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Global Warming: Temperature
Estimation in Annealers
Jack Raymond*, Sheir Yarkoni and Evgeny Andriyash

D-Wave Systems Inc., Burnaby, BC, Canada

Sampling from a Boltzmann distribution is NP-hard and so requires heuristic approaches.
Quantum annealing is one promising candidate. The failure of annealing dynamics to
equilibrate on practical time scales is a well understood limitation, but does not always
prevent a heuristically useful distribution from being generated. In this paper, we evaluate
several methods for determining a useful operational temperature range for annealers.
We show that, even where distributions deviate from the Boltzmann distribution due to
ergodicity breaking, these estimates can be useful. We introduce the concepts of local
and global temperatures that are captured by different estimation methods. We argue
that for practical application it often makes sense to analyze annealers that are subject
to post-processing in order to isolate the macroscopic distribution deviations that are a
practical barrier to their application.

Keywords: quantum annealing, thermal annealing, maximum likelihood estimation, pseudo-likelihood, ergodicity
breaking

1. INTRODUCTION

Boltzmann distributions are important in many areas of science, and sampling from these distri-
butions is a major bottleneck in many interesting applications. The tasks of uniform generation,
approximate counting, and inference (e.g., estimation of marginal probabilities) are often NP-hard
(Sinclair and Jerrum, 1989; Cooper, 1990; Long and Servedio, 2010). Heuristic samplers that sample
approximately from a Boltzmann distributions are applied in practice to large scale problems [for
example, in machine learning (Salakhutdinov and Hinton, 2009; Rolfe, 2016)].

One approach to heuristic sampling is to use an annealer. Whether thermal or quantum, an
annealer generates independent samples by slowly transforming an easily prepared initial state into
a random final state associated with a given objective function (Kirkpatrick et al., 1983; Kadowaki
andNishimori, 1998). In the case of the simulated thermal annealer (STA), an initial random sample
is evolved through a schedule of decreasing temperature toward a specified terminal temperature
(Kirkpatrick et al., 1983; Landau and Binder, 2005). In quantum annealing, the initial state is a
ground state of some driver Hamiltonian (often a uniform superposition of states). During the
annealing process, the state is evolved by slowly changing the Hamiltonian toward the target
Hamiltonian (Kadowaki and Nishimori, 1998).

Although annealers have primarily been considered in the context of optimization, they can
also be used as heuristic samplers of Boltzmann distributions. With sufficient resources, STA
samples from a Boltzmann distribution (Kirkpatrick et al., 1983; Neal, 1993). However, the resources
required per sample to achieve this are prohibitory in interesting applications, so that it is typically
run as a heuristic without theoretical guarantees. Previous studies have also indicated that samples
produced by the D-Wave quantum annealers may produce samples well described by finite temper-
ature Boltzmann distributions (Bian et al., 2010; Denil and de Freitas, 2011; Amin, 2015; Benedetti
et al., 2016; Dumoulin et al., 2015; Amin et al., 2016).
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In this paper, we investigate several methods for determin-
ing how close sample distributions produced by annealers are
to a family of Boltzmann distributions parameterized by inverse
temperature β. These methods estimate the parameter β best
describing samples drawn from an annealer, and also provide
measures of closeness. The annealers we evaluate are the latest-
model D-Wave1 quantum annealer – the D-Wave 2X (DW2X)
(Johnson et al., 2011; Denchev et al., 2016; King et al., 2016,
2015), and an implementation of simulated thermal annealing
on a single CPU. We consider two knobs for each annealer that
modify the heuristic distributions generated: rescaling the STA
terminal temperature/DW2X terminal energy scale, or changing
annealing time (either in the DW2X or STA). Sample quality
shown here does not reflect performance of optimally tuned ver-
sions of these annealers, and are simply presented to compare
various β estimation techniques.

We observe a significant difference between local (subspace)
and global (full space) features of the annealer distributions. We
find that even though samples are locally similar to a Boltzmann
distribution, the global deviation can be large. This gives rise
to a “global warming” effect: the fact that global distributional
features indicate a higher temperature than local distributional
features. We consider several estimators of inverse temperature
and evaluate their efficacy. Some estimators are sensitive to details
of the dynamics, and indicate a significant difference between the
DW2X and STA. Other estimators aremore sensitive to ergodicity
breaking andmacroscopic distribution features, where the DW2X
and STA show a qualitatively similar behavior.

We treat our heuristic samplers as black-boxes and consider
temperature estimation as the problem of determining the best
fit among a single-parameter exponential family of models. This
problem has a long history, and best practice is well established
(Geyer and Thompson, 1992; Lehmann and Casella, 1998; Wain-
wright and Jordan, 2008). Inference of Ising models parameters
under some systematic schemes is NP-hard (Wainwright and
Jordan, 2008; Bresler et al., 2014). However, heuristic approaches,
such as log-pseudo-likelihood are known to perform well in prac-
tice (Besag, 1975), and some schemes are provably convergent
with reasonable resources (Bhattacharya and Mukherjee, 2015;
Montanari, 2015). Bhattacharya and Mukherjee (2015) recently
considered the log-pseudo-likelihood estimator for β and found
that estimation based on only a single sample is possible; their
focus was primarily on the convergence properties of this esti-
mator. Multi-parameter estimation (estimation of couplings and
fields) is more commonly studied, and is pertinent to the class of
Ising models we study, though beyond the scope of this paper. In
this context, efficient methods of estimation for strongly interact-
ing models include pseudo-likelihood and variational approaches
(Aurell and Ekeberg, 2012; Nguyen and Berg, 2012; Albert and
Swendsen, 2014).

Many recent papers have shown that physical quantum anneal-
ers approximate Boltzmann distributions (Bian et al., 2010; Denil
and de Freitas, 2011; Amin, 2015; Benedetti et al., 2016; Dumoulin
et al., 2015; Amin et al., 2016; Perdomo-Ortiz et al., 2016). In some
of these approaches, temperature estimators have been developed,

1D-Wave and D-Wave 2X are trademarks of D-Wave Systems Inc.

and these estimators have been effectively applied in correcting
the annealer parameterization to produce the desired distribution.
A significant focus has been the impact of noise, or systematic
specification errors, in D-Wave processors. Remedies have been
proposed to allow more effective sampling, but scaling is either
poor or unproven; in some methods only a restricted set of
problem classes are appropriate. An extension to the temperature
estimation method of Benedetti et al. (2016) is discussed in sup-
plementarymaterials,2 but we prefer themore standard estimators
presented in the main text. Some work considering closeness
to quantum Boltzmann distributions has appeared (Amin, 2015;
Amin et al., 2016).

Our paper evaluates several standard methods, but differs from
previous studies in that it uses insight specific to annealers in the
analysis of deviations and development of temperature estimators.
Noise sources and quantum features in physical quantum anneal-
ers are discussed only briefly. Some estimators we evaluate have
a firm theoretical basis, such as maximum likelihood, but where
this is lacking we will not focus on formal properties, such as
convergence, bias, and variance.

Qualitatively, the deviation of the STA distributions from the
Boltzmann distribution for hard-to-sample Hamiltonians has
been understood within physics and computer science since the
idea of annealers was conceived (Kirkpatrick et al., 1983; Neal,
1993; Landau and Binder, 2005). As we modify the inverse tem-
perature in the STA from its initial value to the terminal inverse
temperature value (βT), we move from a distribution where clas-
sical states are uniformly distributed to a distribution divided
into disjoint subspaces of low energy (which can be identified
qualitatively with modes of the probability distribution, or valleys
in the free energy landscape). Under annealing dynamics, a state
localized in one subspace cannot easily transition into another
subspace that is separated by an energetic barrier once the inverse
temperature becomes large (late in the annealing procedure) –
this is called ergodicity breaking (Neal, 1993; Landau and Binder,
2005). In the case of the STA, we gradually decrease the annealing
temperature. Temperature is in one-to-one correspondence with
expected energy in a Boltzmann distribution, and equilibrated
samples are characterized by tight energy ranges. These samples
are partitioned into subspaces by the energy barriers as tempera-
ture decreases, at which point the samples in each subspace will
evolve independently, and be characterized by a local distribu-
tion. Rare fluctuations do allow samples to cross barriers, but are
exponentially suppressed in the height of the energy barrier later
in the anneal. Therefore, the distribution between subspaces will
reflect the distribution at the point in the anneal where dynamics
between the subspaces became slow, rather than the equilibrated
distribution associated with the terminal model. This effect is
called “freeze-out.” We provide a schematic in Figure 1.

