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We discuss the energetic cost of superadiabatic models of quantum computation.
Specifically, we investigate the energy–time complementarity in general transitionless
controlled evolutions and in shortcuts to the adiabatic quantum search over an unstruc-
tured list. We show that the additional energy resources required by superadiabaticity
for arbitrary controlled evolutions can be minimized by using probabilistic dynamics, so
that the optimal success probability is fixed by the choice of the evolution time. In the
case of analog quantum search, we show that the superadiabatic approach induces
a non-oracular counter-diabatic Hamiltonian, with the same energy–time complexity as
equivalent adiabatic implementations.

Keywords: quantum computing, quantum information, shortcuts to adiabaticity, superadiabaticity, quantum gates,
quantum search

1. INTRODUCTION

Shortcuts to adiabatic passage (Demirplak andRice, 2003, 2005; Berry, 2009; Torrontegui et al., 2013)
provide a remarkable mechanism for speeding up quantum tasks, which can be achieved through
the use of a counter-diabatic assistant driving. These techniques have been introduced to mimic
the transitionless adiabatic dynamics, but with the usual constraint on the adiabatic runtime lifted.
Transitionless quantum driving has been applied to a number of quantum information protocols,
such as population transfer (Chen et al., 2014a; Lu et al., 2014a) and entanglement generation
(Chen et al., 2014b, 2015a,b; Lu et al., 2014b). In the context of many-body systems, realizable
settings have been investigated for assisted evolutions in quantum critical phenomena (del Campo
et al., 2012; del Campo, 2013; Saberi et al., 2014). More recently, counter-diabatic approaches
have been proposed for fast implementation of individual unitaries in quantum circuits, leading
to universal superadiabatic schemes of quantum computing (QC) via local Hamiltonians (Santos
and Sarandy, 2015; Santos et al., 2016). Such methods may be potentially relevant to accelerating the
implementation of n-qubit controlled gates in digitized proposals of adiabatic quantum computing
[see Kieferová andWiebe (2014), Martinis and Geller (2014), Barends et al. (2015), andHen (2015)].

The superadiabatic speedup is intrinsically connected with an increase of the energy resources
demanded by the quantum computer (Santos and Sarandy, 2015; Santos et al., 2016), which in turn
implies a rather versatile computational cost that is controlled by the energetic capacity available to
the physical apparatus. Here, we show that this energy–time complementarity can be exploited in
quantum information processing. First, we consider controlled evolutions (CE) as a mechanism to
implement superadiabatic universal QC (Santos and Sarandy, 2015), which generalizes the original
adiabatic approach introduced inHen (2015).We then show that, within the superadiabatic scenario,
the energetic cost can be minimized by replacing the deterministic realization of quantum gates
for probabilistic implementations based on a probability distribution of a binary random variable
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described by an angle parameter. By doing so, the energy expense
can be minimized by adjusting the probability distribution, pro-
vided the choice of the evolution time of the computational pro-
cess. Second, we analyze the effects of the energy–time comple-
mentarity in analog quantum search (Grover, 1997), where the
oracular approach designed by the local adiabatic Grover algo-
rithm is known to be optimal (van Dam et al., 2001; Roland and
Cerf, 2002). In this case, we show that the superadiabatic approach
naturally requires an unphysical non-oracular counter-diabatic
Hamiltonian, with the energy–time complexity equivalent to non-
oracular adiabatic implementations.

The paper is organized as follows. In Section 2, we describe
the adiabatic implementation of quantum gates via CE and sev-
eral adiabatic quantum search approaches. We then provide their
superadiabatic versions and introduce the metric for energetic
cost used in our work. In Section 3, we investigate the energy
complexity of the superadiabatic realizations of both quantum
gates via CE and analog quantum search. In particular, we con-
sider the properties of the probabilistic model of QC through CE
and the consequences of the energy–time complementarity for
the search problem. In Section 4, we present our conclusions and
future perspectives.

2. MATERIALS AND METHODS

Our aim in this Section is to discuss adiabatic implementations
of QC, their superadiabatic generalizations, and the energetic cost
measure adopted in this work.

