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The data management needs of the neuroimaging community are currently addressed 
by several specialized software platforms, which automate repetitive data import, 
archiving and processing tasks. The BIOMedical Imaging SemanTic data management 
(BIOMIST) project aims at creating such a framework, yet with a radically different 
approach: the key insight behind it is the realization that the data management needs 
of the neuroimaging community—organizing the secure and convenient storage of large 
amounts of large files, bringing together data from different scientific domains, managing 
workflows and access policies, ensuring traceability and sharing data across different 
labs—are actually strikingly similar to those already expressed by the manufacturing 
industry. The BIOMIST neuroimaging data management framework is built around the 
same systems as those that were designed in order to meet the requirements of the 
industry. Product Lifecycle Management (PLM) systems rely on an object-oriented data 
model and allow the traceability of data and workflows throughout the life of a product, 
from its design to its manufacturing, maintenance, and end of life, while guaranteeing 
data consistency and security. The BioMedical Imaging—Lifecycle Management data 
model was designed to handle the specificities of neuroimaging data in PLM systems, 
throughout the lifecycle of a scientific study. This data model is both flexible and scalable, 
thanks to the combination of generic objects and domain-specific classes sourced from 
publicly available ontologies. The data integrated management and processing method 
was then designed to handle workflows of processing chains in PLM. Following these 
principles, workflows are parameterized and launched from the PLM platform onto a 
computer cluster, and the results automatically return to the PLM where they are archived 
along with their provenance information. Third, to transform the PLM into a full-fledged 
neuroimaging framework, we developed a series of external modules: DICOM import, 
XML form data import web services, flexible graphical querying interface, and SQL 
export to spreadsheets. Overall, the BIOMIST platform is well suited for the management 
of neuroimaging cohorts, and it is currently used for the management of the BIL&GIN 
dataset (300 participants) and the ongoing magnetic resonance imaging-Share cohort 
acquisition of 2,000 participants.
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InTRoDUcTIon

provenance complexity in neuroimaging 
Studies
Cognitive neuroscience is multidisciplinary “by its very nature” 
(Van Horn et al., 2001) and relies on a large set of complementary 
approaches for probing brain function and behavior. Different 
combination of methods, such as computerized experimental 
psychology, magnetic resonance imaging (MRI), electro and 
magneto encephalography (EEG/MEG), functional near-infrared 
spectroscopy, eye tracking, genetics, etc., can be used during a 
scientific project and require an active interaction between many 
specialties—physics, medicine, mathematics, and engineering 
among others. Resulting data are complex, and neuroscience 
researchers have to deal with many data sources, natures, and 
types of processing (Goble and Stevens, 2008).

One can only expect the heterogeneity of the tools and data 
formats involved in research to increase over time. With more 
and more studies—neurogenetic, neuroepidemiology, and 
longitudinal—requiring large cohorts and therefore producing 
huge amounts of data in a multicentric context. Besides, these 
large-scale studies may need to be aggregated into meta-analyses 
to reach the adequate level of statistical power, given the stagger-
ing number of hypotheses being tested. This implies the frequent 
reuse of pre-existing data, for validation of new findings. In 
addition, the high cost of data (both acquisition and processing) 
and the need for reproducibility make data reuse and sharing a 
necessity (Yarkoni et al., 2010; Poline et al., 2012).

The information of what a piece of data is, when, where, and 
how it was produced, why and for whom it was performed is called 
provenance—the origin and history of a set of data (Simmhan 
et  al., 2005). The provenance in BioMedical Imaging studies is 
complex: acquisition devices and parameters impact raw data, 
processing algorithm, parameters, and tools impact on derived 
data, processing input traceability is intricate. All this informa-
tion is required to be able to reproduce scientific results and also 
to share data and understand how specific data were obtained.

Sharing study data between scientific teams—inside and 
outside the institutions that produced the data—implies to 
ensure consistency of data and their provenance on one side, and 
data security on the other side, particularly on studies involving 
human subjects.

The lifecycle of a study can be described by four stages: (1) 
study specifications define the purpose of the study, what data will 
be acquired, stored, and analyzed, (2) raw data are acquired with 
appropriate devices and following protocols, (3) derived data 
are generated from raw data by analytical means, and (4) results 
are published and the data may be shared with the community. 
Figure 1 summarizes the links between the stages with examples 
of data at each stage along with required provenance information.

existing Systems for the Management of 
the provenance of neuroimaging Studies
So far, this challenging need for neuroscience data sharing has 
been met by the emergence of dedicated systems, especially for 
modalities that were made affordable to researchers because they 

were so widely used in hospitals, and this chiefly applies to MRI. 
In this case, the best solution was to build upon the pre-existing 
medical standard, namely, Digital Imaging and COmmunications 
in Medicine (DICOM), with the development of research-
dedicated picture and archival communication systems (PACS). 
Compared with traditional clinical PACS, neuroimaging data 
management systems can manage research projects involving 
large sets of subjects instead of being confined to the individual 
patient, storing data from other sources than DICOM entities 
and controlling access to the data in a fine-grained way. They 
also include procedures to clean patient health information from 
the data to comply with human research ethical norms, visual 
and/or automated quality control procedures, and are capable of 
interacting with computing clusters or workflow managers for 
data processing.