Similarly, in the case of quantum annealing, we proceed
through a sequence of quantum models of decreasing transverse
field (and increasing classical energy scale). With respect to the
terminal diagonal Hamiltonian, the energy is again decreasing
throughout the anneal, and some characteristic mean energy

2Supplementary materials are included alongside the preprint version of this paper
(Raymond et al., 2016).
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FIGURE 1 | This is a schematic picture to illustrate ergodicity breaking
in the STA. Proceeding through the anneal, samples evolve according to a
schedule from some initial β to the terminal value. In Boltzmann distributions,
there is an equivalence between mean energy and β (Wainwright and Jordan,
2008). For illustration purposes, we take all samples (x) to be concentrated
about this mean energy, and show a qualitative distribution over the remainder
of the high dimensional space. Initially (β = 0), samples are uniformly
distributed. For small β, samples equilibrate and can explore the entire space
on short dynamical time scales. At some later time (in the schematic: βT/3)
the space may be partitioned into subspaces by energy barriers. At this point,
samples can mix rapidly on the left subspace, or the right, but not between.
For larger β, in the blue region, dynamics are too slow to allow mixing
between the left and right subspaces (ergodicity is broken). The number of
samples trapped in each valley is approximately controlled by the distribution
at the earlier time (βT/3) when mixing was still possible. At some later time
again (βT/2) mixing continues within each subspace. Due to the emergence
of a second energy barrier, dynamics become slow on the right subspace
(ergodicity is broken again on the right space). Finally, at βT, the samples are
distributed on low energy states, and if βT is large then all samples converge
to their respective local minima. If ergodicity were not broken, all samples
would converge upon the global minimum. Note that, after ergodicity
breaking, each subspace can have a distinct characteristic energy.

defines the sample set at intermediate stages. Energy barriers
become impassable as the transverse field weakens and tunneling
becomes slow, so that the process of ergodicity breaking is qual-
itatively similar (Kadowaki and Nishimori, 1998; Amin, 2015).
Tunneling dynamics are affected by energy barriers in a different
manner to thermal excitation dynamics, which is why there is
some enthusiasm for quantum annealing; for some problems, it
may not suffer the same dynamical slowdown that is true of STA
(Denchev et al., 2016).

For many problem classes, the points of ergodicity breaking
becomewell defined in the large system size limit, and can often be
directly associated with thermodynamic phase transitions (Lan-
dau and Binder, 2005; Mezard and Montanari, 2009). This is
true both of transitions related to symmetry breaking (such as
ferromagnetic transitions) where domains are formed according
to a simple symmetry of the problem, and those related to random
(a priori unknown) problem structure (such as spin glass transi-
tions). Our analysis will capture ergodicity breaking that relates
only to the random problem structure, as this is a more practical
barrier to heuristic sampling. This point is discussed further in the
discussion section.

In this paper, we consider heuristic sampling from classical
Ising spin models. The state x will consist of N spins, defined on
{−1, +1}N. The Hamiltonian is

H(x) =
∑
ij

xiJijxj +
∑
i
hixi, (1)

where J and h are unitless model parameters called couplings and
fields, respectively. The Boltzmann distribution corresponding to

this Hamiltonian at inverse temperature β is

Bβ(x) =
1

Z(β)
exp(−βH(x)), (2)

where Z is the partition function. Throughout the paper, we
will use the standard, though improper, abbreviation in which x
can denote both the random variable X, and its realization. We
study two problem classes compatible with the Chimera topology
described in Section 4.1, tailored to the D-Wave architecture
(Katzgraber et al., 2014; Rønnow et al., 2014; King et al., 2015).

1.1. Outline
In Section 2, we introduce Kullback–Leibler divergence and mean
square error on correlations as measures of closeness to the Boltz-
mann distribution, and from these develop standard estimators of
inverse temperature.

In Section 3, we develop local self-consistent approximations
for efficiently evaluating our inverse temperature estimators; we
call these locally consistent inverse temperature estimators. We
argue that in the context of annealers the approximation may
determine an inverse temperature significantly different (typically
larger) than that obtained by a full (computationally intensive)
evaluation method. However, we will show that the estimate has
meaning in that it captures local distribution features. Applying
our approximation tomaximum likelihood estimation, we recover
in a special case the commonly used pseudo-log-likelihood
approximation method.

In Section 3.2, we argue for evaluating post-processed distribu-
tions in place of raw distributions, for the purposes of removing
superficial deviations in the heuristic distribution, and for deter-
mining the practical (as opposed to superficial) limitations of
heuristic annealers.

We then present experimental results relating to our objectives
and estimators in Section 4. We conclude in Section 5.

In supplementary materials, we present various supporting
results to complement the main text, and additional results and
methods (Raymond et al., 2016). In particular, we introduce a
new multi-canonical approximation for β estimation inspired by
Benedetti et al. (2016), we address issues related to practical usage
of a DW2X, and we develop a method for calculation of KL-
divergence. As part of our work we study the RAN1 and AC3
models of themain text, as well as two problem classes not tailored
to the DW2X architecture (Bart, 1988; Douglass et al., 2015).

1.2. Practical Guidelines for Using
Annealers in Sampling Applications
Based on the results in this paper, we offer the following advice for
selecting and interpreting temperature estimation methods in the
context of samples drawn from an annealer.

• It is important to define a suitable objective that is minimized
by Boltzmann samples, and check that the objective is indeed
small for the heuristic sampler for some temperature. It is not
sufficient to find the best temperature, since there will always
be a best temperature even for bad distributions. Comparisons
of β estimates between heuristics are not meaningful in the
absence of this analysis.
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• Robust evaluation of a heuristic sampler will often require
input from an independent (exact or heuristic) method, such
as statistical estimates against which to compare. Attempting
to quantify error in a locally self-consistent manner could be
misleading.

• The DW2X rescaling parameter/STA terminal temperature,
total annealing time, and post-processing, should be tuned to
the sampling objective.

• A temperature can be estimated accurately and efficiently by
standard methods, such as the log-pseudo-likelihood method.
If ergodicity breaking is a weak effect, the log-pseudo-
likelihood estimator is sufficient.

• It is valuable to consider several different types of estimator,
since different estimators may be sensitive to different distri-
bution features. Disagreement among estimators may reveal
a pattern of ergodicity breaking, or imply a path to error
mitigation.

• Efficient post-processing can move the distribution toward
Boltzmann distribution by correcting local deviations. We are
interested in the best practical heuristic, and so efficient post-
processing should be applied.

We argue in this paper, in line with previous literature and
experimental results, that the temperature that best describes an
annealer distribution is expected to be a function not only of the
annealer parameterization, but also of the target Hamiltonian.
There is no single parameterβ that is optimal for all Hamiltonians.
While this should be borne in mind, closely related Hamiltonians
(e.g., those of a given class, created by a slow learning procedure,
or otherwise of comparable statistical properties) do yield com-
parable estimates for temperature, so that it may be efficient to
estimate temperature properties on a small subset of the problems
of interest and effectively generalize.

2. ESTIMATORS FOR TEMPERATURE

We assume that annealers generate independent and identically
distributed samples, according to a distribution PA. For the STA,
this is reasonable given powerful pseudo-randomnumber genera-
tors. For theDW2X, correlated noise sources (discussed in Section
4.3) means this is an approximation that is more difficult to ana-
lyze. In Figure 2, we show evidence that these weak correlations
in time do not strongly affect our results and conclusions. The
experimental structure is demoted to supplementary materials.

We are interested in comparing these heuristic distributions
to a family of Boltzmann distributions [equation (2)] parameter-
ized by inverse temperature β. Amongst such models we wish
to find the best fit, and measure its goodness. We will consider
the best temperature to be that which minimizes some objective
function. Since the distribution PA is a heuristic distribution, and
not Boltzmann, this temperature may vary between objectives.
Given an objective that is minimized at some unique inverse tem-
perature, we then need an estimator for this temperature working
on the basis of finite sample sets. An effective estimator should
be consistent, with low bias and variance (Geyer and Thompson,
1992; Lehmann andCasella, 1998; Shirts andChodera, 2008; Bhat-
tacharya and Mukherjee, 2015; Montanari, 2015). The estimators
we studywill be consistent, and in some cases optimal with respect
to variance and bias [e.g., the Maximum Likelihood estimators
(Geyer and Thompson, 1992; Lehmann and Casella, 1998)].