2.1. Quantum Gates by Adiabatic
Controlled Evolutions
Let us begin by using adiabatic CE (Hen, 2015) to implement n-
controlled gates (Santos and Sarandy, 2015). To this end, we will
consider the adiabatic evolution of a composite system T A asso-
ciated with a Hilbert space HT ⊗ HA, where T denotes a target
subsystem containing n+ 1 qubits and A denotes an auxiliary
subsystem containing a single qubit. We will use the first n qubits
of T as the control register of the n-controlled gate, while the last
qubit will play the role of its target register. Then, a rotation of the
target qubit of an angle ϕ around a direction n̂ in the Bloch sphere
will be performedwhen the state of the control register is |11· · · 1⟩.
Wewill adopt here the decimal representation |11· · · 1⟩≡ |N − 1⟩,
with N = 2n. An n-controlled rotation over a single qubit can be
adibatically implemented by preparing the auxiliary qubit in the
initial state |0⟩, with the adiabatic Hamiltonian given by (Santos
and Sarandy, 2015)

H(s) =
[

− PN−1,n−

]
⊗ H0(s) + PN−1,n− ⊗ Hϕ(s), (1)

where Pk,n± = |k⟩ ⟨k | ⊗ | n̂±⟩ ⟨n̂± | is the set of all orthogonal
projectors on the subspace T and | n̂±⟩ ⟨n̂± | = 1/2 ( ± n̂ · σ⃗),
with σ⃗ = (σx, σy, σz). The Hamiltonians H0(s) and Hϕ(s) are
given by

Hξ(s) = −~ω {σz cos θ(s) + sin θ(s)[σx cos ξ + σy sin ξ]},
(2)

where θ (s)= θ0s, θ0 is a constant angle, ξ= {0, ϕ}, and s denotes
the normalized time s= t/τ , with τ the total evolution time. The
system is prepared in the initial state |Ψ(0)⟩= |ψn⟩ ⊗ |0⟩, where

|ψn⟩ =
N−1∑
m=0

∑
ϵ=±

γm,ϵ |m, n̂ϵ⟩. (3)

Then, by adiabatic evolution, the system will evolve to the final
state |Ψ(1)⟩ given by

|Ψ(1)⟩ =
[(

− PN−1,n̂−

)
|ψn⟩

]
⊗ |E0

0(1)⟩

+ PN−1,n̂− |ψn⟩ ⊗ |E0
ϕ(1)⟩, (4)

where |E0
ξ(1)⟩ = cos (θ0/2) |0⟩ + eiξ sin (θ0/2) |1⟩ is the ground

state of Hξ(1). Then, equivalently, we can write

|Ψ(1)⟩ = cos (θ0/2) |ψn⟩ ⊗ |0⟩ + sin (θ0/2) |ψrot
n ⟩ ⊗ |1⟩, (5)

with

|ψrot
n ⟩ =

N−2∑
k=0

∑
ϵ=±

γk,ϵ |k, n̂ϵ⟩ + |N − 1⟩ ⊗ [γN−1,+ |n̂+⟩

+ eiϕγN−1,− |n̂−⟩]. (6)

The rotated state |ψrot
n ⟩ is the target of the n-controlled gate.

However, note that |Ψ(1)⟩ in equation (5) is an entangled state.
Thus, a measurement must be performed on the auxiliary sys-
tem, where the action of the gate will be considered successful
if A is measured in the state |1⟩, which occurs with probability
sin2 (θ0/2). On the other hand, if the outcome of a measure-
ment on A yields |0⟩, the adiabatic evolution should be restarted
through the Hamiltonian in equation (1), as the state of the
system is projected onto the initial state |Ψ(0)⟩. Naturally, by
choosing θ0 =π, we deterministically ensure the success of the
computation. However, as we will show, deterministic evolutions
may demand more energy resources than probabilistic processes
when transitionless drivings are considered. In particular, observe
also that the scheme presented here allows for the implementation
of arbitrary n-controlled gates, which lead to versatile sets of
universal gates, e.g., single qubit rotations and controlled-NOT
operations (Nielsen and Chuang, 2000).

