
ORIGINAL RESEARCH
published: 27 June 2016

doi: 10.3389/fict.2016.00012

Edited by:
Faisal Shah Khan,
Khalifa University,

United Arab Emirates

Reviewed by:
Adrian Paul Flitney,

Melbourne University, Australia
Haozhen Situ,

South China Agricultural University,
China

*Correspondence:
Piotr Frąckiewicz
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Games
Piotr Frąckiewicz*
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Our purpose is to focus attention on a new criterion for quantum schemes by bringing
together the notions of quantum game and game isomorphism. A quantum game scheme
is required to generate the classical game as a special case. Now, given a quantum
game scheme and two isomorphic classical games, we additionally require the resulting
quantum games to be isomorphic as well. We show how this isomorphism condition
influences the players’ strategy sets. We are concerned with the Marinatto–Weber type
quantum game scheme and the strong isomorphism between games in strategic form.
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1. INTRODUCTION

TheMarinatto–Weber (MW) scheme introduced inMarinatto andWeber (2000) is a straightforward
way to apply the power of quantum mechanics to classical game theory. In the simplest case of 2× 2
games, the players manipulate their own qubits of a two-qubit state either with the identity or the
Pauli operator σx. Therefore, it has found application in many other branches of game theory: from
evolutionary game theory (Iqbal and Toor, 2004; Nawaz and Toor, 2010) to extensive-form games
(Frąckiewicz, 2014) and duopoly examples (Iqbal and Toor, 2002a; Khan et al., 2010). In Frąckiewicz
(2013a), we pointed out a few undesirable properties of the MW scheme and introduced a refined
quantum game model.

Though it is possible to extend both the MW scheme and our refinement to consider more
complex games than 2× 2, possible generalizations can be defined in many different ways. A result
concerning 3× 3 games can be found in Iqbal andToor (2002b, 2004). The authors proposed suitable
three-element sets of players’ strategies to obtain a generalized 3× 3 game. On the other hand, our
work (Frąckiewicz, 2013b) provides another way to define players’ strategy sets that remains valid
for any finite n×m games.

Certainly, one can find yet otherways to generalize theMWscheme.Hence, it would be interesting
to place additional restrictions on a quantum game scheme and examine how they refine the
quantum model. In this paper, we formulate a criterion in terms of isomorphic games. Given two
isomorphic games, we require the corresponding quantum games to be isomorphic as well. If, for
example, two bimatrix games differ only in the order of players’ strategies, they describe the same
problem from a game-theoretical point of view. Given a quantum scheme, it appears reasonable to
assume that the resulting quantum game will not depend on the numbering of players strategies in
the classical game.
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Frąckiewicz Strong Isomorphism in Quantum Games

2. PRELIMINARIES

2.1. Marinatto–Weber Type Quantum Game
Scheme
In Frąckiewicz (2013a, 2015), we presented a refinement of the
Marinatto–Weber scheme (Marinatto and Weber, 2000). The
motivation of constructing our scheme was twofold. Our model
enables the players to choose between playing a fixed quantum
strategy and classical strategies. The second aim was to construct
the scheme that generates the classical game by manipulating the
players’ strategies rather than the initial quantum state. In what
follows, we recall the scheme for the case of 2× 2 bimatrix game,

( l r
t (a00, b00) (a01, b01)
b (a10, b10) (a11, b11)

)
, where (aij, bij) ∈ R. (1)

Definition 1. The quantum scheme for game (1) is defined on
an inner product space (C2)⊗4 by the triple

ΓQ = (H, (S1, S2), (M1,M2)), (2)

where

• H is a positive operator,

H = ( ⊗ −|11⟩⟨11|) ⊗ |00⟩⟨00|+ |11⟩⟨11|⊗|Ψ⟩⟨Ψ|, (3)

and

|Ψ⟩ = α|00⟩ + β|01⟩ + γ|10⟩ + δ|11⟩ ∈ C2 ⊗ C2 (4)

such that |||Ψ⟩||= 1,
• S1 =

{
P(1)
i ⊗U(3)

j , i, j = 0, 1
}
, S2 =

{
P(2)
k ⊗U(4)

l , k, l = 0, 1
}

are the players’ strategy sets, and the upper indices identify the
subspace C2 of (C2)⊗4 on which the operators

P0 = |0⟩⟨0|, P1 = |1⟩⟨1|, U0 = ,U1 = σx, (5)

are defined,
• M1 and M2 are the measurement operators

M1(2) = ⊗ ⊗

 ∑
x,y=0,1

axy(bxy)|xy⟩⟨xy|

 (6)

that depend on the payoffs axy and bxy from equation (1).

The scheme proceeds in the similar way as the MW scheme –
the players determine the final state by choosing their strategies
and acting on operatorH. As a result, they determine the following
density operator:

ρf =
(
P(1)
i ⊗ P(2)

k ⊗U(3)
j ⊗U(4)

l

)
H
(
P(1)
i ⊗ P(2)

k ⊗U(3)
j ⊗U(4)

l

)

=


|11⟩⟨11|

⊗
(
U(3)

j ⊗U(4)
l |Ψ⟩⟨Ψ|U(3)

j ⊗U(4)
l

)
if i = j = 1,

|ij⟩⟨ij|
⊗
(
U(3)

j ⊗U(4)
l |00⟩⟨00|U(3)

j ⊗U(4)
l

)
if otherwise.