Either to evaluate the objective or to estimate temperature
(i.e., minimize the objective) note that we must evaluate some
statistics from the Boltzmann distribution, e.g., the mean energy,
an energy gap, or marginal distribution. Inference for any of these
quantities is NP-hard in the model classes we study. It is often
in practice easier to evaluate the energy, and perhaps log(Z),
than marginal statistics, but estimation of all these quantities is

FIGURE 2 | Spin reversals are a noise mitigation technique, described in supplementary materials. Choosing batches with more spin-reversals aids
sampling quality bringing us closer to the paradigm of independent and identically distributed samples, but at the price of additional programing time. At C12 scale,
spin reversals have a significant impact on MSE for both AC3 (left) and RAN1 (right). Given M samples, the error achieved by a batch methods (m samples per
spin-reversal with M/m spin reversals) is already close to that of the ideal scenario of one sample per spin reversal when m=10. The signal is noisy when few
spin-reversal transformations are used, and is only statistically significant after averaging over many distributions (100 in this figure). We establish the mean estimate,
and its standard error by bootstrapping of a sample set of 10,000 spin-reversals sampling each time 1000 samples.
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slow in the worst case. For purposes of the models and tem-
peratures explored, we are able to accurately estimate the mean
energy, log(Z), or marginal expectations under the Boltzmann
distribution by either dynamic programing or parallel tempering
(Hukushima and Nemoto, 1996; Wainwright and Jordan, 2008;
Selby, 2014).With these values in hand, we can efficiently evaluate
our temperature estimators, and in most cases the objective (an
exception, Kullback–Leibler divergence, is discussed in supple-
mentary materials). However, a scalable estimator requires us to
find effective approximation methods for these quantities or to
define different estimators, and is the subject of Section 3.

2.1. Maximum Likelihood (Minimum
Kullback-Leibler Divergence)
When comparing distributions, a natural objective function to
minimize is the Kullback–Leibler (KL) divergence between the
sampled distribution (from the annealer) PA and the correspond-
ing Boltzmann distribution Bβ , as follows:

DKL[PA,Bβ ] =
∑
x

PA(x)log
(
PA(x)
Bβ(x)

)
. (3)

The Kullback–Leibler divergence is an important information-
theoretic quantity, which places various limitations on the efficacy
of PA for modeling Bβ , and vice-versa (Wainwright and Jordan,
2008).3

PA has no β dependence, so that at the minimum of this
functionwith respect toβ, we obtain an energymatching criterion
EM(β)= 0, where

EM(β) =
∑
x

PA(x)H(x) −
∑
x

Bβ(x)H(x). (4)

The energy matching criterion yields the maximum likelihood
estimator for β – the likelihood that the annealed samples were
drawn from a Boltzmann distribution. Maximum likelihood is
perhaps the most well established of procedures for estimating
model parameters from data – in this case, the data being the
samples drawn from PA (Geyer and Thompson, 1992; Lehmann
and Casella, 1998; Wainwright and Jordan, 2008). Note that the
Boltzmann distribution is an exponential model, and so it is
natural to define the estimator in terms of expected energy, which
is the sufficient statistic associated to the parameterβ (Wainwright
and Jordan, 2008).

2.2. Minimum Mean Square Error on
Correlations
In the context of machine learning, an important potential appli-
cation of annealers, the important feature of samples may be the
quality of some statistics that are derived from them. In particular,
a machine learning process may require accurate estimation of
single variable expectations, and expectations for products of

3The reverse form of the KL-divergence, or its symmetrized form, are also inter-
esting. We choose this form as it allows for evaluation in the limit P(x)→0, among
other technical factors. This is discussed further in supplementary materials.

variables (correlations). For this reason, we consider an alternative
objective, the mean square error (MSE) on correlations:

MSE[PA, Pβ ] =
1
M
∑

ij:Jij ̸=0

(∑
x

[PA(x) − Pβ(x)]xixj

)2

, (5)

M is number of non-zero couplings. We consider specifically
themean error on correlations (excluding errors on single variable
expectations) since the models we study experimentally are all
zero-field problems so that E[xi]= 0 for all β by symmetry. Unlike
the KL-divergence, MSE is not a convex function of β in general,
although intuitively this might be expected for many problem
classes and reasonable heuristics. A derivative of equation (5)
with respect to β will yield a criterion for local optimality. This
is a complicated expression dependent on many statistics, but is
straightforward to approximate numerically in our examples.

We will find that in application to annealers the minimum for
this second objective [equation (5)] can disagree with the maxi-
mum likelihood (minimum KL-divergence) estimator [equation
(4)], typically being more sensitive to ergodicity breaking in our
experiments. Note that, once ergodicity breaking has occurred,
the mean energy can be improved as samples settle toward their
respective local minima. The maximum likelihood value can be
larger than that implied at the point of ergodicity breaking. By con-
trast, the distribution between the now disconnected subspaces
that determines the correlations cannot be much improved as
samples settle toward their localminima. Therefore, theminimum
MSE estimator will typically indicate a smaller value for β, better
inline with the point of ergodicity breaking. We stress that MSE is
not in any sense a special objective function in this regard; many
variations are possible and should be chosen in an application
orientated manner.

3. LOCAL APPROXIMATIONS FOR
EVALUATING OBJECTIVES AND
ESTIMATORS

The problem with the objectives and estimators outlined in
Section 2 is that their use requires inference with respect to
the Boltzmann distribution that is independent of the heuristic
annealer, which is NP-hard to perform: estimation of either the
expected energy, or correlations.

In this section, we show how, beginning from the annealed
distribution, we can build a reasonable approximation to the
Boltzmann distribution and thereby evaluate the estimator self-
consistently. The estimators are motivated as approximations to
those of Section 2. However, we will show that even in cases where
the approximation is poor, the estimator can still reveal useful
information about the distribution.

3.1. Statistics of the Heuristic Distribution,
and of the Boltzmann Distribution, by Local
Self-Consistency
Our estimators and objectives require us to evaluate statistics
of the annealed distribution PA. Estimates of mean energy or
correlations based on PA can be obtained by evaluating those
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statistics from the sample set S= {x}, or equivalently, evaluating
their corresponding expressions using the plug-in estimator to PA:

P̂A(x) =
1
|S|
∑
x′∈S

δx,x′ . (6)

The quality of estimates depends on variance and sample size.
In experiments, we typically use sample sets of size 104 that are
sufficient for temperature estimation and evaluation of the objec-
tives. The evaluation of the KL-divergence is one exception: our
approximation [equation (6)] is known to fail when applied to the
entropy term −

∑
x PA(x)logPA(x) (Grassberger, 2003; Paninski,

2003). In the supplementary materials, we discuss why evaluation
is problematic, and propose a mitigation strategy.

We must also evaluate energy, correlations, and log(Z) under
the Boltzmann distribution, which is NP-hard. However, under
the assumption that PA(x) is close to the Boltzmann distribution,
we may make a locally consistent approximation. The approxima-
tion to Bβ(x) is

B̂β(x) ∝
∑
x′

P̂A(x′)Wβ(x|x′), (7)

where Wβ is a β-dependent kernel. It efficiently maps any
state into a new state, with the property that the distribution is
unchanged if it is a Boltzmann distribution

Bβ(x) ∝
∑
x′

Bβ(x′)Wβ(x|x′). (8)

The transition kernels used in Markov chain Monte Carlo
(MCMC) methods, either singly or iteratively, are suitable candi-
dates for Wβ (Landau and Binder, 2005; Mezard and Montanari,
2009). The blocked Gibbs MCMC method is described in Section
4.2. The simplest example of Wβ is conditional resampling of a
single variable, which is an element in the blocked Gibbs sampling
procedure. All variables except i are unchanged, and i is resampled
according to the conditional Boltzmann distribution Bβ(xi|x \ xi)
given the neighboring values.We label this kernel by (i), indicating
the updated variable

W(i)
β (x|x′) = Bβ(xi|x′(̸= x′

i))
∏
j(̸=i)

δxj,x′
j
. (9)

Applying the approximation [equation (7)] in combination
with the kernel [equation (9)] to maximum likelihood estimation
we obtain an energy matching criterion for (i). Each kernel i
defines an energy matching criterion and an estimate for β, but it
is not possible to simultaneously satisfy the criteria for all i.We can
make a composite energy matching criterion by weighting each of
the criteria equally: taking an average over EM(β) for each i. In this
case, we recover the maximum log-pseudo-likelihood (MLPL)
estimator (Besag, 1975; Bhattacharya and Mukherjee, 2015). The
MLPL estimator is normally derived and motivated slightly dif-
ferently. An alternative way to combine the kernels {W(i)} is to
define a composite kernel as a sum of the individual kernels. We
prefer theMLPL estimator in this paper due to its prevalence in the
literature and well-established statistical properties. We discuss

this further in supplementary materials, where alternative locally
self-consistent estimators are also examined.