Existing neuroimaging data management systems so 
far—XNAT (Marcus et  al., 2007a), LORIS (Das et  al., 2012), 
COINS (Scott et al., 2011), IDA (Crawford et al., 2016), MIDAS 
(Kitware Inc.), HID (Keator et  al., 2016), NIDB (Book et  al., 
2013), SHANOIR (Barillot et al., 2015), etc.—were implemented 
using the standard web technologies, in the form of J2EE or PHP 
web applications, with a browser-based graphical frontend and 
a relational database backend, and some also provide means to 
automate interactions through application programing interfaces 
(APIs; REST or SOAP). Such web systems leverage DICOM 
libraries such as dcm4che or DICOM toolkit to implement at least 
a DICOM receiver and offer separate upload services for non-
DICOM data, over HTTP. This scalable web architecture makes it 
possible to serve brain imaging and associated data to distant users 
over the web or store data in the cloud, as best exemplified with 
XNAT at the Human Connectome Project. Naturally, with this 
multiplication of like-minded, yet idiosyncratic web applications 
for neuroimaging data management, came the need for database 
federation and interoperability, and for a common lexicon across 
different systems, such as shared ontologies (Gupta et al., 2008).

A detailed comparison of 18 neuroimaging data management 
systems is presented in (Allanic et al., 2017). Criteria of compari-
son are:

 – Type of managed data: which disciplines (imaging, genet-
ics, psychology, clinical, etc.) and which level of data (raw, 
derived, and published) can be managed in the system. Most 
of the existing data management systems focuses on one or 
two levels (raw and derived or derived and published) and 
most of them manage only imaging data [except HIS (Keator 
et al., 2009), LORIS (Das et al., 2011), XNAT (Marcus et al., 
2007b), and fMRIDC (Van Horn et al., 2001)].

 – Provenance strategy: how is the provenance described and 
made available to enable data sharing and reuse. It appears 
that data provenance is sometimes more precise and complete 
in systems managing published results, as users must provide 
additional metadata that describe how data were produced to 
be allowed to submit their data (Fox et al., 2005); openfMRI 
(Poldrack et  al., 2013), fMRIDC, and BrainMap (Fox and 
Lancaster, 2002) are good examples.

 – Data model flexibility: how the system can be adapted to new 
types of data, new protocols. Few data management systems 
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allow to customize their data model; among them REDCap, 
COINS (Scott et al., 2011), XNAT, CVT (Gerhard et al., 2011), 
NiDB (Book et  al., 2013), DFBIdb (Adamson and Wood, 
2010), and Neurolog (Dojat et al., 2011).

 – Integration of processes and existing tools: how pipelines, 
quality workflow, and visualization software can be integrated 
to the system. Some neuroimaging data management systems 
allow to launch pipelines and to visualize results directly from 
the database interface.

There is to our knowledge no existing data management 
system that allows to manage and to analyze study data from 
study specifications to publication; we aim at providing such an 
environment.

product lifecycle Management (plM) 
Systems: A Key to provenance 
Management
The main assumption in our work is to reuse a proven data 
management system designed for manufacturing industry to the 
management of data from neuroimaging studies at every stage, 
ensuring full provenance.

Regarding data management, the manufacturing industry is 
confronted with the same issues as neuroimaging: heterogeneous 

product data must be tracked throughout the product lifecycle—
product requirement, design, manufacturing, maintenance, and 
end of life. Products are made from the collaboration of multi-
disciplinary teams, not always working on the same site. PLM 
system has been designed since the 1990s to answer the needs of 
the manufacturing industry and enable the storage, versioning, 
and collaborative work on computer-aided design (CAD) data, 
with a strong focus on traceability. The aim of PLM systems could 
be summarized by providing the right data at the right person 
and at the right moment: they facilitate collaborative and concur-
rent work, in addition to multi-sites data sharing, answering the 
imperative need to exchange data seamlessly between various 
geographic locations within a worldwide company (Kiritsis et al., 
2003; Terzi et al., 2010).

Although the design of PLM software is not oriented toward 
neuroimaging data, or any kind of scientific data in particular, 
their inherent properties make them a very compelling IT 
solution for scientific laboratories, and neuroimaging labs in 
particular (Allanic et al., 2017).

outlines of the paper
We present in the paper the BIOMedical Imaging SemanTic data 
management (BIOMIST) platform, whose aim is to respond to 
the need of data management, sharing, reuse, and reproducibility 
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of the neuroimaging domain by ensuring automated provenance 
tracking throughout the lifecycle of a study and access to analysis 
software in a unique environment.

The targets of the BIOMIST platform are new neuroimaging 
studies from small (100 subjects) to medium (5,000 subjects) 
cohort, with multimodal, longitudinal, and multi-sources acqui-
sitions requiring complex pipelines, quality controls, and efficient 
access management.

Section “Design: The BIOMIST Platform” presents the 
BIOMIST platform and the integration of its components. The 
technical details of the implementation of the platform are devel-
oped in Section “Implementation.” The benefits of the platform 
were tested on the BIL&GIN dataset and the I-Share study: 
results are presented in Section “Application.” This paper closes 
with a discussion and leads for future work toward the BIOMIST 
platform in Section “Discussion.”

DeSIgn: The BIoMIST plATFoRM

This section presents the BIOMIST platform, whose purpose is to 
manage heterogeneous data of neuroimaging cohorts, from study 
specifications to published results, in order to ensure data repro-
ducibility, sharing, and reuse. Section “Design Method” explains 
our design method, and then sections “Key Principles of PLM,” 
“The BMI-LM Data Model to Manage Data and Provenance,” 
“Mapping Strategy for Data Import,” “The DIMP Method for 
Integration of Processing Pipelines,” and “Querying Strategies” 
develop the characteristics of each component of the platform: 
the core PLM system is customized by the BioMedical Imaging—
Lifecycle Management (BMI-LM) data model, data are imported 
into the PLM thanks to mapping strategies and processed with 
the data integrated management and processing (DIMP) method, 
to end with, users query data managed by the PLM through two 
interfaces, graphical and Open Database Connectivity (ODBC). 
Figure 2 shows the integration of the components of the BIOMIST 
platform.