(7)

Next, the payoffs for player 1 and 2 are

tr(ρfM1) and tr(ρfM2). (8)

As it was shown in Frąckiewicz (2015), scheme (2) can be
summarized by the following matrix game


P(2)

0 ⊗ (4) P(2)
0 ⊗ σ

(4)
x P(2)

1 ⊗ (4) P(2)
1 ⊗ σ

(4)
x

P(1)
0 ⊗ (3) X00 X01 X00 X01

P(1)
0 ⊗ σ

(3)
x X10 X11 X10 X11

P(1)
1 ⊗ (4) X00 X01 ∆00 ∆01

P(1)
1 ⊗ σ

(4)
x X10 X11 ∆10 ∆11

,

(9)
where

Xij = (aij, bij), for i, j = 0, 1

∆00 = |α|2X00 + |β|2X01 + |γ|2X10 + |δ|2X11,

∆01 = |α|2X01 + |β|2X00 + |γ|2X11 + |δ|2X10,

∆10 = |α|2X10 + |β|2X11 + |γ|2X00 + |δ|2X01,

∆11 = |α|2X11 + |β|2X10 + |γ|2X01 + |δ|2X00.

(10)

2.2. Strong Isomorphism
The notion of strong isomorphism defines classes of games that
are the same up to the numbering of the players and the order
of players’ strategies. The following definitions are taken from
Gabarró et al. (2011) [see also Nash (1951), Peleg et al. (1999),
and Sudhölter et al. (2000)]. The first one defines a mapping that
associates players and their actions in one game with players and
their actions in the other game.

Definition 2. Let Γ= (N,(Si)i∈N, (ui)i∈N) and Γ′ =(N,
(S′

i)i∈N, (u′
i)i∈N) be games in strategic form. A game mapping f

from Γ to Γ′ is a tuple, f= (η, (φi)i∈N), where η is a bijection from
N to N and for any i∈N, φi is a bijection from Si to S′

η(i).
In general case, the mapping f from (N, (Si)i∈N , (ui)i∈N)

to (N, (S′
i)i∈N, (u′

i)i∈N) identifies player i∈N with player η(i)
and maps Si to Sη(i). This means that a strategy profile (s1, . . . ,
sn)∈ S1 × · · · × Sn ismapped into profile (s′1, . . . , s′n) that satisfies
equation s′η(i) = φi(si) for i∈N.

The notion of game mapping is a basis for the definition of
game isomorphism. Depending on how rich structure of the
game is to be preserved, we can distinguish various types of
game isomorphism. One that preserves the players’ payoff func-
tions is called a strong isomorphism. The formal definition is as
follows:

Definition 3. Given two strategic games Γ= (N, (Si)i∈N ,
(ui)i∈N) and Γ′ = (N, (S′

i)i∈N, (u′
i)i∈N), a game mapping

f= (η, (φi)i∈N) is called a strong isomorphism if relation
ui(s)= u′

η(i)( f(s)) holds for each i∈N and each strategy profile
s ∈ S1 × · · · × Sn.

From the above definition, it may be concluded that if there
is a strong isomorphism between games Γ and Γ′, they may
differ merely by the numbering of players and the order of their
strategies.

The following lemma shows that relabeling players and their
strategies do not affect the game with regard to Nash equilibria.
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Frąckiewicz Strong Isomorphism in Quantum Games

If f is a strong isomorphism between games Γ and Γ′, one may
expect that the Nash equilibria in Γ map to ones in Γ′ under f.

Lemma 1. Let f be a strong isomorphism between games Γ and
Γ′. Strategy profile s∗ = (s∗1 , . . . , s∗n ) ∈ S1 × · · · × Sn is a Nash
equilibrium in game Γ if and only if f(s∗) ∈ S′

1 ×· · ·×S′
n is a Nash

equilibrium in Γ′.

3. APPLICATION OF GAME ISOMORPHISM
TO MARINATTO–WEBER TYPE QUANTUM
GAME SCHEMES

It is not hard to see that we can define various schemes based on
the MW approach. We can modify operator (3) and the players’
strategies to construct another scheme still satisfying the require-
ment about generalization of the input game. The following exam-
ple of such a scheme is particularly interesting. Let us consider a
triple

Γ′
Q = (H′, (S′

1, S′
2), (M1,M2)) (11)

with the components defined as follows:

• H′ is a positive operator,

H′ = |00⟩⟨00| ⊗ |00⟩⟨00| + |01⟩⟨01| ⊗ |0⟩⟨0| ⊗ ρ2

+ |10⟩⟨10| ⊗ ρ1 ⊗ |0⟩⟨0| + |11⟩⟨11| ⊗ |Ψ⟩⟨Ψ|, (12)

where |Ψ⟩ ∈ C2 ⊗ C2 such that |||Ψ⟩||= 1, ρ1 and ρ2 are the
reduced density operators of |Ψ⟩⟨Ψ|, i.e., ρ1 = tr2(|Ψ⟩⟨Ψ|) and
ρ2 = tr1(|Ψ⟩⟨Ψ|),

• S′
1 =

{
P(1)

0 ⊗ (3), P(1)
0 ⊗ σ

(3)
x , P(1)

1 ⊗ (3)
}

and S′
2 ={

P(2)
0 ⊗ (4), P(2)

0 ⊗ σ
(4)
x , P(2)

1 ⊗ (4)
}

are the players’
strategy sets,

• M1 and M2 are the measurement operators defined by
equation (6).