In the case of the Hamiltonian equation (1), the MLPL estimate
is the solution to EM(β)= 0, where

EM(β) =
∑
x∈S

∑
i
xiζi(x)

exp(2βxiζi(x))
1 + exp(2βxiζi(x))

, (10)

where ζi(x) = [hi +
∑

j(Jij + Jji)xj] is the effective field. Note
that− 2xiζ i is the energy change of flipping the state of spin i.
Provided there exists at least one ζ i (x)> 0, and one value ζ i
(x)< 0 (at least one local excitation in some sample), then this
equation has a unique finite solution which can be found, for
example, by a bisection search method.

For our purposes, theMLPL estimator is a special case of amore
general locally consistent estimator. We choose a kernel, approxi-
mate Bβ [equation (7)], and then evaluate the energy matching
criterion [equation (4)]. The locally consistent approach can also
be applied straightforwardly to the MSE, and minimum MSE esti-
mator, of Section 2.2. In the main text, the only locally consistent
estimator for which we present results is the MLPL estimator.
In the supplementary materials, we perform an experiment to
demonstrate how the strength of the kernel impacts temperature
estimation.

Consider the following interpretation for the role of the kernel:
We take every sample that the annealer produces, and condition-
ally resample according to Wβ . We then take this new set of sam-
ples as an approximation to Boltzmann samples drawn according
to Bβ . Since Wβ obeys detailed balance, it necessarily brings the
distribution toward the Boltzmann distribution. Consider again
Figure 1, and note that resampling single spins, or doing some
other efficient conditional resampling procedure (i.e., some short-
runMCMCprocedure) does not lead to a significant macroscopic
redistribution of the samples, except in the high-temperature
regime where fast dynamical exploration of the space is possible.
Thus, the approximation [equation (7)] will typically inherit the
macroscopic bias of the sampling distribution through P̂A, but
correct local biases. The locally consistent estimator is, therefore,
effective in capturing any local deviation in the distribution PA not
representative of Bβ .

3.2. Toward Global Distribution Features
Objective functions, such as maximum likelihood and minimum
mean square error on marginals, are influenced by a combination
of local and global distribution features. We have already seen
that locally consistent estimators, such as MLPL, can assign a
meaningful temperature for local deviations from the Boltzmann
distribution. However, these may fail to capture macroscopic
features. It would be useful to have an objective, or estimator
for temperature, that reflects only the macroscopic distribution
features. One way to do this is to manipulate PA so that the local
distributional features are removed.

We have also not considered so far the practical application of
annealers as heuristic samplers. By our definition, for an annealer
to be useful, it must do well on the appropriate objective, and be
fast. However, these two aims are typically in tension. A method
that allows one to trade off these two goals is post-processing.
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In post-processing, we take individual samples, or the set of all
samples, and apply some additional procedures to generate an
improved set of samples. This requires additional resources and
can be heuristic, or employed in a manner guaranteed to improve
the objective.

Those distribution features that can be manipulated by post-
processing will be called local. Local, since it is assumed that
efficient post-processing will not be so powerful as to manipulate
the macroscopic distribution in interesting cases. Among the
easiest local feature to correct in annealers is local relaxation: the
tendency of states to decrease in energy toward their local minima
at the end of the anneal as illustrated in Figure 1.

Post-processing has two uses considered in this paper: to
extract macroscopic distribution features (by discounting local
distortions), and to improve the heuristic distributions. A post-
processed distribution can be represented as

Pβ,A(x) =
∑
x′

Wβ(x|x′)PA(x′), (11)

where Wβ is again a kernel.
With post-processing, we now have three distributions of inter-

est:PA(x),Pβ,A(x) andBβ(x). Until this section, wewere interested
exclusively in the closeness of PA(x) and Bβ(x), and under the
assumption that Bβ ≈ Pβ,A(x) we developed efficient approxi-
mations to maximum likelihood (or minimum MSE) estimation
in Section 3.1. We can now present a different interpretation.
If we are interested in local deviations in the distribution, we
should compare PA(x), Pβ,A(x); whereas if we are interested in
global deviations we should compare Pβ,A(x) and Bβ(x). For
practical purposes, only the latter comparison makes sense, since
we can efficiently correct local errors. However, the former is
important in understandingwhy annealers fail, and how to correct
their distributions. The locally self-consistent estimators (such as
MLPL) minimize a divergence between PA(x) and Pβ,A(x), and
so should be interpreted as local approximations (yielding a local
temperature estimate). In the case that PA(x)=Bβ(x), then the
distinction between global and local is no longer relevant, and this
local approximation is a consistent and low variance estimator for
the unique β describing the distribution.

Implicit in our definition [equation (11)] is a restriction to “do
no harm” post-processing, we post-process at the β that defines
the Boltzmann distribution of interest (or that to which we wish
to compare). The criterion [equation (8)] does no harm since
it is guaranteed to move any distribution toward a Boltzmann
distribution in some sense, and never away from it. In the case
that Wβ involves only conditional resampling according to Bβ

{rule [equation (9)] is one such case}, it is straightforward to
show that the DKL[Pβ,A, Bβ]≤DKL[PA, Bβ]. It is reasonable to
expect, though not guaranteed, that other objectives will improve
under do no harm kernels. Heuristic approaches without such
guarantees may sometimes do better in practice, but carry risks.

For purposes of isolating macroscopic features of the distribu-
tion, it is ideal to apply enough post-processing to remove the local
distortions; but leave the macroscopic features intact. This is a
balancing act that strictly exists only as a concept, since the dis-
tinction between local and global is blurred except perhaps in the
large system size limit, and there will typically be several relevant

scales not just two. In experiments, we present results for post-
processing consisting of one sweep of blocked Gibbs sampling
(described in Section 4.2), a weak form of post-processing. For
purposes of improving the heuristic,Wβ should be chosen power-
ful enough that the time-per-sample is not significantly impacted.
One sweep of blocked Gibbs samplingmeets the criterion of being
a small overhead in time per-sample for theDW2Xand STAunder
the operation conditions we examine, so we can infer something
of the power of post-processing to efficiently correcting annealer
non-idealities.

If the heuristic distribution is a function of β [equation (11)],
we must take into consideration the dependence of Pβ,A on β
in objective minimization. KL-divergence minimization becomes
distinct from maximum likelihood in the case that samples are a
function of β, and the energy matching criterion [equation (4)]
is modified in the former case. This point is further discussed in
supplementary materials.

In Section 3, we developed locally self-consistent estimators.
We emphasize that with post-processing, these estimators can
be made redundant, unless the post-processing method kernel
[equation (11)] is significantly different from the kernel used in
the local self-consistency trick [equation (7)]. The self-consistency
trick [equation (11)] uses information about how samples are
redistributed under the kernel to determine β – if this kernel
matches the post-processing kernel, then it detects the effect of
post-processing and very little else. Therefore, in the evaluation
of post-processed distributions, care should be taken in applying
and interpreting self-consistent approximations to β.

4. EXPERIMENTAL RESULTS

In Section 4.1, we present the two models we will study in the
main text. We then describe in Section 4.2 a simple Markov Chain
Monte Carlo procedure called blocked Gibbs sampling, and how
we use this to create the STA. The blocked Gibbs method is also
applied in our post-processing experiments.We then describe our
usage of the DW2X as a sampler. Experimental results demon-
strating the methods of Sections 2 and 3.2 are subsequently
presented.

4.1. RAN1 and AC3 Models
In this main section, we consider only two models, RAN1 and
AC3, which are spin-glass models compatible with the DW2X
topology (Bunyk et al., 2014). This topology is described by a
Chimera graph shown in Figure 3; each variable is a circle with
an associated programmable field hi, and each edge is associated
with a programmable coupling Jij. Qubits are arranged in unit
cells, each aK4,4 bipartite graph of 8 qubits. Due tomanufacturing
errors, some qubits and couplings are defective and cannot be
programed.

The RAN1 and AC3 problems are defined on a Chimera graph
with 1100 qubits across a 12× 12 cell grid (C12). In experiments,
we consider models that exploit all available couplings and qubits
(C12), as well as models that use only 127 qubits on a 4× 4 cell
subgrid (C4), and 32 qubits on a 2× 2 cells subgrid (C2).