2.2. Adiabatic Quantum Search
Instead of adiabatic implementations of quantum circuits, we can
also consider the original approach of adiabatic QC (Farhi et al.,
2001), where a single annealing process is performed using energy
penalties attributed to quantum states that violate the solutions
of an optimization problem. Here, we employ this method to
analyze three possible adiabatic implementations of quantum
search over an unstructured list. An adiabaticQC approach for the
quantum search through Grover’s algorithm (Grover, 1997) was
first proposed in Farhi et al. (2000) and improved by using local
adiabaticity (van Dam et al., 2001; Roland and Cerf, 2002), where
the adiabatic evolution is required for each local time interval,
instead of being globally applied as in the original proposal. In
both cases, the search for a marked element in an unstructured
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list of N = 2n elements (labeled by n qubits) can be achieved by
employing a Hamiltonian of the form

H0(s) = f(s)( − |+⟩⟨+|) + g(s)( − |m⟩⟨m|), (7)

where |m⟩ is themarked state, s is the normalized time (0≤ s≤ 1),
|+⟩ = 1/

√
N

∑N−1
i=0 |i⟩, and f (0)= g(1)= 1 and f (1)= g(0)= 0.

The eigenspectrumof thisHamiltonian can be exactly derived [see
Das et al. (2003) and Orus and Latorre (2004)]. In particular, the
two lowest eigenstates can be written as

|E±(s)⟩ = N±(s) [|m⟩ + b±(s)|ϕ⟩], (8)

where the normalization constant is N±(s)= 1/√
1 + (N − 1)b±(s)2, |ϕ⟩ =

∑
i̸=m |i⟩, and

b±(s) = 1 − E±(s)
f(s)N

, (9)

withN = 1−1/N, and the corresponding energies E±(s) given by

E±(s) =
f(s) + g(s) ±

√
[ f(s) + g(s)]2 − 4f(s)g(s)N

2
. (10)

The other higher-energy eigenstates form an (N − 2)-fold
degenerate eigenspace, whose energy is given by

Edeg = [ f(s) + g(s)] . (11)

In order to explicitly provide the eigenstates |Ekdeg⟩ (k= 1, · · · ,
N − 2) associated with the eigenenergy Edeg, we write

|Ekdeg⟩ =
N−1∑
n=0

ckn|n⟩. (12)

Then, from the eigenvalue equation for H0(s), it directly fol-
lows that the set {ckn} is just required to satisfy the constraints∑N−1

n=0 ckn = 0 and ckm = 0. As a consequence, the states |Ekdeg⟩
can be suitably chosen as time-independent vectors.

By imposing a local adiabatic evolution (van Dam et al., 2001;
Roland and Cerf, 2002), i.e., by requiring adiabaticity at each
infinitesimal time interval, the runtime is minimized for the path
[see also Kieferová and Wiebe (2014)]

f(s) = 1 − g(s),

g(s) =
√
N − 1 − tan

[
arctan

(√
N − 1

)
(1 − 2s)

]
2
√
N − 1

.
(13)

This results in a quadratic speedup over the classical search, i.e.,
we obtain the time complexity O(

√
N) expected by the Grover

quantum search (van Dam et al., 2001; Roland and Cerf, 2002).
It is possible to reduce the time complexity of the Grover quan-

tum search by transferring the algorithmic cost to other physical
resources. The second implementation of the adiabatic Grover
search considered here has been introduced in Das et al. (2003)
and Wen and Qiu (2008). It is also based on the Hamiltonian

in equation (7) to perform the evolution, but requiring that the
functions f (s) and g(s) satisfy

f(s) = 1 − s +
√
N(1 − s)s, (14)

g(s) = s +
√
N(1 − s)s. (15)

This implementation achieves the solution at constant time
complexity O(1). As is apparent from equations (14) to (15),
the original time resource has been transferred to the coupling
strengths f (s) and g(s) and, as discussed in detail in the next
Section, will be reflected in the energy scaling required by the
system.

The two previous versions of the adiabatic Grover’s algorithm
are based on oracular Hamiltonians, which we take here to be
operators able to recognize the correct answer of a problem
(Nielsen and Chuang, 2000). This is indeed the case if one
chooses a Hamiltonian composed of an operator Om in the form
Om = − |m⟩⟨m|. The action of Om in the computational basis
{|i⟩} is

Om|i⟩ = ( − |m⟩⟨m|)|i⟩ =

{
0 (i = m),
|i⟩ (i ̸= m),

(16)

so that this operator recognizes the marked state, providing no
hint about its identity if acting upon any other state. Adiabatic
versions of the quantum search have also been proposed via non-
oracular Hamiltonians. Our third implementation of Grover’s
algorithm is based on the non-linear non-oracular (NLNO)
Hamiltonian proposed in Wen et al. (2009). In this work, the
time-dependent Hamiltonian in equation (7) is replaced for

H0(s) = f(s)( − |+⟩⟨+|) + g(s)( − |m⟩⟨m|)
+ h(s)(|+⟩⟨m| + |m⟩⟨+|),

(17)

where h(0)= h(1)= 0. TheHamiltonian in equation (17) contains
an operator Om = |+⟩⟨m| + |m⟩⟨+|. The action of Om in the
computational basis {|i⟩} is

Om|i⟩ = (|+⟩⟨m| + |m⟩⟨+|)|i⟩ =

{
1√
N |m⟩ + |+⟩ (i = m),

1√
N |m⟩ (i ̸= m).