It is immediate that the resulting final state ρ′
f is a density

operator for each (pure or mixed) strategy profile. For example,
player 1’s strategy P(1)

0 ⊗ σ
(3)
x and player 2’s strategy P(2)

1 ⊗ (4)

imply

ρ′
f =

(
P(1)

0 ⊗ P(2)
1 ⊗ σ(3)

x ⊗ (4)
)
H′
(
P(1)

0 ⊗ P(2)
1 ⊗ σ(3)

x ⊗ (4)
)

= |01⟩⟨01| ⊗ |1⟩⟨1| ⊗ ρ2. (13)

As a result, the players’ payoff functions u′
1 and u′

2 given by
tr(ρ′

fM1) and tr(ρ′
fM2), respectively, are well defined. It is also

clear that scheme (16) produces the classical game in a similar
way to scheme (2). The players play the classical game as long as
they choose the strategies P0 ⊗ and P0 ⊗ σx. This can be seen by
determining tr(ρ′

fM1(2)) for each strategy profile and arranging
the obtained values into a matrix. As an example, let us determine
tr(ρ′

fM1(2)) for the final state ρ′
f given by equation (18). Let |Ψ⟩

represent a general two-qubit state,

|Ψ⟩ = α|00⟩ + β|01⟩ + γ|10⟩ + δ|11⟩. (14)

Since

ρ1 = (|α|2 + |β|2)|0⟩⟨0| + (αγ∗ + βδ∗)|0⟩⟨1|

+ (γα∗ + δβ∗)|1⟩⟨0| + (|γ|2 + |δ|2)|1⟩⟨1|,

ρ2 = (|α|2 + |γ|2)|0⟩⟨0| + (αβ∗ + γδ∗)|0⟩⟨1|

+ (βα∗ + δγ∗)|1⟩⟨0| + (|β|2 + |δ|2)|1⟩⟨1|,

(15)

the players’ strategies P(1)
0 ⊗ σ

(3)
x and P(2)

1 ⊗ (4) generate the
following form of the final state:

ρ′
f = |01⟩⟨01| ⊗ ((|α|2 + |γ|2)|10⟩⟨10| + (αβ∗ + γδ∗)|10⟩⟨11|

+ (βα∗ + δγ∗)|11⟩⟨10| + (|β|2 + |δ|2)|11⟩⟨11|).

Hence

(tr(ρ′
fM1), tr(ρ′

fM2)) = (|α|2 + |γ|2)(a10, b10)

+ (|β|2 + |δ|2)(a11, b11). (16)

The values (tr(ρ′
fM1), tr(ρ′

fM2)) for all strategy combinations
are given by the following matrix:


P(2)

0 ⊗ (4) P(2)
0 ⊗ σ

(4)
x P(2)

1 ⊗ (4)

P(1)
0 ⊗ (3) X00 X01 ∆02

P(1)
0 ⊗ σ

(3)
x X10 X11 ∆12

P(1)
1 ⊗ (3) ∆20 ∆21 ∆22

 (17)

where

Xij = (aij, bij), for i, j = 0, 1

∆02 = (|α|2 + |γ|2)X00 + (|β|2 + |δ|2)X01;

∆12 = (|α|2 + |γ|2)X10 + (|β|2 + |δ|2)X11;

∆20 = (|α|2 + |β|2)X00 + (|γ|2 + |δ|2)X10;

∆21 = (|α|2 + |β|2)X01 + (|γ|2 + |δ|2)X11;

∆22 = |α|2X00 + |β|2X01 + |γ|2X10 + |δ|2X11.

(18)

It follows easily that matrix game (17) is a genuine extension of
equation (1). Although payoff profiles ∆ij ̸=∆22 are also achiev-
able in equation (1), the players, in general, are not able to obtain
∆22 when choosing their (mixed) strategies.

To sum up, scheme (11) might seem to be acceptable as long as
scheme (2) is acceptable. Matrix game (17) includes equation (1)
and depending on the initial state |Ψ⟩ it may give extraordinary
Nashequilibria. It is worth pointing out that the Nash equilibria
in equation (17) correspond to correlated equilibria in equation
(1) (Frąckiewicz, 2016). However, scheme (11) fails to imply the
isomorphic games when the input games are isomorphic. We can
make this clear with the following example.

