this overloads 
human screeners and interviewers. As such, it is useful to 
develop algorithms trained on historical data that auto-
matically rank candidates according to quality, likelihood 
of accepting an offer if made one, and likelihood of staying 
with the company for an extended period (Mehta et  al., 
2013).

•	 In Syracuse, NY, USA, about 5% of houses have been aban-
doned and lie vacant, causing drug crime, arson risk, and 
loss of civic pride. Some of these vacancies cause neighboring 
properties to become vacant, bringing down whole neighbor-
hoods. Since the city government has limited attention and 
resources, a system to predict future vacancies or identify 
vacant parcels with all the features of occupancy (especially 
those on neighborhood tipping points) can be used to priori-
tize actions (Appel et al., 2014).

•	 Just as with urban renewal, governments have limited atten-
tion and resources for child protective services. By building a 
predictor for the severity of a reported child abuse case, and 
further using queuing-theoretic ideas when classification is 
noisy, we can prioritize cases to be investigated, e.g., in the 
Capital Region of New York (Williams et al., 2012).

As we will see, all of these problems fall under the framework 
of Figure 1A. Let us use human resource analytics to concretely 
describe basic system design; mapping to other problems should 
be clear. One way of providing decision support to screeners 
would be to automatically rank candidates according to quality, 
using analytics built on resume features. The screeners could then 
proceed sequentially through the ranked list until they reach their 
quota of candidates meeting a certain cutoff level. A data-driven 
prioritization scheme could provide value in two ways:

•	 first, it could reduce the evaluation cost required for screening 
and

•	 second, it could increase the quality of candidates that pass 
screening.

Indeed, the cutoff level in the sequential selection process would 
trade-off between these two gains. This basic trade-off is depicted 
in Figure 1B, demonstrating the value of analytics algorithms. If 
analytics operated without error, performance analysis would be 
simple. Unfortunately, there are inherent uncertainties in judging 
candidates from resumes. Even Bayes-optimal ranking functions 
incur some error, and algorithms trained on finite training sets 
incur even more error (Agarwal et  al., 2005; Clémençon and 
Vayatis, 2009; Kotłowski et al., 2011).

By developing a model for noisy prioritization, we will be 
able to characterize this trade-off and thereby quantify the 
sociotechnical value of analytics-based ranking as decision sup-
port for sequential selection. Analysis will draw on the theory of 
concomitants of order statistics (Yeo and David, 1984; David and 
Nagaraja, 1998).

3. A MODeL OF sOciOtecHNicAL 
seQUeNtiAL seLectiON sYsteMs

The basic structure of general sociotechnical sequential selection 
systems is drawn in Figure 1A. The data-driven ranking algorithm 
is depicted as “Prioritizer,” whereas the final human decision 
maker is depicted as “Sequential Selection.” The diagram cor-
responds to the abstract formalism that follows; for concreteness 
of terms, we again use human resource analytics as the example.

Consider a sequence of random variables X1, X2, …, Xn, drawn 
i.i.d. from a parent random variable X  ∈  χ  ⊆  ℝ according to 
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cumulative distribution function FX(x). This sequence of random 
variables represents the underlying quality of the n candidates 
who are applying for a given job requisition. We assume realiza-
tions of these random variables are observable to human screen-
ers, but with some cost.

Now, consider the second sequence of random variables Y1, 
Y2, …, Yn that are also i.i.d. and are jointly distributed with the 
underlying quality variables according to FX,Y(x,y) with cor-
responding marginal distribution function FY(y) from alphabet 
 ⊆ ℝ. These indicator variables should be thought of as noisy 
versions of the underlying quality variables produced by an 
analytics algorithm used to perform prioritization.

To generate a  prioritized list, the candidates 1,  …, n are 
sorted according to their Y-values. This yields the order sta-
tistics Y(1) ≤ Y(2) ≤ … ≤ Y(n). It also induces a new ordering on 
the X-values, called the concomitants of the order statistics and 
denoted X[1] ≤ X[2] ≤ … ≤ X[n].

Rather than batch processing (Feinberg and Huber, 1996), we 
consider sequential selection as follows. There is a fixed cutoff 
level θ ∈ χ and a quota that is to be met m, θn < m < n. The 
screener proceeds down the prioritized list in order (ordered 
according to the indicator variables) and selects a candidate if its 
concomitant value x[i] is below the threshold θ and rejects the can-
didate otherwise. This proceeds sequentially until m candidates 
are selected. The index number of this last-selected candidate is 
denoted by random variable J.