Design Method
To understand the concerns of daily neuroimaging research 
work and the associated data management issues, we studied 
the literature and interviewed the staff of a representative neu-
roimaging laboratory (GIN, from the University of Bordeaux, 
France). Ongoing projects at this laboratory rely on structural 
and functional MRI acquisitions performed over hundreds of 
participants, as well as smaller scale task-based functional MRI 
projects. Over the 2006–2009 period, this group designed its own 
relational database (GINdb, based on SQL technology) in order to 
manage experiments: processing data, subject data and paths to 
files stored on disks of their IT system (Joliot et al., 2009).

Eleven members of the research group (eight tenured research-
ers, two research engineers, and one post doc) were interviewed, 
by small groups of two or three people to avoid group effects. They 
were asked to express their needs: what was missing in GINdb 
and what would be their ideal system. They mainly highlighted 
that the data model should feel natural for the users, especially 
regarding the queries, and that it should be flexible enough to 
allow future changes. Besides, they would like to launch analyses 

batch directly from the database and to label data with one or 
several statuses, such as “valid exam” or “checked data.”

From these interviews and the review of the literature, four 
main axes are defined:

 1. Provenance: manages all the data generated during a study, 
from its specifications to published results, and track the 
associated provenance to be able to share and reuse data opti-
mally. The PROVenance Data Model (PROV-DM) standard is 
developed by the World Wide Web (W3) consortium to help 
exchanging data, a main objective is to comply with it.

 2. Heterogeneity: accepts all data formats and manage the con-
cepts of the disciplines involved in a neuroimaging study.

 3. Integration: allows automated data import, processing launch, 
data analysis, and visualization from the platform.

 4. Flexibility: allows data model changes without consequences 
on existing data to handle new data format, as well as semantic 
changes, evolution of acquisition protocols.

To validate the resulting BIOMIST platform, we tested it with 
two use cases from the GIN: (1) the 300 subjects BIL&GIN and (2) 
the I-Share study. Results are presented in Section “Application.”

Key principles of plM
PLM systems supports multisite sharing and collaborative 
work, by managing product data throughout its lifecycle along 
with advanced access management features that guarantee data 
security and with file and database replication mechanisms that 
allows multisite collaboration even through low latency or low-
bandwidth networks.

Product Lifecycle Management systems do not only manage 
data (i.e., documents/files + metadata) but concepts, thanks to 
its object-oriented data model. Concepts at every phase of the 
product lifecycle are represented by objects instantiated as items 
whose versions are tracked. Items can be classified with a fully 
flexible hierarchy of concepts and vocabulary. Any kind of file 
types and formats are allowed and are stored in objects called 
datasets. Every event on an item is tracked: it is possible to know 
who created, modified, updated or validated it, when and why. 
Automated or manual workflows can be launched by users from 
the system; these workflows can be customized and can be used to 
implement a process with validation from several users (e.g., vali-
dating an acquired dataset) and to perform automated actions on 
items or datasets (create new version, add status, update metadata, 
comment, classify, etc.). A typical application in manufacturing 
industry would be a workflow that follows validations of a design 
change in a product. Query facilities complete the features of 
PLM systems: queries can be customized, both to retrieve items 
and datasets and to generate reports. Data can be accessed from 
the web and visited directly into the PLM interface, as soon as a 
suitable visualization software is integrated, or downloaded on 
users’ computer, automatically opened in the right software. For 
managing large set of data, the PLM infrastructure includes vari-
ous replication strategies that enables access to sites that may have 
low latencies or low-bandwidth network connections.

Data security is ensured in PLM systems through their 
infrastructure and an advanced module for access management. 

http://www.frontiersin.org/ICT/
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The infrastructure of PLM systems is composed of four tiers 
(resource, enterprise, web application, and client tiers) that are 
presented in Figure 3. In resource tier, the SQL database man-
ages data instances and metadata, and one or several volumes 
contain data files that may be encrypted according to users’ needs. 
This organization implies that data (files and instances) can only 
be accessed through a client who ensures data consistency. An 
account is required to connect to the client: users are associated 
to roles and belong to group and projects, which determine their 
level access to the data stored in the PLM system (none, read, 
write, export, promotion, validation, etc.).

The compatibility of PLM features with the four axes required 
for neuroimaging data management—that were highlighted in 
Section “Design Method”—is presented in Table 1. The basic fea-
tures of PLM systems allow (1) to fulfill context and traceability of 
the provenance axis, (2) to manage every data types and formats, 
which fulfill part of the heterogeneity axis, and (3) the integration 
of visualization software and the possibility to connect to external 
software, web services, etc. These features do not cover all parts 
of the perimeter of the four axes. Therefore, we developed a data 
model to complete provenance, heterogeneity, and flexibility 
axes, as the data model of a PLM system can be easily modified.

The BMI-lM Data Model to Manage Data 
and provenance
The stages of a neuroimaging study can be modeled as a cycle that 
constitutes the lifecycle of a research study, from study specifica-
tions to published results (see Figure 1).

First, the BMI-LM developed for the BIOMIST platform 
is presented from its two aspects: generic objects (see Generic 
Objects to Manage Heterogeneity) and specific classes (see 
Specific Classes to Bring Flexibility). To end with, the BMI-LM 
data model is compared with PROV-DM specifications (see 
Conceptual Equivalence Between the BMI-LM Data Model and 
the PROV-DM Standard).