Example 1. Let us consider the game of “Chicken” Γ1 and its
(strongly) isomorphic counterpart Γ2,

Γ1 :
( l r

t (6, 6) (2, 7)
b (7, 2) (0, 0)

)
, Γ2 :

( l′ r′

t′ (2, 7) (6, 6)
b′ (0, 0) (7, 2)

)
. (19)
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The corresponding isomorphism f = (π, φ1, φ2) is defined by
components

π(i) = i for i = 1, 2, φ1 = (t → t′, b → b′),

φ2 = (l → r′, r → l′). (20)

Set |Ψ⟩ = (|00⟩+ |01⟩+ |10⟩)/
√

3. Using equation (9), we can
write quantum approach (2) to games (19) as

ΓQ1 :


P(2)

0 ⊗ (4) P(2)
0 ⊗ σ

(4)
x P(2)

1 ⊗ (4) P(2)
1 ⊗ σ

(4)
x

P(1)
0 ⊗ (3) (6, 6) (2, 7) (6, 6) (2, 7)

P(1)
0 ⊗ σ

(3)
x (7, 2) (0, 0) (7, 2) (0, 0)

P(1)
1 ⊗ (4) (6, 6) (2, 7) (5, 5) (2 2

3 , 4
1
3 )

P(1)
1 ⊗ σ

(4)
x (7, 2) (0, 0) (4 1

3 , 2
2
3 ) (3, 3)


(21)

and

ΓQ2 :


P(2)

0 ⊗ (4) P(2)
0 ⊗ σ

(4)
x P(2)

1 ⊗ (4) P(2)
1 ⊗ σ

(4)
x

P(1)
0 ⊗ (3) (2, 7) (6, 6) (2, 7) (6, 6)

P(1)
0 ⊗ σ

(3)
x (0, 0) (7, 2) (0, 0) (7, 2)

P(1)
1 ⊗ (4) (2, 7) (6, 6) (2 2

3 , 4
1
3 ) (5, 5)

P(1)
1 ⊗ σ

(4)
x (0, 0) (7, 2) (3, 3) (4 1

3 , 2
2
3 )


(22)

It is fairly easy to see that games (21) and (22) differ in the order
of the first two strategies and the second two strategies of player 2.
Thus, the games are strongly isomorphic. More formally, one can
check that a game mapping f̃ = (η, φ̃1, φ̃2), where

φ̃1 =
(
P(1)
i ⊗ (3) → P(1)

i ⊗ (3), P(1)
i ⊗ σ(3)

x → P(1)
i ⊗ σ(3)

x

)
,

φ̃1 =
(
P(2)
k ⊗ (4) → P(2)

k ⊗ σ(4)
x , P(2)

k ⊗ σ(4)
x → P(2)

k ⊗ (4)
)

,

(23)

for i, k= 0, 1 is a strong isomorphism.
In the next section, we prove a more general result about

scheme (2).
Let us now consider scheme (11). Matrix (17) in terms of input

games (19) implies

Γ′
Q1 :


P(2)

0 ⊗ (4) P(2)
0 ⊗ σ

(4)
x P(2)

1 ⊗ (4)

P(1)
0 ⊗ (3) (6, 6) (2, 7) (4 2

3 , 6
1
3 )

P(1)
0 ⊗ σ

(3)
x (7, 2) (0, 0) (4 2

3 , 1
1
3 )

P(1)
1 ⊗ (3) (6 1

3 , 4
2
3 ) (1 1

3 , 4
2
3 ) (5, 5)


(24)

and

Γ′
Q2 :


P(2)

0 ⊗ (4) P(2)
0 ⊗ σ

(4)
x P(2)

1 ⊗ (4)

P(1)
0 ⊗ (3) (2, 7) (6, 6) (3 1

3 , 6
2
3 )

P(1)
0 ⊗ σ

(3)
x (0, 0) (7, 2) (2 1

3 ,
2
3 )

P(1)
1 ⊗ (3) (1 1

3 , 4
2
3 ) (6 1

3 , 4
2
3 ) (2 2

3 , 4
1
3 )

.

(25)

With Lemma 1, we can show that games (24) and (25) are not
isomorphic. Comparing the sets of pure Nash equilibria in both
games, we find the equilibrium profiles{(

P(1)
0 ⊗ (3), P(2)

0 ⊗ σ(4)
x

)
,
(
P(1)

0 ⊗ σ(3)
x , P(2)

0 ⊗ (4)
)

,(
P(1)

1 ⊗ (3), P(2)
1 ⊗ (4)

)}
(26)

in the first game and{(
P(1)

0 ⊗ (3), P(2)
0 ⊗ (4)

)
,
(
P(1)

0 ⊗ σ(3)
x , P(2)

0 ⊗ σ(4)
x

)}
(27)

in the second one.