(18)

Observe that equation (18) implies that Om cannot exactly rec-
ognize a marked element, even though it could effectively recover
the marked state for N ≫ 1 with a single operation over the
uniform superposition provided by the state |+⟩. Naturally, the
non-oracular form of the Hamiltonian involves all the individual
computational states, requiring, therefore, much more than the
capacity of theHamiltonian to recognize themarked element. This
is an obviously artificial approach, whose discussion here is kept
just for comparison with the superadiabatic scenario. Assuming a
restricted feasibility of such aHamiltonian, we proceed by looking
at its eigenspectrum. The ground and first excited states have the
same structure as in equation (8), with

b±(s) =
Nf(s) + 2h(s)√

N − E±(s)

N
[
f(s) − h(s)

√
N

] . (19)
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The two lowest energy levels are given by

E±(s) =
1
2

f(s) + g(s) +
2h(s)√

N

±

√√√√ [ f(s) + g(s)]2 − 4f(s)g(s)N
+ 4h2(s) − 4h(s)√

N [ f(s) + g(s)]

. (20)

As before, the higher-energy states form an (N − 2)-fold degen-
erate subspace, with energy given by f (s)+ g(s). As shown in Wen
et al. (2009), this formulation also shows constant time complexity
O(1), which can be obtained by choosing a suitable interpolation,
such as

f(s) = 1 − s, g(s) = s, h(s) = s(1 − s). (21)

2.3. Speeding up Adiabaticity through
Superadiabatic Evolutions
The performance of adiabatic QC is dictated by a long total
evolution time compared to the inverse of a power of the
energy gap (Messiah, 1962; Teufel, 2003; Sarandy et al., 2004;
Jansen et al., 2007). However, the adiabatic evolution can be
sped up through shortcuts to adiabaticity via counter-diabatic
Hamiltonians (Demirplak and Rice, 2003, 2005; Berry, 2009). The
fundamental idea underlying these shortcuts to adiabaticity is to
add a new contribution HCD(t), called counter-diabatic Hamil-
tonian, to the original adiabatic Hamiltonian H(t). This term is
constructed such that it allows the mimicking of the adiabatic
evolution, however, without any constraint on the total time of
evolution. The total composite Hamiltonian is

HSA(t) = H(t) + HCD(t), (22)

which is called superadiabatic Hamiltonian. In particular, it is
possible to show that the counter-diabatic term reads (Berry,
2009).

HCD(t) = i~
∑

n
|ṅ(t)⟩ ⟨n(t) | + ⟨ṅ(t)|n(t)⟩ |n(t)⟩ ⟨n(t) |,

(23)
where |n(t)⟩ is the eigenstate of H(t) associated with the energy
En(t). The goal of the counter-diabatic termHCD(t) in the Hamil-
tonian HSA(t) is exactly to eliminate the diabatic contributions
of H(t). Thus, if the system is initially prepared in the ground
state of H(0), then the system will deterministically evolve to
the instantaneous ground state of the Hamiltonian H(t) with no
constraints over the evolution time. Note that, in general, one
would need to be able to explicitly calculate all the eigenstates
of H(t) to derive a shortcut to adiabaticity using the counter-
diabatic driving. However, this may not be a hard requirement
in the case of superadiabatic versions of circuit implementations,
where one-qubit rotations and two-qubit entangling gates are
enough to achieve QC universality (Nielsen and Chuang, 2000).
In particular, as we shall see for this case, HCD(t) can be realized
through a simple time-independent operator.