Generic Objects to Manage Heterogeneity
The BMI-LM data model is composed of generic objects repre-
senting concepts related to a study. The 17 generic concepts (see 
Table 2 below) are divided into three categories:

 1. Definition objects: they described how result objects were 
obtained and can be reused from one study to another. They 
are part of the provenance strategy.

 2. Result objects: they store data of a study, raw and derived, in 
shape of datasets (files) and metadata.

 3. Ambivalent objects: depending on the context, these objects 
can be used as a definition object or a result object. They are 
part of the provenance strategy.

The generic objects are presented in Table 3 according to their 
category and their stage in the study lifecycle. Figure 4 presents 
a UML model of BMI-LM with the relationships between objects 
and related cardinalities.

Specific Classes to Bring Flexibility
To enable flexibility in the semantic definition of the objects, 
“classes” may be associated with instances of the data model. A 
class in the context of the PLM system is a name (hopefully with 
a meaning for the end user: names were issued from ontologies 
of the application domain, see Section “Domain Classification for 
Neuroimaging”). A class has typed attributes that allows values to 
be associated with items. All the classes are organized in a stand-
ard inheritance hierarchy tree and attributes are inherited. Every 
item of the BMI-LM data model can be classified, and the root 
structure of the classification is organized by object categories: 
definition branch, result branch, and ambivalent branch, which are 
themselves divided into subcategories. The classes play the role 
of subtypes of objects; for example, an exam result object can be 
classified as an imaging, psychology, or genetic examination.

The different domains involved in neuroimaging studies 
do not use the same vocabularies, as well as acquisitions and 
processing tools. Such information is stored in the attributes of 
the classes, so a classification is domain dependent. The highest 
level of the classification (the main categories) will be used in 
every deployment of BMI-LM, the lower-level branches may be 
deployed where needed; and new classes/attributes may be easily 
created.

Conceptual Equivalence between the BMI-LM Data 
Model and the PROV-DM Standard
A representation of provenance is proposed by the World Wide 
Web (W3) consortium, who develop standards to support the 
expansion of the web. According to the PROV-DM standard, the 
provenance is defined “as a record that describes people, institu-
tions, entities and activities involved in producing a piece of data 
or thing in the world” (Moreau and Missier, 2013). An entity can 
be physical, numeric, or conceptual. An activity occurs on a time 
period and act with or on one or many entities. This includes 
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consumption, processing, transformation, modification, using, 
or generation of entities. An agent is responsible in the execution 
of an activity. Entities, activities, and agents are modeled by seven 
relationships, which are given in Figure 5A.

Figure  5B shows how the BMI-LM data model and the 
PROV-DM standard are equivalent in a conceptual way: result 
objects are entities, definition objects are activities and some PLM 
features (users, workflows) are agents.

Mapping Strategy for Data Import
The strategy for data import is essential to ensure that the 
BIOMIST platform will be integrated as a study data manage-
ment tool. Import processes must stay flexible and easy enough 
for any data format or acquisition process. In order to set up 
automatically the provenance, a mapping between the data to 
import and the data model of the platform must be efficient. First, 
we present two key principles of our mapping strategy to import 

http://www.frontiersin.org/ICT/
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TABle 3 | generic objects of the BioMedical Imaging—lifecycle 
Management data model according to study stages and categories.

Study stages Definition objects Result objects Ambivalent 
objects

Specification Study

Raw data Subject Study subject
Exam definition Exam result
Acquisition definition Acquisition result
Data unit definition Data unit result
Acquisition device

Derived data Processing definition Processing result Reference data
Processing unit definition Processing unit 

result
Subject group

Processing parameters
Software tool

Published results Bibliography 
reference

TABle 2 | generic objects of the BioMedical Imaging—lifecycle 
Management (BMI-lM) data model.

generic object Definition

Acquisition result Indivisible period of data acquisition
Acquisition definition Description of an acquisition protocol
Acquisition device Description of the device used during an examination
Bibliographical reference Published paper
Data unit result Single acquired piece of data
Data unit definition Definition of a piece of data
Exam result Continuous line of acquisitions
Exam definition Examination protocol
Processing result Instance of a processing chain
Processing definition Definition of a processing chain
Processing unit result Derived data
Processing unit definition Definition of a processing to compute derived data
Processing parameters Set of parameters of a processing unit
Reference data Pattern computed from derived data
Software tool Description of a piece of software used to compute 

derived data
Study Research study
Study subject Subject in the context of a study
Subject Unique subject in the database
Subject group Group of study subjects

TABle 1 | Features of product lifecycle Management (plM) systems and the BioMedical Imaging—lifecycle Management (BMI-lM) data model against 
the four axes required for the management of neuroimaging studies.

provenance heterogeneity Integration Flexibility

PLM Context (PROV:Agents) Data types Visualization software
Traceability (PROV:Entity) Formats

BMI-LM Identification (PROV:Activity) Multidisciplinary Evolution of research protocols
Integration of new disciplines

The compliance with PROVenance Data Model standard is indicated for the provenance axis.
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data, and then, this strategy is exemplified for the import of form 
and DICOM data.

Key Mapping Principles
To import data with complete provenance, its context must be 
known—at least the project and the subject it belongs to, its future 

owner—and its definition. For the BIOMIST platform, it means 
that the PLM system must know what kind of item to create 
(result item), how to classify it, and how to link it with existing 
items in the database (definition items and other result items).