4. APPLICATION OF GAME ISOMORPHISM
TO GENERALIZED MARINATTO–WEBER
QUANTUM GAME SCHEME

Additional criteria for a quantum game scheme may have a sig-
nificant impact on the way how we generalize these schemes. It
can be easily seen in the case of the MW scheme (Marinatto and
Weber, 2000) [or the refined scheme (2)], where the sets of unitary
strategies are finite. The MW scheme provides us with a quantum
model, where the strategy sets consist of the identity operator
and the Pauli operator σx. Under this description, what subsets
of unitary operators would be suitable for general n×m games?
The case of a 3-element strategy set can be identified with unitary
operators 3, C and D acting on, α|0⟩+β| ⟩+ γ|2⟩ ∈ C3 where

3|0⟩ = |0⟩, C|0⟩ = |2⟩, D|0⟩ = |1⟩,
3|1⟩ = |1⟩, C|1⟩ = |1⟩, D|1⟩ = |0⟩,
3|2⟩ = |2⟩, C|2⟩ = |0⟩, D|2⟩ = |2⟩.

(28)

This construction can be found in Iqbal and Toor (2002b,
2004). Another way to generalize the MW scheme was presented
in Frąckiewicz (2013b). Having given a strategic-form game, we
identify the players’ n strategies with n unitary operators Vk for
k= 0, 1, . . . , n−1. They act on states of the computational basis
{|0⟩, |1⟩, . . . , | n−1⟩} as follows:

V0|i⟩ = |i⟩,
V1|i⟩ = |i + 1 mod n⟩,

...
Vn−1|i⟩ = |i + n − 1 mod n⟩.

(29)

Both ways to generalize the MW scheme enable us to obtain
the classical game. So at this level, neither equation (28) nor
equation (29) is questionable. If we seek other properties, we see
that the MW scheme outputs the classical game (or its isomorphic
counterpart) when the initial state is one of the computational
basis states. Given equations (28) and (29), only the latter case
satisfies this condition. Further analysis would show that the MW
scheme is invariant with respect to strongly isomorphic input
games. It turns out that neither equation (28) nor equation (29)
satisfies the isomorphism property.
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Example 2. Let us take a look at the following 2× 3 bimatrix
games:

Γ:

( l m r

t (4, 8) (0, 0) (8, 8)
b (0, 4) (4, 0) (8, 0)

)
,

Γ′:

( l′ m′ r′

t′ (0, 0) (4, 8) (8, 8)
b′ (4, 0) (0, 4) (8, 0)

)
. (30)

Consider the MW-type approaches ΓQ and Γ′
Q to games (30)

according to the following assignments:

( l m r
t P00 P01 P02
b P10 P11 P12

)
, where Pj1j2 = | j1j2⟩⟨ j1j2|. (31)

Then,

ΓQ = (|Ψ⟩, (D1,D2), (M1,M2)),

Γ′
Q = (|Ψ⟩, (D′

1,D′
2), (M′

1,M′
2)), (32)

where
M1 = 4P00 + 8P02 M′

1 = 4P01 + 8P02
+ 4P11 + 8P12, + 4P10 + 8P12,

M2 = 8P00 + 8P02 + 4P10, M′
2 = 8P01 + 8P02 + 4P11.

(33)

Set the initial state |Ψ⟩ =(1/2)|00⟩ +(
√

3/2)|12⟩ ∈ C2 ⊗ C3

and assume first that D1 = D′
1 = { 2, σx} and D2 = D′

2 =
{ 3,C,D} as in equation (28).Determining tr

(
(U1 ⊗ U2)|Ψ⟩⟨Ψ|

(U†
1 ⊗ U†

2)Mi

)
for every U1 ⊗ U2 ∈ { , σx} ⊗ { 3, C, D} and

i= 1, 2, and doing similar calculations in the case ofM′
i , we obtain

ΓQ :

( 3 C D

2 (7, 2) (2, 5) (6, 0)
σx (6, 7) (5, 6) (7, 6)

)
,

Γ′
Q :

( 3 C D

2 (6, 0) (5, 2) (7, 2)
σx (7, 6) (2, 0) (6, 7)

)
.

(34)

On the other hand, replacing equation (28) by equation (29)
gives D2 = D′

2 = { 3,V1,V2}, where

3 =

1 0 0
0 1 0
0 0 1

 , V1 =

0 0 1
1 0 0
0 1 0

 , V2 =

0 1 0
0 0 1
1 0 0

 .

(35)
Then, we have

ΓQ :

( 3 V1 V2

2 (7, 2) (0, 3) (5, 2)
σx (6, 7) (4, 6) (2, 0)

)
,

Γ′
Q :

( 3 V1 V2

2 (6, 0) (4, 2) (2, 5)
σx (7, 6) (0, 1) (5, 6)

)
.

(36)

There is no pureNash equilibrium in the first game of equations
(34) and (36), whereas there are two Nash equilibria in the second
games. As a result, each pair of the games does not determine a
strong isomorphism.

Example 2 shows that players’ strategy sets defined by equations
(28) and (35) need to be revised in order to have a generalizedMW
scheme invariant with respect to the isomorphism. We shall stick
for the moment to considering games (30). Let {A012, A102, A021,
A120, A201, A210} be player 2’s strategy set defined to be

A012|0⟩ = |0⟩ A102|0⟩ = |1⟩ A021|0⟩ = |0⟩ A120|0⟩ = |1⟩ A201|0⟩ = |2⟩ A210|0⟩ = |2⟩,

A012|1⟩ = |1⟩ A102|1⟩ = |0⟩ A021|1⟩ = |2⟩ A120|1⟩ = |2⟩ A201|1⟩ = |0⟩ A210|1⟩ = |1⟩,

A012|2⟩ = |2⟩ A102|2⟩ = |2⟩ A021|2⟩ = |1⟩ A120|2⟩ = |0⟩ A201|2⟩ = |1⟩ A210|2⟩ = |0⟩.