To study the sociotechnical value of prioritization, we define 
two performance criteria. The first is the expected evaluation cost 
c and is simply the expected value of the stopping time J: c = EX,Y 
[J], smaller is better. The second performance criterion is the 
expected quality of candidates that are selected, q, given by

 
q E u XX Y

i J X
i
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

























∑
{ } s t1… [ ]

[ ]
θ

 (1)

where u(⋅) is a monotonically increasing utility function, which 
we will take to be the identity function. Contrary to Figure 1B, 
smaller quality values q are better in this formalism.

To quantify the sociotechnical gains prioritization algorithms 
provide, we may compare to operating with no prioritization. It 
is easy to argue that without prioritization, the cost is distributed 
as a negative binomial distribution that has expected value c° 
given by

 
c m

FX

 = .
( )θ

 (2)

Due to the random ordering and the picking principle, 
selected candidates will have expected quality q° that is just the 
mean conditional on being less than the cutoff level:

 
q xdF xX
 = .

−∞∫
θ

( )  (3)

Thus, we may alternatively define the value of a ranking algo-
rithm in terms of the gain over operations without prioritization 
via non-negative variables Δc and Δq:

 ∆ = −c c c  (4)

 ∆ = − .q q q  (5)

We determine lower bounds on (c, q) by considering a perfect 
ranking algorithm, such that X and Y are almost surely equal, 
via the theory of order statistics (David and Nagaraja, 2003). Let 
F(r)(x) be the distribution function of the rth order statistic. Then 
the probability that the rth entry in the list will be below θ is 
simply F(r)(θ). In general, this finite-sample computation is com-
plicated and so one can consider asymptotic expressions when 
n  →  ∞ with m/n as a fixed constant, i.e., in the central order 
statistic regime. In this case, the distribution functions converge 
so that independent of the threshold θ, the cost is c• = m and the 
quality is q m

n
• = 2 .

That is, there are bounds:

 
c m c c m
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where the lower bounds are expressed as asymptotic inequali-
ties ≾. For any given intermediate value of accuracy of the 
ranking algorithm, we would use the distribution function of the 
concomitant of the order statistics.

Note that changing the value of θ induces a trade-off between c 
and q, and that the better the analytics algorithm (or equivalently 
the more strongly correlated X and Y), the more sociotechnical 
value.

4. ANALYsis OF ANALYtics-BAseD 
PriOritiZAtiON

To demonstrate that elementary stochastic analysis gives per-
formance insight, let us assert a particular form of stochastic 
kernel to describe the ranking algorithm. Let FX,Y be governed by 
a copula model (Nelsen, 2006), such as a Clayton copula, where 
the strength of coupling is denoted by α:

 F x y x yX Y,
− − − /, = + − , < < ∞.( ) ( )α α α α1 01

 

This has uniform marginals for X and Y. Here, we use a copula-
based stochastic kernel, but it is also possible to empirically learn 
the joint distribution for given classes of algorithms and data sets. 
For prioritization, a typical data set is of binary quality labels, 
which are used to train bipartite ranking algorithms (Agarwal 
et al., 2005).

The key to determining fundamental trade-offs among cost, 
quality, and algorithm quality (c, q, α) is to statistically character-
ize the stopping point of the selection procedure J. For conveni-
ence, we define a new sequence of indicator random variables:
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FiGUre 2 | A clayton copula-based model of sequential selection. (A) 
Cost-quality trade-off (c, q) for a system using prioritization (grayscale) and 
one not using prioritization (color); note that smaller quality is better. (B) 
Bipartite ranking AUC.
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whose distribution can be derived directly from the concomitant 
distribution FX X X n[ ] [ ] [ ]1 2, , ,… . Then the mass function, Pr[J  =  j], of 
when the quota m is fulfilled is simply

 
Pr[ ] PrJ j Z m Z

i

j

i j= = = − , =
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=

−

∑
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1 1
 

Once we have this distribution, the expected value quantities 
c and q follow directly, as functions of selection threshold θ and 
algorithm quality α.

Theorem 1: If FX,Y is from a family of distributions parameter-
ized by coupling variable α, it is possible to analytically compute 
fundamental trade-offs between cost, quality, and algorithm 
quality:

 ( ) ( ) ( )c q c q∗ ∗, = ,( ),θ θα α  

where the trade-off curve is parameterized by threshold θ of the 
selection procedure.