Our strategy is to define an XML structure to map imported 
data and its associated metadata to an item of the data model, a 
class associated with the item and class attributes. An example of 
XML mapping is given as Part S1 in Supplementary Material: a 
DICOM series is imported as a data unit in an existing exam and 
in a new acquisition.

The XML mapping file is associated to definition items (e.g., 
an exam definition item since this particular mapping is specific 
to this examination protocol), with two objectives in mind: to 
understand how the data was imported and to reuse the mapping 
for another study.

Form Data Import
A form is a set of simply typed data (set of answers, tracings, 
parameters, etc.) that needs to be acquired for every subject in a 
study. For instance, it may be the result of a behavioral survey, or 
an electronic case report form. The definition of the form is an 
Acquisition Definition item, and the questions are defined by Data 
Unit Definition items. Therefore, the result of the import of a form 
for a subject is an Acquisition Result item with all the related Data 
Unit Result (the answer by a subject to a question).

DICOM Import
Digital Imaging and COmmunications in Medicine (DICOM) is 
a worldwide used protocol for exchanging data between imag-
ing modalities, archival systems, and visualization workstations 
(Mildenberger et al., 2002). A DICOM instance usually contains 
images to which is associated a series of attributes (tags), selected 
from a dictionary described in part three of DICOM standard 
specifications. The standard tags that are used by imaging devices 
to store modality-specific imaging parameters, patient, institu-
tion, and device information, as well as date and time informa-
tion. Beside the standard fields, the DICOM standard allows for 
proprietary fields in dedicated parts of the DICOM header. A 
same DICOM tag will not have the same meaning depending on 
the vendor, and vendor-specific dictionaries are required. Our 
mapping strategy allows tackling this issue as the definition of 
import mapping from DICOM attributes dictionary to BIOMIST 
classification attributes dictionary can be adjusted for every exam 
definition if needed.

A basic mapping between equivalent concepts of the DICOM 
and the BMI-LM data model is given in Table  4. The main 
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difficulty we face is that there is no equivalent for the definition 
objects in the DICOM standard: if a same scan generates five 
DICOM different images series, we get five seemingly unrelated 
DICOM series. In order to tell the PLM system which series 
derive from which acquisition, we first have to group the DICOM 
series derived from a single scan, based on the contents of several 
different DICOM attributes.

The DIMp Method for Integration of 
processing pipelines
Studies in neuroimaging require complex pipelines for the 
processing of images: registration, segmentation, temporal or 
spatial filtering, etc. The pipelines may include many different 
steps and algorithms, parameters, and software that are regularly 

evolving as research progresses. Their structure varies according 
to the image acquisition techniques employed and the nature of 
the endpoints that are needed to test the studies hypotheses. The 
neuroimaging community has developed elaborate pipeline man-
agement systems, such as LONI pipeline (Rex et al., 2003; Dinov 
et al., 2010) or Nipype (Gorgolewski et al., 2011). With such sys-
tems, Command Line Interfaces tools are wrapped by structures 
describing each of their inputs, options flags and outputs, and 
storing the name of the executable, enabling the software to build 
proper command lines. These structures can be linked together 
into a processing graph with a node representing a processing 
unit and an edge representing an input and output relationships. 
The graph is then analyzed to optimize the parallelization of jobs 
on grid computers.
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Some neuroimaging software suites, such as XNAT, come 
with an integrated pipeline management system, by allowing 
users to launch processing pipelines directly from the database. 
In this case, imaging sessions are launched one by one. When 
processing data in large batches, it is more convenient to push 
and pull the data in and out of the database (Schwartz et  al., 
2012). However, if the pipelines are launched externally, the 
inputs and parameters become more difficult to track. In order 
to ensure research reproducibility, traceability of statistical mod-
els used for prediction, data sharing with peers and data reuse, 
the provenance information of the processing pipelines must 
be properly managed. Because of the complexity of pipelines, 
provenance information has to be generated automatically by the 
pipeline management system and then stored in the database. We 
developed the DIMP method with these two objectives in mind: 
ensuring full provenance and facilitating the launch of processing 
pipelines by users.

Specifying the Inputs to an Image Processing 
Pipeline
To launch a pipeline, users must select: (1) the items to process, 
(2) a processing pipeline to apply, and (3) parameter settings. 
The multiplicity of the parameters involved in image processing 
in neuroimaging studies create a major issue: all the parameters 
involved in the generation of the derived data need to be tracked 
to ensure the reproducibility of results, both on same data and on 
new data. Furthermore, in longitudinal imaging studies, subjects 
undergo imaging sessions regularly over a long period of time (up 
to several years), and exactly the same processing chains must be 
applied so that the data can be compared. Users may also want 
to store concurrent versions of the derived data, differing over 
a few processing parameters or processing steps to understand 
their impact on the results.

To implement this functionality, one needs to add a generic 
object to the BMI-LM data model: the WorkFlow Input object. 
Its role is to gather all the definition items needed to launch 
a processing pipeline: the processing pipeline itself (object: 
Processing Definition), processing parameters for every step 
(object: Processing Parameters), and the definitions of input 
data (objects: Data Unit Definition for raw data, Processing Unit 
Definition for derived data). These last data are crucial: they allow 
the PLM system to query the right data, for the subjects selected 
by the user. Figure 6 shows how using a Workflow Input object is 
particularly valuable to reproduce same processing chain several 
times on new data (acquisitions on the fly, longitudinal studies, 
new studies).