(37)

Each Aj1j2j3 is a permutation matrix that corresponds to a
specific permutation π = (0 → j1, 1 → j2, 2 → j3) of the set
{0, 1, 2}. Note also that operators (28) and (38) are included in
equation (37). Hence, theMW schemewith equation (37) implies,
in particular, the classical game. We now check if it outputs the
isomorphic games. Since there are now six operators available for
player 2, the resulting game may be written as a 2× 6 bimatrix
game with entries

tr
(
(U1 ⊗ U2)|Ψ⟩⟨Ψ|(UT

1 ⊗ UT
2 )Mi

)
(38)

forU1 ∈ { 2, σx} andU2 ∈ {Aπ : π-permutations of {0, 1, 2}}. As a
result, we obtain

ΓQ :
( A012 A102 A021 A120 A201 A210

2 (7, 2) (6, 0) (4, 2) (0, 3) (5, 2) (2, 5)
σx (6, 7) (7, 6) (0, 1) (4, 6) (2, 0) (5, 6)

)
(39)

and

Γ′
Q :

( A012 A102 A021 A120 A201 A210

2 (6, 0) (7, 2) (0, 3) (4, 2) (2, 5) (5, 2)
σx (7, 6) (6, 7) (4, 6) (0, 1) (5, 6) (2, 0)

)
.

(40)
The games determine the isomorphismf̃=(idN, φ̃1, φ̃2), where

φ̃1 = ( 2 → 2, σx → σx),

φ̃2 = (A012 → A102,A102 → A012,A021 → A120,

A120 → A021,A201 → A210,A210 → A201).
(41)

Using permutation matrices leads us to formulate another
generalized MW scheme. For simplicity, we confine attention to
(n+ 1)× (m+ 1) bimatrix games.

Let Sn be the set of all permutations π of {0, 1, . . . , n}.With each
π, there is associated a permutation matrix Aπ ,

Aπ|i⟩ = |π(i)⟩ for i = 0, 1, . . . , n. (42)

We let Bσ denote the permutation matrix associated with a
permutation σ ∈ Sm. Given (n+ 1)× (m+ 1) bimatrix game Γ,
we define

ΓQ = (|Ψ⟩, (D1,D2), (M1,M2)), (43)
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where

|Ψ⟩ =
n∑

j1=0

m∑
j2=0

αj1j2 |j1j2⟩ ∈ Cn+1 ⊗ Cm+1,

D1 = {Aπ: π ∈ Sn}, D2 = {Bσ: σ ∈ Sm},

(M1,M2) =
n∑

j1=0

m∑
j2=0

(aj1j2 , bj1j2)Pj1j2 .

(44)

Before stating the main result of this section, we start with the
observation that theMW scheme remains invariant to numbering
of the players. Consider two isomorphic bimatrix games:

Γ:


t0 t1 · · · tm

s0 (a00, b00) (a01, b01) · · · (a0m, b0m)
s1 (a10, b10) (a11, b11) · · · (a1m, b1m)
...

...
...

. . .
...

sn (an0, bn0) (an1, bn1) · · · (anm, bnm)

 (45)

and

Γ′:


s′0 s′1 · · · s′n

t′0 (b00, a00) (b10, a10) · · · (bn0, an0)
t′1 (b01, a01) (b11, a11) · · · (bn1, an1)
...

...
...

. . .
...

t′m (b0m, a0m) (b1m, a1m) · · · (bnm, anm)

. (46)

Clearly, the isomorphism is defined by a game mapping
f = {π, φ1, φ2}, where

π = (1 → 2, 2 → 1), φ1(sj1) = s′j1 , φ2(tj2) = t′j2 (47)

for j1 = 0, 1, . . . , n, j2 = 0, 1, . . . , m. The general MW scheme for
equation (43) is simply given by equation (43). ForΓ′, we canwrite

Γ′
Q = (|Ψ′⟩, (D′

1,D′
2), (M′

1,M′
2)), (48)

where

|Ψ′⟩ =
n∑

j1=0

m∑
j2=0

αj1j2 | j2j1⟩ ∈ Cm+1 ⊗ Cn+1,

D′
1 = {Bσ, σ ∈ Sm},D′

2 = {Aπ, π ∈ Sn},

M′
1 =

n∑
j1=0

m∑
j2=0

bj1j2 | j2j1⟩⟨ j2j1|,M
′
2 =

n∑
j1=0

m∑
j2=0

aj1j2 |j2j1⟩⟨ j2j1|.