RAN1 is a simple spin-glass model without fields (hi = 0), and
with independent and identically distributed couplings uniform

Frontiers in ICT | www.frontiersin.org November 2016 | Volume 3 | Article 237

http://www.frontiersin.org/ICT
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive


Raymond et al. Global Warming: Temperature Estimation in Annealers

FIGURE 3 | Working graph of the DW2X used; the topology is called
Chimera.

on Jij =± 1 (King et al., 2015). Recent work has indicated that
for some algorithms RAN1 may be a relatively easy problem in
which to discover optima (Rønnow et al., 2014), and that asymp-
totically there is no finite temperature spin-glass phase transition
(Katzgraber et al., 2014), making it questionable as a benchmark.
However, the problem class demonstrates many interesting phe-
nomena at intermediate scales and has become a well-understood
benchmark for experimental analysis.

The AC3 model is a simple variation of the RAN1 class. Again
we have no fields, but the intra-cell couplings’ values (those
between variables in the same cell) are sampled uniformly at
random from Jij =± 1/3, and inter-cell couplings set to Jij =− 1
(King et al., 2015).4 By making couplings relatively stronger
between cells, longer range interactions are induced through
sequences of strongly correlated vertical, or horizontally, qubits. If
we can consider the inter-cell couplings to dominate energetically,
then the low energy solution space becomes compatible with that
of a bipartite Sherrington Kirkpatrick model (Venturelli et al.,
2015). We find that the AC3 problem is an interesting depar-
ture from RAN1 since the solution space is less dependent on
local interactions, and also because we modify the precision of
couplings (from an alphabet of ±1, to an alphabet of ±1/3, −1).

4.2. Blocked Gibbs Sampling, and
Simulated Thermal Annealing
BlockedGibbs is a standardMarkov chainMonte Carlo procedure
closely related to the Metropolis algorithm procedure (Carreira-
Perpiñán and Hinton, 2005; Landau and Binder, 2005). It is the

4We could equivalently assign the couplings between cells to ±1 at random; due to
a simple symmetry, the problem is not meaningfully changed.

basis for the STA in this paper, and also the post-processing
results.

First note that because the Chimera graph is bipartite, it is 2-
colorable. Given a coloring, the variables in a set of a given color
are conditionally independent given the variables of the comple-
mentary set. Thus, it is possibility to simultaneously resample all
states in one set, each according to the probability

Pβ(xi|x \ xi) =
exp(−βζi(x)xi)
2cosh(βζi(x))

, (12)

where ζ(x)= (J+ JT)x+ h. We proceed through the colors in a
fixed order, for each color resampling all variables. An update of
all variables is called a sweep. This procedure can be iterated at a
fixed temperature, and the distribution of samples is guaranteed
to approach the Boltzmann distribution parameterized by β over
sufficiently many sweeps. A graph coloring need not be optimal,
and can always be found (given sufficiently many colors), so that
this algorithm generalizes in an obvious manner to non-bipartite
graphs. The blocked Gibbs sampling procedure at large β is not
very efficient in sampling for multi-modal distributions, since
samples are immediately trapped by the nearest modes (which
may be of high energy), and escape only over a long timescale. A
more effective strategy formulti-modal problems is blockedGibbs
annealing, in which β is slowly increased toward some terminal
value βT according to a schedule (a schedule assigns one temper-
ature to each sweep of blocked Gibbs). In this paper, we consider
an annealing schedule that is a linear interpolation between 0
and βT. Given the restriction to a linear schedule the STA has
two parameters: the total anneal time, and the terminal inverse
temperature βT. The setting of these parameters is discussed in
Section 4.4.

4.3. Quantum Annealing with
the D-Wave 2X
In the case of the DW2X, annealing is controlled by a time-
dependent transverse field ∆(t) and an energy scale E(t). These
quantities are shown in Figure 4 for the DW2X used in this paper.
The physical temperature (T) of the system varies with time and
load on the device and is difficult to estimate.We have experimen-
tally observed a physical temperature which is 22.9 in the median,
with quartiles of 22.0 and 25.6mK, over the data collection period.
We did not analyze the time scales associated with temperature
fluctuations in depth, but much of the variation occurs on long
time scales, so that in a single experiment we typically found a
tighter range of temperatures applied. The unitless Hamiltonian
operator in effect during the anneal is

Ĥ(s) =
h
kBT

∆(s)
2
∑
i

σ̂(i)
x +

E(s)r
2

∑
ij

Jij
max({|Jij|, |hi|})

×σ̂
(i)
z σ̂

(j)
z +

∑
i

hi
max({|Jij|, |hi|})

σ̂
(i)
z

])
(13)

where s= t/tmax is the rescaled time, the coefficient h is Planck’s
constant, and σ̂ are the Pauli matrices. The Hamiltonian parame-
ters can be considered rescaled to maximum value 1 (the function
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FIGURE 4 | The DW2X operational energy scales during the anneal, the
Hamiltonian is equation (13).

of the denominatormax(·)). r and tmax are the rescaling parameter
and the anneal time parameter, respectively. Throughout this
paper, we adopt the convention that the Hamiltonian for the prob-
lem is fixed, and treat r as a parameter of the heuristic (DW2X).
In current operation of the DW2X, this manipulation is achieved
in practice by turning off autoscale, and manually rescaling the
values of {Jij, hi} submitted. We find the convention of modifying
the quantum Hamiltonian equation (13) to be more intuitive
than considering modification of the classical Hamiltonian that is
submitted: when we rescale downwards, we are implying the use
of smaller energy scales E(t) in the annealer, andwe anticipate that
β is reduced.

4.4. Parameterization of the DW2X and STA
in Experiments
Our criteria for selection of the default rescaling parameter r and
the anneal time is minimization of the “Time to Solution” (TTS)
(Rønnow et al., 2014; Isakov et al., 2015; King et al., 2015). TTS is
the expected time required to see a ground state for the first time.
For the DW2X, it is optimal to choose a minimal programmable
anneal time (20 μs), and a maximum programmable energy scale
r= 1. A second (and not uncorrelated) reason to use these param-
eters is that they are the default operation mode of the DW2X.
Since our objective is not optimization, TTS is not the optimal way
to use the DW2X, but represents a standard choice that allows for
phenomena to be explored.

The STA parameters are chosen in simple manner in part
according to TTS, and in part for convenient comparison with the
DW2X. We choose the STA parameter βT so that the distribution
of local excitations in the DW2X and STA are comparable in the
median case of 100 randomly generated C12 problems: by equat-
ing the local properties’ differences between the annealers, we
expose more interesting global features. To equate local properties
βT is chosen equal to the MLPL estimate of ta at full scale (C12)
for the DW2X (see Figure 5). This implies βT = 3.54 for RAN1,
and βT = 4.82 for AC3. In the case of RAN1, our choice βT = 3.54
is not too dissimilar to the value (β = 3) that had been previously

used for optimization applications (Rønnow et al., 2014; Isakov
et al., 2015; King et al., 2015).

We choose two sets for the number of sweeps of the STA, and
show both in most figures. The first set is chosen to minimize
TTS in the median instance. For both RAN1 and AC3, we find
an approximately linear trend in the width the Chimera graph, so
that 12,000, 4000, and 2000 sweeps were close to optimal for C12,
C4, and C2 problems, respectively.

The second set was chosen to match the time per sample of
the DW2X. A recent efficient implementation of the Metropolis
algorithm for RAN1 problems achieves a rate of 6.65 spin flips
per nano-second (Isakov et al., 2015). In C12 problems, we have
1100 active qubits, and so 20 μs would allow for 20000 ns

1100 spin flips ∗
6.65 spin flips/ns ≈ 120 sweeps (updates of all variables). For C4
and C2, we rescale linearly for simplicity (40 and 20, respectively).

In experiments, we evaluate the STA and DW2X on the basis of
sample batches, each batch consisting of 104 samples. We approx-
imate the samples as independent and identically distributed. In
the case of the DW2X, this is an approximation and different
programing procedures can impact quality of results. Our DW2X
batches are generated by collecting 104 samples split across 10 pro-
graming cycles. This is a standard collection procedure that trades
off quality of samples against timing considerations – including
annealing time, programing time, and read-out time. The pro-
graming cycles exploit spin-reversals, a noisemitigating technique
that strongly suppresses correlations between programing cycles
(Boixo et al., 2013). The effect of this batch structure is presented
in Figure 2.