Stages of Integrated Processing in a PLM System
The main objective of the DIMP method is to ensure quality prov-
enance of derived data by reducing manual operations from users: 
data resulting from processing chains are automatically linked to 
input data, definition of processing chain, and parameters. The 
DIMP method is defined by the following stages:

Initialization

 1. (User) build or identify a workflow input
 2. (User) launch integrated processing workflow

 ⚬ Select workflow input
 ⚬ Select subjects

Workflow execution

 3. (PLM system) query input data
 4. (PLM system) export in working folder

 ⚬ Input data
 ⚬ Definition of the pipeline
 ⚬ Parameters of the pipeline and processing nodes (proces-

sing parameters items)
 5. (Computer cluster) launch the pipeline script stored in the 

definition object representing the pipeline. This script param-
eterizes and executes processing operations.

Traceability operations

 6. (PLM system) upload resulting data
 ⚬ Create corresponding result objects
 ⚬ Link result objects to its input data (raw or derived) and 

definition objects (pipeline structure and parameters)
 7. (PLM system) sends an email notification: data are ready

Integration of Existing Neuroimaging Pipeline 
Engines
Processing pipelines are executed outside of the PLM system, 
typically on a computer cluster. Existing neuroimaging workflow 
management systems can therefore be used to execute the pipe-
lines on any software libraries that can be launched in command 
lines. When manual processing is needed (such as expert deline-
ation of brain structure), it is easy to checkout any dataset, modify 
it or create a new dataset, and send the results back to the PLM. 
Indeed, this corresponds to how CAD engineers work.

To facilitate user’s work, the definition objects of the process-
ing pipeline can be generated through software tools, which 
extract the relevant information from pipeline specification files 
and facilitate the specification derived data annotations.

Querying Strategies
Efficiently storing data and managing provenance is not sufficient 
to ensure that data can be reused: the platform also should enable 
easy data querying. One major issue preventing from data access 
is user’s knowledge and understanding of the data model: as prov-
enance is complex so are the queries. Therefore, getting to know 
the different concepts is time-consuming to occasional users. A 
query is defined both by the search criteria and the formatting of 
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the retrieved data. The BIOMIST platform provides researchers 
with an intuitive way to retrieve data through a graphical interface 
(see Graphical Querying Interface). With this interface, queries 
are designed using concepts and relationships. Consolidated data 
can also be obtained through ODBC connectivity (see Report 
Building).

Graphical Querying Interface
Even if the neuroimaging community shares many standards, 
each research group—not to say each researcher—uses its own 
vocabulary to label its data. Besides, neuroimaging is a multidis-
ciplinary domain and each discipline has its own concepts and 
ways of using data. In this context, it is difficult for researchers 
to query an unknown or an occasionally accessed database, 
because they are neither familiar with the data model nor with 
the semantics behind it (Pham et  al., 2016). In the BIOMIST 
platform, to facilitate the query definition process of various 
kinds of users—occasional/regular, experienced/inexperienced, 
or the ones who come from different disciplines—we propose a 
graphical and user-oriented query approach.

For the “user-oriented” aspect, the proposed query approach 
is composed of three levels of abstraction—lowest, intermediate, 
and highest corresponding with three kinds of users: technical 
users, regular users, and occasional or non-technical, inexpe-
rienced users, respectively. At the lowest level, technical users, 
who have a good understanding of the way data structured, can 
directly select business objects in the data model to create a query. 
For instance, the Acquisition Result object is used to query all 
acquired data during the data acquisition process.

At the intermediate level, regular users, who manipulate fre-
quently with data and have a certain understanding about them, 
are provided with a more abstract hierarchy of data classes. A 
class can have attributes and is named accordingly to the data it 

represent. Regular users could easily find their interesting data 
from one or many classes. For example, in the “Imaging Result” 
class, users could find all acquired imaging data like “EEG,” 
“MEG,” “MR,” and “PET” data. Some relations between classes 
can be defined to help users make more complex queries on 
multiple kinds of data.

The highest level is dedicated to inexperienced and non-
technical users who have no knowledge about the data model 
and classification. We use ontologies and its graphical representa-
tion to facilitate the query making process of these users. The 
ontology is defined as “an explicit, formal specialization of a shared 
conceptualization” (Studer et al., 1998) and can be used to provide 
an explicit representation of domain knowledge and semantic 
relations between data in the database that is easily understood by 
inexperienced users. Without needing to understand the underly-
ing data structure, inexperienced users express their queries with 
ontological concepts. For instance, the “imaging-acquisition-
data” concept from OntoNeuroLog ontology (Gibaud et al., 2011) 
is used to query all acquired imaging data. The query formulated 
with ontologies is then translated into a formal query over data 
sources by using a set of mappings. Each mapping is an associa-
tion between an ontological concept and the database schema. 
The set of defined mappings is then exported and implemented in 
the query transformation module of the PLM system.

For the “visual” aspect, playing the role of an external cogni-
tive support to understand complexity (Keller and Tergan, 2005), 
graphical visualizations are used at the three levels to facilitate 
users’ query making process. All objects of the data model, classes 
of the classification, or ontological concepts are represented in 
a browsing tree while all eventual relationships between them 
(objects versus objects, etc.) are represented in an intuitive, 
interactive graphical zone to help users quickly and easily define 
their queries.
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For example, at the highest level, a user starts by navigating 
through concept tree to select an interesting concept. When 
a concept is selected, the graph highlights all its relationships 
with the other concepts; user can select one of these concepts 
and add it into the query in order to make a query condition. 
This process is repeated until the query is defined completely. 
During the making process, the query formulated by the user 
is graphically represented to provide an illustrated visualiza-
tion of all selected concepts and query conditions. At the end, 
this query is translated into one executable query by a query 
processor. The query results are displayed on the same interface, 
under the shape of a graph (nodes for resulting objects, edges 
for relationships).