2.4. Energetic Cost of Quantum Evolutions
To quantify the expense of energy in a quantum evolution driven
by a Hamiltonian H(t), we adopt as the cost measure the average
norm ofH(t) computed for a total time of evolution τ . This yields
(Kieferová and Wiebe, 2014; Santos and Sarandy, 2015; Zheng
et al., 2015; Santos et al., 2016)

Σ(τ) =
1
τ

∫ τ

0
∥H(t)∥ dt =

∫ 1

0
∥H(s)∥ ds, (24)

where s= t/τ is the parameterized time and the norm here
is defined by the Frobenius norm (Hilbert–Schmidt norm)
∥A∥ =

√
Tr [A†A]. Naturally, other norms can be adopted as, for

instance, the spectral norm ∥A∥2 =
√
λmax [A†A], where λmax

denotes the maximum eigenvalue of [A†A]. For the Hamiltonians
investigated in this work, these normswill imply into a cost simply
related by a constant D1/2, with D denoting the dimension of
corresponding the Hilbert space. The Frobenius norm as well as
arbitrary superadiabatic evolutions with total evolution time τ ,
the energetic cost can be written as

ΣSA(τ) =
1
τ

∫ τ

0

√
Tr [H2

SA(t)]dt

=
1
τ

∫ τ

0

√
Tr [H2(t) + H2

CD(t)]dt,
(25)

where we have used that Tr({H(t), HCD(t)})= 0 (Santos and
Sarandy, 2015). This explicitly shows that a superadiabatic evolu-
tion has an energetic cost larger than its corresponding adiabatic
evolution. By evaluating the trace in equation (25), we obtain

ΣSA(τ) =
∫ 1

0

√∑
m

[
E2m(s) + ~2µm(s)

τ 2

]
ds, (26)

where µm(s)= ⟨∂sm(s)|∂sm(s)⟩− |⟨m(s)|∂sm(s)⟩|2 and {Em(s)} is
the energy spectrum of the adiabatic Hamiltonian H(t), with
{|m(s)⟩} denoting its eigenbasis. Notice that the adiabatic limit is
recovered when taking τ →∞. Thus, the speedup obtained by
the superadiabatic dynamics is limited by the energetic cost of
the evolution. Indeed, this energy–time complementarity can be
formally discussed through the quantum speed limit (Deffner and
Lutz, 2013), which suggests that the superadiabatic evolution time
is compatible with arbitrarily short time intervals (implying into
corresponding arbitrarily large energies) (Santos and Sarandy,
2015), while the adiabatic evolution time obeys the lower bound
τAd ∝ 1/ωn, with ω associated with the energy gap and n ∈ N+

(Messiah, 1962; Teufel, 2003; Sarandy et al., 2004; Jansen et al.,
2007).

3. RESULTS

Wenow consider the performance of adiabatic and superadiabatic
quantum computation, focusing on their time–energy complex-
ity. This will be investigated both for the universal model of
superadiabatic controlled gates and for the superadiabatic imple-
mentations of the Grover search.
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3.1. Quantum Gates by Superadiabatic
Controlled Evolutions
Let us begin by discussing the superadiabatic model of universal
QC via CE implemented by shortcuts to adiabaticity (Santos and
Sarandy, 2015). To this end, let us first write the complete set of
eigenstates of H(t) as (Santos and Sarandy, 2015)

|Eϵk
0m(s)⟩ = |m, n̂ϵ⟩ ⊗ |Ek0(s)⟩, (27)

|E+k
0 (N−1)(s)⟩ = |N − 1, n̂+⟩ ⊗ |Ek0(s)⟩, (28)

|E−k
ϕ (N−1)(s)⟩ = |N − 1, n̂−⟩ ⊗ |Ekϕ(s)⟩, (29)

where m ∈ {0, · · · , N − 2}, ϵ, k ∈ {± }, and

|E+
ξ (s)⟩ = − sin

θ0s
2

|0⟩ + eiξ cos
θ0s
2

|1⟩ , (30)

|E−
ξ (s)⟩ = cos

θ0s
2

|0⟩ + eiξ sin
θ0s
2

|1⟩ , (31)

with ξ ∈ {0, ϕ} and {|E±
ξ (s)⟩} denoting the set of eigenstates of

each adiabatic Hamiltonian Hξ(s), as provided by equation (2).
Thus, by using the equation (22), we can show that the superadi-
abatic Hamiltonian is given by (Santos and Sarandy, 2015)

HSA(s) =
[
1 − PN−1,n̂−

]
⊗ HSA

0 (s) + PN−1,n̂− ⊗ HSA
ϕ (s), (32)

where each termHSA
ξ (s) corresponds to the superadiabatic Hamil-

tonian associated with the adiabatic Hamiltonian Hξ(s), i.e.,
HSA

ξ (s) = Hξ(s) + HCD
ξ , with

HCD
ξ = ~ θ0

2τ
(σy cos ξ − σx sin ξ) (33)

being the (time-independent) counter-diabatic contribution to
achieve the evolution at total time τ (Santos and Sarandy, 2015).