4.5. Maximum Likelihood and Maximum
Log-Pseudo-Likelihood Estimation
In this section, we consider the DW2X and STA without
post-processing. The maximum log-pseudo-likelihood (MLPL)
estimate can be interpreted as a form of locally self-consistent
approximation to maximum likelihood, as described in 3.1,
and here we compare it to the more computationally intensive
maximum likelihood (ML) estimate of Section 2.1. MLPL and
maximum likelihood estimators indicate different values of β,
reflecting the failure of the locally self-consistent approximation
[equation (8)]. MLPL captures a local temperature, consistent
with the range over which the kernel [equation (9)] redistributes
the sample.We consider the estimates with variation of theDW2X
rescaling parameter r and the STA terminal temperature βT rela-
tive to the default settings, for our annealing procedures on 100
randomly generated RAN1 problems at each of 3 sizes: C2 (32
variables), C4 (127 variables), and C12 (1100 variables). Results
for AC3 are presented in supplementary materials.

We first consider the behavior of the STA with a range of
terminal inverse temperatures between 0 and the default value
for the problem class. Due to ergodicity breaking, we expect
samples to fall out of equilibrium before the terminal temperature
is reached, and so the distributionmay be characterized by a value
of β smaller than βT, reflecting the range of inverse temperature
for which dynamics slowed down. Figure 6 shows the maximum
likelihood and MLPL estimates based on the same sample sets.
We see that the MLPL estimates follow a linear curve, which
would indicate that the terminal model is indeed the best fit to the
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FIGURE 5 | As per Figure 6, but using samples from the DW2X. (Left) The MLPL method is non-linear, unlike the STA results. (Right) The maximum likelihood
method shows qualitatively similar features to the STA. Note that the C12 result for the MLPL estimate at r= 1 is identical to that in Figure 6, the STA parameter βT

was chosen to meet this criteria as discussed in Section 4.2.

FIGURE 6 | Bars represent quartiles over 100 instances of RAN1 at each scale, estimates for β are in each case 104 samples generated by the STA.
C2 and C12 data points are offset for visibility. (Left) Temperature estimates by the MLPL method. The MLPL estimate for thermal annealers matches the terminal
model at all scales. (Right) Temperature estimates by ML. A non-linear trend is apparent due to ergodicity breaking, which is not captured by MLPL estimates.

samples, with no evidence of the ergodicity breaking we describe.
By contrast, the maximum likelihood estimator is concave, with β
significantly smaller than βT.

The DW2X can also be manipulated by changing the rescaling
parameter r on the interval [0, 1]. We thus repeat this experiment
using sample sets from the DW2X. In Figure 5 we see that both
locally (MLPL) and globally (ML) the estimators are concave
as a function of this rescaling. As with the STA, estimates are
consistently larger forMLPL thanmaximum likelihood, andmax-
imum likelihood estimates decrease for larger, more complicated,
problems.Maximum likelihood exhibits some small decrease with
system size. A naive interpretation of the rescaling parameter
might lead to a general hypothesis that β ∝ r, where the constant
of proportionality can be determined by the terminal energy scale
in annealing (see Figure 4). However, the physical dynamics of
qubits are controlled by a single qubit freeze-out phenomenon that
is discussed in supplementary material, with data summarized
in Figure 7. The single qubit freeze-out figure implies that the

non-linearity of the MLPL curve in spin-glass problems is a func-
tion of the problem precision (granularity of the settings of Jij and
hi), or more specifically, the pattern of energy gaps. Problems of
higher precision, such as the AC3 problem class, have less pro-
nounced non-linearity. The single qubit freeze-out phenomenon
also anticipates the system size dependence seen in Figure 5, and
in some other models not presented. AC3 results, and further
discussion of this point, are in supplementary materials.

We believe the phenomenon underlying both MLPL and max-
imum likelihood to be easily understood, and similar in both the
DW2X and STA, although the interaction of the dynamics with
the energy landscape may be quite different. Figure 1 provides a
useful example to explain this. When ergodicity is broken, and
the sample set is divided over subspaces, each subset relaxes
toward the terminal model restricted to the subspace; the MLPL
method effectively averages an estimate over these subspaces. By
contrast, the maximum likelihood estimate accounts in part for
the distribution between modes, determined at an early (higher
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energy) stage of the anneal that is better described by smaller
inverse temperature. Note that the equilibrated distribution at
the ergodicity breaking point is a quantum one for the DW2X,
unlike thermal annealers, so we ought to understand the deviation
in the local and global temperatures in terms of the quantum
parameterization (∆(t), E(t)) (Amin, 2015). Still, the classical
description in terms of β [equation (2)] provides the correct
intuition.

FIGURE 7 | An explanation for non-linearity of the MLPL estimator is
possible through examination of single qubit dynamics in the DW2X.
This study is described in supplementary materials. MLPL becomes
equivalent to maximum likelihood in the limit of a single qubit. The single qubit
β dependence on the rescaling parameter, for the single qubit Hamiltonian
H(x)= xi is shown. We plot the DW2X median value together with 25–75
quantiles as error bars. Simulation of the physical dynamics gives the Redfield
curve, and the “freeze-out” curve shows is based on the assumption of a
single freeze-out point. The theory, thus, is in agreement with experiment. The
DW2X is not equilibrated at the end of the anneal even for a single qubit
model. By contrast, in a system that is locally or globally equilibrated at the
end of the anneal a linear dependence would be expected, as is seen for the
STA.

Response curves, such as these, can be used to choose a suitable
parameterization of the terminal model – we can choose βT so as
to minimize KL-divergence. Similar curves could be constructed
for any parameter, and with a distribution that is subject to post-
processing. In the absence of the maximum likelihood curve (due
to absence of approximates to the energy), a local information
curve, such as MLPL curve, can be used as a compromise. The
maximum likelihood curves, and MLPL curve for the DW2X, are
problem dependent. Some temperature estimators require knowl-
edge of, or assumptions about, the form of these curves – notably
the method of Benedetti et al. (2016) and our multi-canonical
method, both described in supplementary materials.

To judge quality of the approximation at the “best”β, it is appro-
priate to consider the quantity being minimized, KL-divergence.
However, this is a difficult quantity to estimate from samples in
the absence of parametric assumptions. We present a method for
estimation of KL-divergence in supplementary materials, but find
that for RAN1 and AC3 problems it is ineffective at C12 scales.
This is an important reason to consider an alternative, such as the
MSE estimator.

4.6. The Mean Square Error Estimator
Themean square errors on correlations associatedwith theDW2X
and STA for a typical instance of RAN1, and a typical instance
of AC3, are shown for the C12 (1100 variables) problem size
in Figure 8. Though there is significant variation between the
curves associated with different instances of these models, we
chose among 100 random instances exemplars that are typical in
the minimizing temperature and the mean square error (β, MSE)
for DW2X.

Both the DW2X and STA performances are best characterized
at intermediate β values, and variation from the default annealer
settings is also shown to modify MSE. In the RAN1 exemplar,
we demonstrate the effect of halving the terminal temperature
or rescaling parameter, which improves MSE (except perhaps
at very large values for β). In the case of the AC3 exemplar,

FIGURE 8 | Both the DW2X and STA can be used to sample from a RAN1 problem with small errors over an intermediate range of β. Objective
performance is shown for two typical instances under several annealer operating conditions. (Left) Results for the AC3 exemplar. (Right) Results for the RAN1
exemplar. SEs determined by jack-knife methods are negligible compared to the marker size. To avoid clutter, we show only variation of the anneal time in the left
figure, and only variation of the rescaling parameter (r= 0.5 in the DW2X, βT/2 in the STA) in the right figure.
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we demonstrate the effect of varying the anneal time. Results
indicate that longer anneals tend to improve MSE at lower tem-
perature. To prevent clutter, we have shown only one variation
of a default parameter per model. Switching the parameter being
varied results is qualitatively similar. Annealing for longer is
expected to allow equilibration to lower temperatures, and so a
better match is to be expected. Annealing with smaller r or βT,
concentrates annealing resources toward the initial part of the
anneal where dynamics are effective (rather than at the end of
the anneal where ergodicity breaking has already occurred and
cannot be mitigated). It also reduces the tendency of samples to
settle toward local minima that might distort the approximation
for intermediate β. In the case of the DW2X, some noise sources
and quantum mechanical phenomena can complicate this simple
picture, but this is not obviously at play.

Figure 9 shows the mean square error achieved against the
point it is minimized, for a large set of C12 (1100 variable)
problem instances. Ideally, we wish for heuristics that are both
sampling at large β and with small errors. Figure 10 shows the
minimum MSE estimator in comparison to the maximum like-
lihood estimator. These two estimates indicate different opera-
tional temperature ranges. The fact that the maximum likelihood
estimator is significantly larger is to be expected in annealers. Late
in the anneal samples sink toward their respective local minima,
decreasing themean energy significantly (seeFigure 1). Themean
energy is strongly dependent on the local relaxation, and hence the
local inverse temperature, which as we saw in the previous section
is large. In the case ofMSE, the correlation error is formostmodels
not strongly affected by this local decrease in energy. It is more
sensitive to the distribution between modes, which is set only by
the temperatures characterizing ergodicity breaking.