(49)

Games determined by equations (43) and (48) are then iso-
morphic. To prove this, let f̃ = (π, φ̃1, φ̃2) be a game mapping
such that

π = (1 → 2, 2 → 1), φ̃1 : D1 → D′
2, φ̃1(Aπ) = Aπ,

φ̃2 : D2 → D′
1, φ̃2(Bσ) = Bσ. (50)

On account of Definition 3, we have

f̃ (Aπ ⊗ Bσ) = φ2(Bσ) ⊗ φ1(Aπ) = Bσ ⊗ Aπ. (51)

As a result,

u′
π(1)( f̃(Aπ ⊗ Bσ)) = u′

2( f̃(Aπ ⊗ Bσ))

= tr
(
f̃(Aπ ⊗ Bσ)|Ψ′⟩⟨Ψ′| f̃(Aπ ⊗ Bσ)TM′

2

)
= tr

(
(φ2(Bσ) ⊗ φ1(Aπ))|Ψ′⟩⟨Ψ′|(φ2(Bσ)T ⊗ φ1(Aπ)T)M′

2

)
= tr

(Bσ ⊗ Aπ)|Ψ′⟩⟨Ψ′|(BT
σ ⊗ AT

π)
n∑

j1=0

m∑
j2=0

aj1j2 |j2j1⟩⟨ j2j1|


= tr

(Aπ ⊗ Bσ)|Ψ⟩⟨Ψ|(AT
π ⊗ BT

σ)
n∑

j1=0

m∑
j2=0

aj1j2 |j1j2⟩⟨ j1j2|


= u1(Aπ ⊗ Bσ).

(52)

By a similar argument, we can show that u′
π(2)( f̃(Aπ ⊗ Bσ)) =

u2(Aπ ⊗ Bσ). We can now formulate the following proposition:
Proposition 1. Assume that Γ and Γ′ are strongly isomorphic

bimatrix games and ΓQ and Γ′
Q are the corresponding quantum

games defined by equation (43). Then, ΓQ and Γ′
Q are strongly

isomorphic.
Proof 1. Let Γ and Γ′ be bimatrix games of dimension n×m

and let f : Γ → Γ′, f = (η, φ1, φ2) be the strong isomorphism.
Since the MW scheme is invariant to numbering of the players,
there is no loss of generality in assuming η = idN. Now, it follows
from Definition 3 that games Γ and Γ′ differ in the order of
players’ strategies. Let us identify players’ strategies (i.e., rows and
columns) in Γ with sequences (0, 1, . . . , n) and (0, 1, . . . , m),
respectively. Then, we denote by π∗ and σ∗ the permutations of
the sets {0, 1, . . . , n} and {0, 1, . . . ,m} associated with the order of
strategies in game Γ′. A trivial verification shows that the payoff
operator M′

i in Γ′
Q may be written as

M′
i = (Aπ∗ ⊗ Bσ∗)Mi(Aπ∗ ⊗ Bσ∗)T, (53)

where Aπ∗ and Bσ∗ are the permutation matrices corresponding
to π∗ and σ∗. Define a game mapping f̃ = (idN, φ̃1, φ̃2), where

φ̃1: {Aπ: π ∈ Sn} → {Aπ: π ∈ Sn}, φ1(Aπ) = Aπ∗Aπ;

φ̃2: {Bσ: σ ∈ Sm} → {Bσ: σ ∈ Sm}, φ2(Bσ) = Bσ∗Bσ.
(54)

Hence, f̃ maps Aπ ⊗ Bσ to Aπ∗Aπ ⊗ Bσ∗Bσ . Thus, we obtain

u′
i( f̃(Aπ ⊗ Bσ)) = tr

(
f̃(Aπ ⊗ Bσ)|Ψ⟩⟨Ψ|

(
f̃(Aπ ⊗ Bσ)

)TM′
i

)
= tr

(
(Aπ∗Aπ ⊗ Bσ∗Bσ)|Ψ⟩⟨Ψ|(Aπ∗Aπ ⊗ Bσ∗Bσ)T

× (Aπ∗ ⊗ Bσ∗)Mi(Aπ∗ ⊗ Bσ∗)T
)

= tr
(
(Aπ∗ ⊗ Bσ∗)T(Aπ∗Aπ ⊗ Bσ∗Bσ)|Ψ⟩⟨Ψ|

×(Aπ∗Aπ ⊗ Bσ∗Bσ)T (Aπ∗ ⊗ Bσ∗)Mi

)

Frontiers in ICT | www.frontiersin.org June 2016 | Volume 3 | Article 126

http://www.frontiersin.org/ICT
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive
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= tr
((

AT
π∗Aπ∗Aπ ⊗ BT

σ∗Bσ∗Bσ

)
|Ψ⟩⟨Ψ|

×
(
AT

πAT
π∗Aπ∗ ⊗ BT

σBT
σ∗Bσ∗

)
Mi

)
= tr

(
(Aπ ⊗ Bσ) |Ψ⟩⟨Ψ|(Aπ ⊗ Bσ)TMi

)
= ui(Aπ ⊗ Bσ).

(55)

This finishes the proof.
Note that operators (42) come down to and σx for n= 1.