3.2. Energy–Time Complementarity in the
CE Model of Quantum Gates
Let us now consider equation (26) to investigate the
time–energy complementarity relationship in both adiabatic
and superadiabatic CE models of universal quantum gates.
To this end, we need the set of eigenvalues and eigenstates of
the adiabatic Hamiltonian in equation (1), which are given
by Eqs 27–31. The spectrum of H(s) has (2N)-degenerate
levels, with {|Eϵ+

0m (s)⟩, |E++
0 (N−1)(s)⟩, |E

−+
ϕ (N−1)(s)⟩} and

{|Eϵ−
0m (s)⟩, |E+−

0 (N−1)(s)⟩, |E
−−
ϕ (N−1)(s)⟩} associated with the

levels E+ = ~ω and E– =−~ω, respectively. So, by using Eqs
27–31, we can show that µm

l (s) = θ2
0/4τ 2. In addition, the

energetic cost to implement any gate controlled by n qubits is
ΣSA(τ, n) = 2n/2Σsing

SA (τ) (Santos and Sarandy, 2015), where
Σsing

SA is the energetic cost to implement any single qubit unitary
transformation, with

Σsing
SA (ωτ, θ0) = 2~ω

√
1 +

θ2
0

4(ωτ)2
. (34)

A similar result can be obtained from the spectral norm, with
energetic cost given by Σsing

SA (ωτ, θ0) |2 = (1/2)Σsing
SA (ωτ, θ0),

since the Hilbert space has dimension D= 4 in this case. Note
that the energetic cost is independent of the parameter θ0 in
the adiabatic limit ωτ →∞. Therefore, the best computational
adiabatic strategy is to set θ=π, which deterministically ensures
the implementation of the gate with probability one. On the other
hand, probabilistic quantum computation can be energetically
favored in the superadiabatic regime. Indeed, from equation (5),
we can see that, by setting 0<θ0<π, the implementation of the
quantum gate is achieved with a non-vanishing probability. Thus,
we can investigatewhether or not it is possible to find out a specific
value of θ0 such that the energetic cost is better in average than the
deterministic choice θ0 =π. To address this point, let us define the
quantity

⟨N⟩ =
1

sin2 (θ0/2)
, (35)

which is the average number of evolutions for a successful compu-
tation. So, the average energetic cost to implement a probabilistic
evolution is

Σ̄ = ⟨N⟩Σ, (36)

whereΣ is the cost of a single evolution.Without loss of generality,
we will consider the cost of single gates, since similar arguments
apply for the cost of n-qubit controlled gates. So, by perform-
ing superadiabatic probabilistic quantum computing, the average
energetic cost is given by

Σ̄sing
SA (ωτ, θ0) = ⟨N⟩ Σsing

SA (ωτ, θ0)

= 2~ωcsc2
(
θ0
2

) √
1 +

θ2
0

4(ωτ)2
.

(37)

The function Σ̄sing
SA (ωτ, θ0) → ∞ as θ0 → 0 and exhibits amin-

imum in the interval 0<θ0<π as a function of ωτ . Indeed,
the angle θmin

0 that minimizes Σ̄sing
SA (ωτ, θ0) grows monotonically

with ωτ , with θmin
0 → π as ωτ → ∞ (adiabatic limit). Then,

optimizing Σ̄sing
SA (ωτ, θ0) for θ0, we obtain

∂

∂θ0
Σ̄sing

SA (ωτ, θ0) = η (θ0, ωτ)
{
θ0 −

[
4(ωτ)2 + θ2

0

]
cotanθ0

2

}
= 0, (38)

where we have defined the function

η (θ0, ωτ) =
csc2 (θ0/2)

2(ωτ)2
√

1 + θ2
0/4(ωτ)

2
. (39)

Note that η(θ0, ωτ ) is non-vanishing in the whole interval
Iθ0 ∈ [0, π]. Thus, to obtain the critical angle θmin