By annealing with modified βT or r, improvements are made
for sampling intermediate or small β. By contrast, it is relatively
hard to sample effectively from large values of β by modifying
these parameters; additional time resources are required to make

an impact. For this reason, we may argue that, generally, the larger
the inverse temperature estimate, themore useful the annealer will
be for hard sampling applications. However, it is important to note
that an estimate for β, independent of the objective measure, may
be risky or misleading. In Figure 10 (right), the DW2X system
at full scale indicates a lower minimum MSE β than the DW2X
system operating at half scale. However, we can see that at this
larger β value the half scale system is still more effective as a
heuristic.

4.7. Effectiveness of Post-Processing
In Sections 4.5 and 4.6, we demonstrated how adjusting anneal
duration, or the terminal temperature, can allow better objec-
tive outcomes. In this section, we consider briefly the effect of
post-processing by one sweep of blocked Gibbs as discussed in
Section 3.2. This post-processing changes dramatically the local
distribution of samples, hence the MLPL estimate. However, the
KL-divergence and mean square error, and the temperatures min-
imizing these objectives, are affected by a combination of the
local and global distribution and so are modified in a non-trivial
way by post-processing. Post-processing always strongly modi-
fies local distribution properties, but only in the easy to sample
regime (at smallβ) does it significantly impacts global distribution
problems.

Figure 11 shows that MSE on correlations are, as expected,
improved by post-processing. The improvements are dramatic in
the regime β ≈ 0, impressive over intermediate values of β, but
almost negligible for larger β. After post-processing, the MSE
curve has two minima. There is no guarantee and there should
be two local minima working with arbitrary distributions. The
first local minimum (β = 0) is evidence for the power of post-
processing. Since one sweep of blocked Gibbs samples effectively
at β ≈ 0, independent of the initial condition PA, β = 0 will be a
global minimum for any heuristic distribution. The second local

FIGURE 9 | Statistics over the set 100 AC3 (left) and RAN1 (right) problems at C12 scales. Small objective values at large inverse temperatures are difficult to
obtain, and so desirable in a heuristic sampler. Sampling effectively at small inverse temperature is less valuable (e.g., 120 sweep STA). Modification of the annealing
parameters significantly changes the distribution, allowing more effective emulation at some inverse temperatures. To avoid clutter, we show only variation of the
anneal time in the left figure, and only variation of the terminal model rescaling (r, βT) in the right figure; the effects are qualitatively similar in each of these models at
C12 scale.
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FIGURE 10 | Statistics over the set 100 AC3 (left) and RAN1 (right) problems at C12 scales, as per Figure 9. Minimum MSE and maximum likelihood
estimators of temperature give different, but strongly correlated, results. The maximum likelihood estimate is typically larger, a partial explanation is the sinking of
samples toward local minima late in the anneal, which through its impacts on mean energy has consequences for the maximum likelihood estimate.

FIGURE 11 | Simple forms of post-processing can have a quantitatively large effect on objectives at small and intermediate temperatures. The C12
problem exemplars consistent with Figure 8 are shown. At low β a single sweep of blocked Gibbs can completely correct all errors. At high β, there is relatively little
effect; however, the effect is significant in the intermediate range of inverse temperature where the annealers can be considered most effective.

minimum appears due to the closeness (at the macroscopic level)
of the annealing distribution to some particular low-temperature
Boltzmann distribution, a sweet spot of operation that may be of
practical interest.

Post-processing reduces the error everywhere, but more so at
smaller β where the time-scales for macroscopic redistribution
are shorter. For this reason, we expect the minimizing value of
β to move leftward with post-processing. If the post-processing
allows global redistribution of samples, we may anticipate the
disappearance of the localmaximum separating the “easy for post-
processing regime” from the “good for this annealer” regime; at
which point a best operational regime for the annealer is less clear.
However, we can assume that powerful post-processing of this
kind is too expensive in the types of multi-modal problems where
annealers are useful.

Figure 12 shows the statistics for the local minimum mean
square error estimator, and its relation to the local maximum
likelihood estimator, to be compared against Figure 10 that has

no post-processing. The local minimizer is the right most local
minimum of the post-processed curve (see Figure 11), indicating
the good operating regime. A global minimum is always at β = 0,
but this is not of interest as it reflects the post-processor and not
the heuristic.

In Figure 12 (left), we see that, relative to the distribution with-
out post-processing, there is a slight shift leftwards in all distribu-
tions, and significant shift downwards that appears approximately
proportional to the MSE without post-processing. The effect of
local relaxation is to give the impression of better estimation at
low temperature. Here, the effect is partially lifted to reveal that
the macroscopic distribution may be characterized by slightly
smaller β.

In Figure 12 (right), we see how the minimum MSE estimate
decreases in all annealers, but by a less significant amount than
the downward trend in the maximum likelihood estimator. The
two remain strongly correlated under post-processing. It is natural
to expect that the local relaxation, which shifts samples toward
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FIGURE 12 | As per Figure 10, but now all distributions are modified by one sweep of blocked Gibbs sampling. The estimators for inverse temperature are
reduced, as the effect of the local distribution (characterized by larger inverse temperature) is partially removed.

FIGURE 13 | As per Figure 9, but with distributions modified by one sweep of blocked Gibbs sampling. Objectives are improved everywhere very
significantly, and by a comparable fraction across the different annealers.

their local minimum, may have a bigger impact on KL-divergence
thanMSE, because it is easy to raise the energy by post-processing
that impacts maximum likelihood in a systematic manner, but it
is difficult to redistribute samples macroscopically, which may be
required to alter minimum MSE.

The particular effects demonstrated on the exemplar instances
of Figure 12 are reflected at the distribution level in Figure 13.

The estimation of KL-divergence is described in supplementary
materials, and allows us tomeasureKL-divergence post-processed
RAN1 and AC3 problems, with reasonable precision up to C4
scale. InFigure 14, we demonstrate results for an exemplar on aC4
graph. The pattern observed is qualitatively similar to Figure 11 in
that we see a global minimum at β = 0 reflecting the effectiveness
of the post-processing, and a local minimum at intermediate β
that reflects a promising region for application of the annealer
as a heuristic. As discussed in the supplementary materials, bias
can be a problem with our KL-divergence estimator. For this
reason, we present a C4 (rather than C12) sized problem and only
the post-processed (rather than unprocessed and post-processed)

estimates. To assess the bias (the sensitivity of the estimate to the
finite sample set size), the jack knife bias-corrected estimator is
also shown (Efron, 1982). At C4 scale, the bias does not signifi-
cantly obscure the phenomena, particularly for themore powerful
annealers (the STA with 4000 sweeps, and the DW2X).

5. DISCUSSION

In this paper, we have considered several temperature estimators
applied in the context of a physical quantum annealer set up for
optimization (DW2X), and a comparable simply parameterized
simulated thermal annealer (STA). We have demonstrated how
different objective measures of closeness to the Boltzmann dis-
tribution respond differently to local and global distribution fea-
tures. An important phenomenon we observe is that in annealed
distributions we have a range of temperature estimates accord-
ing to the method employed. We have shown that estimators
indicating larger temperature are those responsive to macro-
scopic (global) features of the distribution. From an estimator
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FIGURE 14 | KL-divergence results for two exemplar instances of AC3 (left) and RAN1 (right) each at C4 scale (127 variables). Full lines indicate the
estimate, and the dashed lines indicate jack-knife bias-corrected estimates. The variance determined by the jack-knife method is negligible by comparison with
symbol size. The bias is very large for 40-sweep annealing, indicating that we have insufficient samples to properly determine the KL-divergence. Elsewhere, we
judge the bias not to significantly impact our conclusions.

perspective, we have global warming: the more effective the
estimator is in capturing global distribution features, the higher
the temperature that is typically indicated. Ergodicity breaking
qualitatively explains the origin of this phenomenon in anneal-
ers, both the DW2X and STA. We have provided some practical
guidelines in Section 1.1.