Proof: To obtain Pr[J =  j], use distributional theory of con-
comitants of order statistics, in terms of the cumulative distribu-
tion function of the rth concomitant F[r:n]:

 
F x F x F y y dyr n X Y r n[ ]( ) ( ) ( ): |

−
:= |( ) ,∫0

1 1 φ
 

where φr:n is the density function of the rth order statistic from 
an i.i.d. sample from the uniform distribution on the unit 
interval:
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Then, by computing c(J) and q(J), the desired result follows.
In forthcoming work beyond this short perspective paper, 

analytical characterizations for various examples are deter-
mined. To indicate the nature of the fundamental trade-off, 
Figure 2A shows a simulation result for a Clayton copula model. 
In particular, consider FX,Y(x,y) given by a Clayton copula with 
parameter α =  1, n =  10000, m =  1000, and varying θ. Then, 
Figure 2A shows the simulation performance trade-offs for the 
case when the prioritization is ignored (colors) and the case 
when prioritization is used (grayscale). The curve gets better and 
shifts to the left as the α parameter increases. Recall that smaller 
quality is better.

This performance characterization via the stochastic kernel 
model can be linked to traditional results in machine learning, 
e.g., on sample complexity (Kotłowski et al., 2011).

Corollary 1: In general, α can be linked to traditional machine 
learning sample complexity results to determine system-level 
value of training data.

The corollary indicates it is possible to answer the question, 
“How Big is Big?” in Big Data for algorithm training, not just 
in terms of error probability but in system-level terms of social 
importance.

To demonstrate, consider the bipartite ranking problem, where 
certain training samples are labeled as meeting the standard and 

other samples as not. The goal is to learn a scoring function such 
that when ranking samples according to the score, the probability 
that a positive sample is ranked below a negative sample is mini-
mized. A traditional performance measure in bipartite ranking is 
the Area under the Curve (AUC) (Agarwal et al., 2005; Kotłowski 
et al., 2011). The AUC can be numerically related to the coupling 
parameter α of a Clayton copula model, as shown in Figure 2B 
for different selection thresholds θ; we denote the non-linear 
function plotted there as γ(α, θ). Forthcoming work determines 
γ(⋅) analytically for such examples.

Thus, we see that elementary techniques in probability theory 
allow us to understand basic trade-offs in sociotechnical sequen-
tial selection systems. Moreover, the noise level of the stochastic 
kernel can be directly related to the amount of training data that 
are available, via extant sample complexity results, e.g., Agarwal 
et al. (2005) and Kotłowski et al. (2011).
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5. PrActicAL evALUAtiON AND 
cONcLUsiON

In this perspective paper, we have put forth an approach to ana-
lyze large-scale data analytics in complex sociotechnical systems 
through a simple yet insightful method of black box abstraction 
and stochastic analysis. The main purpose of the piece has been 
to discuss the possibility of this line of inquiry, but is it useful?

The best theories are said to be practical. Hence, an appro-
priate method to evaluate the proposed stochastic approach to 
understanding data analytics is in seeing whether users gain use-
ful insight into the basic trade-offs present in these systems under 
metrics they care about and into whether it is worthwhile spend-
ing time/energy in developing specific advanced algorithms. The 
users we have in mind are business executives or government 
officials.

We used the approach exactly in this way to help human 
resource executives in a large multinational corporation decide to 
pursue developing and deploying a recruitment analytics system 
(Mehta et al., 2013); this system is now widely used. Our personal 
experience in interacting with executives through these formal-
isms lends credence to efficacy. Similarly, we used the stochastic 
approach to help City of Syracuse, NY, USA, officials in deciding 
to proceed with an analytics-based system for urban housing 
policy (Appel et  al., 2014). The system that was created led to 
New York State’s first land banks, enabling the city to reclaim 
nearly 4000 vacant properties and repurpose them in ways that 
revitalize neighborhoods and restore the tax base by as much 
as $11 million over 8  years. Again, our personal experience in 
interacting with city officials by showing them the basic trade-offs 
that can be achieved through analytics, without having to actu-
ally develop the analytics, was quite powerful. Thus, at least for 

these real-world cases within the sequential selection setting, the 
approach can be evaluated as successful.

The stochastic approach was demonstrated mathematically 
by characterizing ultimate performance limits of a general socio-
technical sequential selection system, under metrics relevant in 
industrial and governmental applications. The general procedure 
should be evident from the example, which can straightforwardly 
be extended to consider human screeners that are noisy in decid-
ing whether x[i] >< θ, where this unreliability may increase due to 
fatigue from screening more candidates.

The fact that analysis uses elementary probability rather than 
complicated concentration bounds is a strength to the approach, 
as it directly gives system designers an understanding of the design 
space in terms that are relevant to the social placement of the 
 system. It allows the system designer to thrive in the era of com-
plex data, rather than being overwhelmed by its  cacophonous din.
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