Report Building
In neuroimaging, more and more studies include meta-analysis. 
For example, both supervised and unsupervised classification 
algorithms are typically used for discovering correlation between 
biomarkers extracted from brain images and behavioral observa-
tions or extract hidden structures (Abraham et  al., 2014). The 
building of such data files prepared for analysis is quite fastidious 
because of the multiple sources of data. Furthermore, beside 
classification, deep learning algorithms (LeCun et al., 2015) are 
raising more and more interest in the neuroimaging research 
community since they begin to show a real potential on analyzing 
flexible and high-dimensional data, which is their main advan-
tage. To exploit these heterogeneous data in a machine learning 
context, we designed a data mapping that consists of exporting 
neuroimaging data classification from the PLM, to a database 
server that most statistical analysis softwares should be able 
to address. The connexion between the PLM database and the 
database structured for statistical analyses is enabled with ODBC, 
a standard API (Signore et al., 1995).

IMpleMenTATIon

plM choice and customization
The BMI-LM data model has been implemented in the PLM 
software Teamcenter (v10.6) developed by Siemens Industries 
Software, which has a commercial license. Information about 
Teamcenter architecture and technical details can be found in 
Teamcenter documentation: Teamcenter system administration 
(Siemens PLM Software, 2015b) and Teamcenter access manager 
(Siemens PLM Software, 2015a). Besides, Siemens PLM Software 
published a white paper on security management in Teamcenter 
(Siemens PLM Software, 2011). CIMdata, a leading independent 
global consulting and research authority toward PLM, wrote 
a white paper focused on Teamcenter as a unified platform 
that describes its functionalities (CIMdata, 2010). A type of 
Teamcenter objet is created for each object of the BMI-LM model, 
so that the four stages of a neuroimaging study are supported. 
Data are attached to object instances through dataset objects. The 
object instances are linked through typed relationships as defined 
in the BMI-LM data model. Teamcenter proposes a classification 
feature, which is often used in manufacturing industry to classify 
products in families.

Teamcenter PLM system is easily customizable to fit users’ 
needs: data model, data formats, workflows, access management, 
queries, integrated visualization and analysis tools, and interface. 
These make Teamcenter a backbone that can be adapted to the 
specific features of new domains (processes, formats, tools, etc.).

The organization feature of Teamcenter is used to model users’ 
groups and roles, which are required to design access rules to 
the data. Four roles are defined to access data inside of a study: 
principal investigator (can view all data of the project and edit all 
instances), data administrator (can view some data of project, can 
create and edit instances of objects, and can manage relationships 
between instances), editor (can view some data of the project, can 
edit instances of objects), and guest (can view some data of the 
project). The amount of data viewed and editable for each role 
can be defined.

Three data vaults that store files are set up with different 
backup strategies, according to data value:

 – Raw data: this vault is the most valuable, as it contains all 
acquisition and study data. During acquisition or import 
campaigns, daily backup.

 – Derived data: valuable too, but as these data can be computed 
again thanks to provenance storage and because the volume 
may be very big, the backup is occasional.

 – Definition data: this vault is the lightest, as it contains only 
the data from definition objects. The backup strategy is 
high, as these data are crucial. Domain classification for 
neuroimaging.

Domain classification for neuroimaging
The definition of a classification requires a substantial investment 
in time and expertise. Some ontologies have already been designed 
and used by the neuroscience and neuroimaging communi-
ties (Temal et  al., 2008). Therefore, defining the neuroimaging 
classification on existing organized knowledge seems relevant. 
Besides, the use of existing ontologies allows future data sharing 
between the PLM system and existing neuroimaging databases. 
Ontologies can be used as a mediation model between the data 
models of two databases. Aside of ontologies, standardized and 
partly aligned lexicons also exist, such as NeuroLex1 and DICOM 
that can provide class attributes. In a PLM system, class attributes 
are stored in a dictionary. Classes are stored in a hierarchical tree 
and can receive any number of attributes from the dictionary. 
We imported classes from OntoNeuroLog (Gibaud et al., 2011) 
ontologies for the classification branches that deal with image 
acquisition (image examination, acquisition, and data unit 
definitions) and image processing (processing unit definitions, 
imaging datasets). We based the subject-related branch of the 
classification on QIBO (Buckler et  al., 2013). MRI parameter 
attributes (parameters such as the echo time) were imported from 
the DICOM lexicon (Clunie, 2000). Currently, we use attributes 
in the experimental psychology classes to store labels from the 
cognitive atlas (Poldrack et  al., 2011) or cognitive paradigm 

1 http://neurolex.org.
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(Turner and Laird, 2012) ontologies, as those seemed too large to 
be imported fully in the classification.

The classification that is used in the BIOMIST platform in its 
current state is available as Part S2 in Supplementary Material, in a 
mindmap format that can be viewed with the Freemind software.2

Data and Software Integration
Data Import
We developed a DICOM/Teamcenter interface that relies on the 
dcm4che java DICOM library. This way, the PLM server can act as 
a C-STORE service class provider (a DICOM archive), as well as a 
query/retrieve service class provider. It is therefore able to interact 
with existing PACS instances and DICOM viewing workstations. 
As XNAT, we rely on an intermediary gateway to comply with the 
defined PLM access management policies during query/retrieve 
operations. We also use web services to import other types of data 
(i.e., non-imaging data): for instance, to import the resting-state 
debriefing questionnaires, a web service receives the data from a 
LimeSurvey3 server and imports it into the PLM database.