Local distributional features, which are well characterized by
a temperature, are easy to estimate by self-consistent methods.
We showed in the main text standard methods for temperature
estimation from samples drawn from a single distribution. Self-
consistent approaches are efficient and approximate the target
distribution from the same samples by which the heuristic is
evaluated. We presented a simple form for this, but the principle
generalizes. However, themain problemwith suchmethods is that
they may indicate a good fit on the basis of incomplete (or biased)
information about the target distribution. If a heuristic sample set
fails to see a representative set of modes in the distribution, then
the evaluation will inevitably skewed by the missing information.

The local approximation method is able to capture an impor-
tant difference between quantum and simulated annealers related
to the difference between dynamics of the DW2X and STA. This
is realized in the non-linear dependence of the local temperature
estimate to variation of the DW2X rescaling parameter. Quantum
simulations on single qubits provide a qualitatively accurate expla-
nation for this phenomenon, and are described in supplementary
material (Raymond et al., 2016).

Describing the global distribution in terms of temperature(s)
is more tricky; we proposed KL-divergence and MSE as mea-
sures of deviation from the Boltzmann distribution, and based on
these objectives developed estimators for the best temperature.
Each of these objectives is affected in slightly different ways by
deviations locally and globally from the Boltzmann distribution.
The maximum likelihood estimator is more strongly affected by
the local distribution than the minimum MSE estimator, and
indicates a larger estimate of inverse temperature. To remove the
local distribution effects, we have proposed to take the initial
distribution and apply local post-processing in order to isolate

the macroscopic distribution effects that are truly a limitation on
practical performance. Applying some degree of post-processing
may also be valuable in practice, in particular for the DW2X since
the post-processing is strictly classical and complementary to the
quantum dynamics.

We emphasize that because efficient post-processing allows
significantmanipulation of the local temperature, we consider this
temperature not particularly important in practical applications.
If we post-process, the post-processing temperature itself will be
synonymous with the local temperature; the local temperature
need not be measured.

Ergodicity breaking that relates to symmetry breaking, and
ergodicity breaking without symmetry breaking should be distin-
guished. The problem classes we study in experimental sections
are random, but there is a global sign symmetry, P(x)= P(−x),
other problems may exhibit different (or no) symmetries. Our
annealer implementations (initial conditions, and dynamics) are
chosen such that the heuristic distribution (PA) also exhibits the
same symmetry. If a symmetry is known, a well implemented
sampler should be designed not to break such a symmetry. Sym-
metry implies that a mode at x′ will imply a mode at −x′, and it
may be that ergodicity breaking occurs between the two halves of
the solution space (and be characterized by some temperature).
However, this ergodicity breaking does not lead to a departure
from the Boltzmann distribution, and so is of less practical inter-
est than the ergodicity breaking that relates to random problem
structure. The objectives we study are for this reason insensitive
to ergodicity breaking (relying on energy and correlation statis-
tics), and capture the temperature related only to the non-trivial
ergodicity breaking.

Important ideas incidental to the main thread are discussed in
supplementary materials (Raymond et al., 2016). These include
the following: a description of single qubit experiments that
explain the non-linearity ofMLPL estimates in theDW2X; consid-
eration of the effect of embedding on the distribution of samples;
the development of an effective estimator for the Kullback–Leibler
divergence; a consideration of spin-reversal transformations to
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mitigate sampling error in the DW2X; and an experiment to
test how the choice of kernel [equation (7)] affects the locally
self-consistent temperature estimates.

At various points in this paper, we have included results both for
the DW2X and STA. We have motivated a default parameteriza-
tion for each algorithm in Section 4.4, and it should be clear that
these choices are not aimed at, or appropriate for, a competitive
comparison. It would be a complicated task to make a fair com-
parison, and it would also detract from the main theme of this
paper since it would distort or disguise the phenomena we wish
to highlight. We chose a default DW2X parameterization suitable
for optimization, and two STA parameterizations that allow for
qualitative comparison. It has been shown in experiments that
both annealers can be improved with simple parameter modifica-
tions. It is interesting that, despite the fact that theDW2X annealer
has been designed and tuned for optimization, it produces good
statistics at intermediate temperature ranges, and that the STA
with long anneal time shows a qualitatively similar behavior.

Given fixed time resources, optimal annealer operation is to a
large extent determined by the schedule: the allocation of time
resources over the anneal path (or modification of the anneal
path itself, for multi-parameter paths as in the DW2X). The basic
principle of schedule optimization is to allocate resources where
dynamics are most effective (i.e., before, and close to, detrimen-
tal points of ergodicity breaking, allocating far fewer resources
beyond that point) (Neal, 1993; Ghate and Smith, 2008). The STA
schedule we implement is linear in temperature – this was simple
to explain, and found to significantly outperformed a geometric
schedule, over the temperature range implemented. The DW2X
schedule by contrast could not be manipulated at this level of
detail, the basic form of the schedule is fixed by engineering
considerations.

When considering the value of annealers in inference problems,
it is also important not to forget a variety of other powerful infer-
ence methods that may achieve a similar objective. In particular,
simple variations on the STA, such as annealed (or population)
importance samplingmethods and other multi-canonical MCMC
methods can often be tailored to the graphical structure of the
problem under investigation (Neal, 2001; Hukushima and Iba,
2003;Hamze andde Freitas, 2004; Landau andBinder, 2005; Selby,
2014; Zhu et al., 2015).

From the perspective of both errors on correlations and KL-
divergence, the balance of evidence certainly indicates that there
is potentially a sweet spot for application of either the DW2X or
STA to sampling. This sweet spotmay be problem type dependent,
but can be tuned to a degree, by modification of the annealing
parameters, and more importantly, by post-processing. However,
evaluation of this sweet spot is difficult to do self-consistently, and
someone interested in applications may have to undertake hard
work to discover (and have confidence in) annealer performance.
Having available curves, such as those in Section 4.5, probably for
someweakly post-processed distribution, would allow parameters
of the annealer to be set optimally. It may seem computation-
ally intensive (defeating the value of the heuristic) to evaluate
the macroscopic distribution before using an annealer, but it is
reasonable to assume that for some classes of problems at large
scale, the local and global temperature properties will be common

across the class. In other time-dependent applications of anneal-
ers, the statistics of the distributions being learned change slowly,
so that only periodic evaluations of the temperatures may be
required.

Temperature plays an important role in describing annealers,
even when they are implemented as optimizers. Temperature
concepts might extend to some other heuristic optimization
algorithms. In various optimization applications DW2X has been
compared against walkSAT, HFS, and other heuristic solvers
(Selby, 2014; Douglass et al., 2015; King et al., 2015). walkSAT and
HFS optimizers are simple Markov Chain methods proposed to
solve, respectively, the SAT, and chimera structured, optimization
problems. They always return either global or local optima and
in this sense the local temperature can be considered infinite
(since, with respect to the sample neighborhood, it seems only
ground states are returned). However, macroscopic dynamics
are fundamentally similar to an annealer, with the same failure
mode. In application to a multi-modal energy landscape, the
process mixes across the space being weakly informed by the
energy, before being trapped by modes as it falls below some
energy threshold. In this sense, there is a global temperature with
the same interpretation as proposed in this paper.

An important potential application of quantum annealers is
in machine learning (Benedetti et al., 2016; Amin et al., 2016;
Rolfe, 2016), where other heuristic samplers (not annealers)
are prevalent. A common heuristic used in machine learning
is called contrastive divergence (CD) (Hinton, 2002; Carreira-
Perpiñán and Hinton, 2005). Bβ is approximated in CD by tak-
ing the ground truths (a set of training examples) and evolving
them by an MCMC procedure. This is an example of the post-
processing scheme used and recommended in this paper, except
that annealed samples are replaced by the ground truths. Like
the annealing distribution, the distribution of training examples
may be incorrect in both its local and global features, the effect of
the MCMC procedure is to tidy up local distribution deviations.
After post-processing, the distribution is used directly – in effect
the post-processing temperature is taken to be correct,5 without
consideration of potential macroscopic deviations. The success of
this algorithm in practice indicates that learning procedures may
be quite tolerant of macroscopic deviations from the Boltzmann
distribution in application provided the local temperature is cor-
rect. This would be good news since it may be computationally
expensive to quantify macroscopic deviations, but it is easy to
measure and manipulate local temperature in annealers.

One feature of D-Wave quantum annealers that might lead us
to consider a different approach is the quantum part, as already
discussed. The single qubit freeze-out, and dynamical slow-down
at larger scales, is described by quantum models. The quan-
tum Boltzmann distribution may be a better fit to sample sets
drawn from the DW2X, and perhaps in “post-processing” we
should think of the quantum space as the target, rather than the
classical one. This is certainly a promising direction for future
work.

5In machine learning, we can take the post-processing temperature to be β = 1,
without loss of generality.
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