0 in
Σ̄sing

SA (ωτ, θ0), we use equation (38) to note that ωτ satisfies

ωτ =

√
θmin
0
2

√
tan

(
θmin
0
2

)
− θmin

0 , (40)

where we can see a dependence of θmin
0 on the choice of ωτ . In

addition, note that θmin
0 is such that tan

(
θmin

0
2

)
≥ θmin

0 , since the
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FIGURE 1 | Optimal value θ0
min for the angle parameter θ0 as a function

of ωτ , with ωτ in logarithmic scale. The points are obtained from
equation (40), with the curve denoting the numerical fit. Upper inset: average
energy in units of ~ω as a function of θ0 for ωτ =0.01. The results are
obtained from equation (37). Lower inset: fraction Σrel(ωτ ) of energy required
by the optimized probabilistic model as a function of ωτ , with data in
logarithmic scale. The points are obtained from equation (41), with the curve
denoting the numerical fit.

quantity ωτ is required to be real and positive. The probabilistic
advantage is plotted in Figure 1, where it is shown that the optimal
value for θ0 is a continuous function of ωτ , being distinct of
the deterministic implementation θ0 =π. In the inset, we show
the global minimum of the average energy for ωτ = 0.01, which
occurs for θ0<π. In particular, θmin

0 moves away from π as ωτ
is lowered, i.e., in the strong superadiabatic regime. As ωτ shifts
toward the adiabatic limit, we find that θmin

0 → π. The optimiza-
tion of the energy cost is shown in the lower inset, where we define
the fraction of energy required by the optimized probabilistic
model as a function of ωτ as

Σrel (ωτ) =
Σ̄sing

SA (ωτ, θmin
0 )

Σsing
SA (ωτ, π)

. (41)

Notice that Σrel(ωτ ) decreases in the superadiabatic regime,
implying into a large reduction of the energetic cost for small
values of ωτ . On the other hand, Σrel(ωτ ) → 1 in the adiabatic
limit, since θmin

0 → π.

3.3. Superadiabatic Quantum Search
Here, we derive a superadiabatic Hamiltonian HSA(s) for the
oracular quantum search governed by the adiabatic Hamilto-
nian H0(s) in equation (7). We will adopt linear interpolation,
with f (s)= 1− s and g(s)= s, as in Farhi et al. (2000) and write
HSA(s)=H0(s)+HCD(s). In order to determine the counter-
diabatic HamiltonianHCD(s), we observe that, sinceH0(s) has real
eigenstates, we use that ⟨ṅ(s)|n(s)⟩ = 0 in equation (23), which
implies that

HCD(s) =
i~
τ

∑
ξ=±

|Ėξ(s)⟩⟨Eξ(s)|, (42)

where the energies |E±(s)⟩ are given by equation (8) and

|Ė±(s)⟩ = − (N − 1)b±ḃ±

(1 + (N − 1)b2
±)3/2 |m⟩+ ḃ±

(1 + (N − 1)b2
±)3/2 |ϕ⟩.

(43)

Note that only the ground and first excited states contribute to
HCD(s), since the higher-energy degenerate sector {|Ekdeg⟩} is com-
posed by time-independent eigenvectors [see equation (12)]. Note
also that the counter-diabatic Hamiltonian will naturally be non-
oracular [see equation (18)], with contributions from operators,
such as |ϕ⟩⟨m| and |m⟩⟨ϕ|. This is the reasonbehind the time com-
plexityO(1) for the superadiabatic Hamiltonian. Naturally, such a
result leads to an artificial approach. In a more physical scenario,
superadiabaticity could be applied to the quantum search via the
direct implementation of the Grover quantum circuit, through the
controlled evolution approach discussed in Section 3.1.

3.4. Energy–Time Complementarity in the
Quantum Search
Let us now analyze the time–energy complementarity relationship
in the adiabatic and superadiabatic versions of the Grover search.
In the adiabatic regime, the energetic cost can be computed from
equation (26) and using τ →∞. Therefore, the adiabatic cost can
be written as

Σad =
∫ 1

0
ds

√∑
m

[E2m(s)]

=
∫ 1

0
ds

√
E+(s)2 + E−(s)2 + (N − 2)Edeg(s)2.