Therefore, the original MW scheme preserves the isomor-
phism. The same conclusion can be drawn for the refined MW
scheme (2).

Corollary 1. If Γ and Γ′ are strongly isomorphic bimatrix
games and ΓQ and Γ′

Q are the corresponding games defined by
equation (2). Then, ΓQ and Γ′

Q are strongly isomorphic.
Proof 2. Let Γ and Γ′ be strongly isomorphic 2× 2 bimatrix

games. By Proposition 1, there exists a strong isomorphism f̃ =
(id{1,2}, φ̃1, φ̃2) between the games ΓQ and Γ′

Q played according
to equations (43) and (44). Given the quantum approach (2) to Γ
and Γ′, we define g̃ = (id{1,2}, ξ̃1, ξ̃2), where

ξ̃1: S1 → S1, ξ̃1

(
P(1)
i ⊗ U(3)

j

)
= P(1)

i ⊗ φ̃1

(
U(3)

j

)
,

ξ̃2: S2 → S2, ξ̃2

(
P(2)
k ⊗ U(4)

l

)
= P(2)

k ⊗ φ̃2

(
U(4)

l

)
.

(56)

Now, we have

u′
i

(
g̃
(
P(1)
i ⊗ P(2)

k ⊗ U(3)
j ⊗ U(4)

l

))
= tr

(
g̃
(
P(1)
i ⊗ P(2)

k ⊗ U(3)
j ⊗ U(4)

l

)
×Hg̃

(
P(1)
i ⊗ P(2)

k ⊗ U(3)
j ⊗ U(4)

l

)T
M′

1

)
= tr

(
P(1)
i ⊗ P(2)

k ⊗ φ̃1

(
U(3)

j

)
⊗ φ̃2

(
U(4)

l

)
×HP(1)

i ⊗ P(2)
k ⊗ φ̃1

(
U(3)

j

)T
⊗ φ̃2

(
U(4)

l

)T
M′

i

)
= tr

(
P(1)
i ⊗ P(2)

k ⊗ f̃
(
U(3)

j ⊗ U(4)
l

)
×HP(1)

i ⊗ P(2)
k ⊗ f̃

(
U(3)

j ⊗ U(4)
l

)T
M′

i

)
.

(57)

For fixed Pi ⊗ Pk, we can write the right side of equation (57)
in the form

tr
(

|ik⟩⟨ik| ⊗ f̃
(
U(3)

j ⊗ U(4)
l

)
ρ f̃
(
U(3)

j ⊗ U(4)
l

)T
M′

i

)
,

ρ =

{
|Ψ⟩⟨Ψ|, (i, j) = (1, 1);
|00⟩⟨00|, (i, j) ̸= (1, 1).

(58)

By reasoning similar to equation (55), we conclude that

u′
i

(
g̃
(
P(1)
i ⊗ P(2)

k ⊗ U(3)
j ⊗ U(4)

l

))
= tr

(
|ik⟩⟨ik| ⊗ f̃

(
U(3)

j ⊗ U(4)
l

)
ρ f̃
(
U(3)

j ⊗ U(4)
l

)T
M′

i

)

= tr
(

|ik⟩⟨ik| ⊗ U(3)
j ⊗ U(4)

l ρ
(
U(3)

j ⊗ U(4)
l

)T
M′

i

)
= ui

(
P(1)
i ⊗ P(2)

k ⊗ U(3)
j ⊗ U(4)

l

)
. (59)

We have thus proved that ΓQ and Γ′
Q are isomorphic.

It is worth noting that the converse may not be true. Given
isomorphic games ΓQ and Γ′

Q, the input games Γ and Γ′ may not
determine the strong isomorphism. Indeed, bimatrix games

( l r
t (3, 1) (0, 0)
b (0, 0) (1, 3)

)
and

( l′ r
t′ (4, 0) (0, 0)
b′ (0, 0) (0, 4)

)
(60)

are not strongly isomorphic. However, the MW approach [with
the initial state (|00⟩ + |11⟩)/

√
2] to each one of equation (60)

implies the same output game given by

( σx

(3, 1) (0, 0)
σx (0, 0) (1, 3)

)
(61)

5. CONCLUSION

The theory of quantum games does not provide us with clear
definitions of how a quantum game should look like. In fact,
only one condition is taken into consideration. A quantum game
scheme is merely required to generalize the classical game. As
a result, this allows us to define a quantum game scheme in
many different ways. However, various techniques to describe a
game in the quantum domain can imply different quantum game
results. Therefore, it would be convenient to specify that some
quantum schemes work under some further restrictions. We have
been working under the assumption that a quantum scheme is
invariant with respect to isomorphic transformations of an input
game. We have shown that this requirement may be essential
tool in defining a quantum scheme. The protocol that replicates
classical correlated equilibria is an example that does not satisfy
our criterion. The refined definition for a quantum game scheme
may also be useful to generalize protocols. Our work has shown
that dependence of local unitary operators in the MW scheme on
the number of strategies in a classical game is not linear. In fact, the
generalized approach to n×m bimatrix game can be identified
with a game of dimension n!×m!.
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