(44)

Let us initially consider the oracular Hamiltonian H0(s) in
equation (7), whose eigenvalues are given by equations (10) and
(11). By considering the case of local adiabatic evolution provided
by the interpolation in equation (13) and by taking N ≫ 1, we
obtain E±(s)∼Edeg(s)∼O(1), which implies from equation (44)
into an energetic cost ΣLA

ad that scales as O(
√
N). On the other

hand, in the superenergetic version of the quantum search, we
adopt the interpolation in Eqs 14 and 15. Then, by taking N ≫ 1,
we obtain now E±(s) ∼ Edeg(s) ∼ O(

√
N), which implies into an

energetic costΣSE
ad that scales asO(N). This higher energetic cost is

a consequence of the complementarity between energy and time,
which arises to compensate the constant time complexity O(1) of
the superenergetic version. Naturally, the composite energy–time
complexity is kept constant for both cases. This overall complexity
is reduced by taking non-oracular artificial Hamiltonians. In the
case of the adiabatic NLNO model, we use the Hamiltonian in
equation (17), whose ground state and first excited state energies
are given now by equation (20), with the higher energies kept as in
equation (11). Its energetic cost ΣNO

ad can also be computed from
equation (44) by considering the interpolation in equation (21)
and by taking N ≫ 1. Then, we obtain E±(s)∼Edeg(s)∼O(1),
which yields ΣNO

ad scaling as O(
√
N).

For the superadiabatic algorithm, equation (26) must be used.
Without loss of generality, we set energy units such that ~/τ = 1.
We find that for N ≫ 1, the value of µ±(s) in equation (26)
evaluate to

µ±(s) = ⟨Ė±(s)|Ė±(s)⟩ =
(N − 1)ḃ±(s)2

(1 + (N − 1)b±(s)2)2
, (45)

which in turn gives the superadiabatic search energetic costΣSA of
orderO(

√
N), just reproducing the scaling of the NLNO adiabatic
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TABLE 1 | Energy–time complexity for several versions of oracular and
non-oracular Hamiltonians for the Grover quantum search.

Energy cost
(Frobenius norm)

Energy cost
(spectral norm)

Time
cost

Local adiabatic O(
√
N) O(1) O(

√
N)

Superenergetic O(N) O(
√
N) O(1)

NLNO O(
√
N) O(1) O(1)

Superadiabatic O(
√
N) O(1) O(1)

search. Similar results can be obtained if one chooses the spectral
norm in the energetic cost, up to a common scaling factorD1/2 =√
N related to the dimension of the Hilbert space. These results

are summarized in Table 1.

4. DISCUSSION

We have discussed the energetic cost of shortcuts to adiabatic-
ity and their consequences in quantum information processing.
Specifically, we considered both the superadiabatic universal gate
model via CE and the superadiabatic analog quantum search.
For the gate model, we have shown that, differently from the
adiabatic scenario, superadiabatic probabilistic gate implemen-
tations are energetically favorable with respect to deterministic
gate implementations. This implies that the additional energy
resources required by superadiabatic evolutions can beminimized
by a suitable probabilistic model. Indeed, probabilistic evolutions
have recently been considered in similar applications for QC. In
particular, they have been used to cancel errors in adiabatic pro-
cesses (Kieferová and Wiebe, 2014) and as a technique to decom-
pose unitary operations (Paetznick and Svore, 2014; Bocharov
et al., 2015). Here, we have shown a new aspect of probabilistic
QC, which corresponds to an advantage in the energy balance
for superadiabatic dynamics while keeping its performance for a
fixed evolution time. For analog quantum search, we have shown

that the superadiabatic approach induces a non-oracular counter-
diabatic Hamiltonian, with energy–time complexity equivalent
to non-oracular adiabatic implementations. This explicitly shows
that the Grover optimality is robust against transitionless driv-
ings, which is reflected by a fixed energy–time scaling of the
Hamiltonian.

Implications of probabilistic superadiabaticQCunder decoher-
ence is a further challenge of immediate interest. In a quantum
open-systems scenario, there is a compromise between the time
required by adiabaticity and the decoherence time of the quantum
device. Therefore, a superadiabatic implementation may provide
a direction to obtain an optimal running time for the quantum
algorithm while keeping an inherent protection against decoher-
ence. In this context, it is our interest to understand to what extent
decoherence can affect the optimal angle θmin

0 , investigating in par-
ticular if it can be robust against classes of decohering processes.
Concerning specifically the Grover search, it would be interest-
ing to understand whether superadiabatic implementations are
equivalent to arbitrary non-oracular adiabatic Hamiltonians, as
suggested in our present discussion. Moreover, the behavior of
correlations, such as entanglement and the investigation of exper-
imental proposals in the superadiabatic scenario are also topics
under investigation.
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