Data Processing
As neuroimaging pipeline engines are now very mature, there 
was no need to develop a new one for the BIOMIST project. 
To implement the DIMP method, we chose the Nipype4 
(Gorgolewski et al., 2011) pipeline engine, because it is simple to 
extend, flexible (written in Python), able to deal with many grid 
schedulers. Since this software originates from the neuroimaging 
community, it has a very rich catalog of interfaces for neuro-
imaging Command Line Interfaces tools [AFNI (Cox, 1996), 
ANTS (Klein et  al., 2009), SPM (Ashburner, 2012), Freesurfer 
(Fischl, 2012), FSL (Jenkinson et al., 2012), etc.]. When running 
a job on a computer cluster, there are two different aspects to 
take into account: the command line to be executed (what are 
the inputs and options?) and the way the scheduler is going to 
handle it (how much memory, time or CPUs do we need?). The 
former is the domain of specific command line wrappers (i.e., the 
Nipype interfaces); the latter is the domain of generic processing 
node properties. We use the Teamcenter classification system 
to account for both. Accordingly, we developed python tools to 
import the existing Nipype interfaces, which describe the input 
and outputs of each command line tool, within the PLM clas-
sification as processing parameter classes. Based on these tools, 
we also developed tools to import entire Nipype workflows in 
the PLM (processing definition, processing unit definitions, and 
processing parameters items) and build the associated workflow 
input items.

Data Querying
The querying interface was implemented as a Javascript web 
client that connect to Teamcenter through a web service. The 
interface is composed of several windows, displaying informa-
tion to build the query: the domain ontology, the relationships, 

2 http://freemind.sourceforge.net.
3 http://limesurvey.org.
4 http://nipy.org.

the related classification, the criteria of the query chosen so far, 
and the query path itself. A view of the web querying interface is 
presented in Figure 7.

For the implementation of consolidated data files for sta-
tistical analysis, we took advantage of the PLMXQuery tool 
that is an approach for querying and exporting data from PLM 
(Sriti and Boutinaud, 2012). The concept of this approach is 
to make the PLM content seen as a XML document, in order 
to benefit from XML-related technologies, in particular XPath 
and XQuery, which are standard languages working on XML 
structures. XQuery scripts are used to browse PLM content 
(items, classification data, dataset contents, etc.) and to con-
vert that data to any desired format. It can be used to create or 
update anything from a Hive table to a CSV file. It is currently 
used nightly to update data tables containing information 
about ongoing MRI acquisition that are accessed by researchers 
through ODBC connectivity for analysis with the JMP statisti-
cal software.

Example of Workflow: Raw Data Quality Check
Teamcenter PLM system allows creating easily workflows of 
operations. We present an example of workflow that is used to 
control the quality of new imaging raw data. Figure 8 shows the 
steps of the workflow:

 1. Start of workflow: the workflow is initiated with raw data to 
control.

 2. Automated quality control of raw data imaging parameters 
against those stored in the definition items.

 3. A temporary status is assigned depending on control results.
 4. The data manager (technical expert) is notified by email that 

there are new imaging data to control.
 5. The data manager controls new imaging data.
 6. The final status is set on new imaging data. If this status is 

“validated,” then the raw data would be involved in new 
workflows, such as processing workflows.

Speed of Access and Computing
Teamcenter PLM system is an efficient system to query and 
retrieve managed data. Data relationships are browsed as a 
graph and therefore query complexity is equal to graph browsing 
complexity. During the DIMP method, input data are queried 
and retrieved on computing grid and output data are imported 
when computation is done. Speed of data retrieving, as well as 
the speed of data import, is dependent of computing grid network 
performances. Besides, speed of data computing is dependent of 
computing grid performances and analysis tools chosen.

licensing of the BIoMIST platform
The conceptual data model is published and freely available to 
the community, as well as methods and functioning principles. 
The core of the BIOMIST platform is Teamcenter PLM system, 
which has a commercial license and academic licenses that are 
available for education and research purposes. Any analysis or 
visualization tool can be integrated with Teamcenter, whatever 
their type of license. We plan to release the TeamCenter busi-
ness model files (which are meant for the TeamCenter Business 
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Model IDE) under a GPLv3 license, using a web-based version 
control management service. This will still require that users 
have access to a TeamCenter license, however. We hope to have 
provided enough details in the article so that the model as 
described here can also be re-implemented using open-source 
software.

We plan to open in the middle of 2017 the platform to 
researchers through collaborative scientific projects with the 
GIN. We plan to open in the middle of 2017 the platform to 
researchers through collaborative scientific projects with the 
GIN. For those projects, researchers of both groups will decide 
the sharing of their respective data in relation with the goals of 
the collaborative study. For projects that are not in the field of 
scientific expertise of GIN, Ginesis-lab (joint venture project 

between GIN and Cadesis) intents to launch another system to 
give researchers an access to the functionalities of the platform. 
Researcher groups interested are welcome to contact the cor-
responding author.

ApplIcATIon

Study of Brain network connectivity on 
the BIl&gIn Dataset
The GIN first Brain Imaging Laterality (BIL&GIN1) dataset is 
composed of 300 subjects, balanced by gender and handedness, 
and was acquired between 2009 and 2011 (Mazoyer et al., 2016). 
MRI resting-state images are segmented with a 384-region atlas 
and connectivity by pair of regions is measured.
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The use case tested on the BIOMIST platform with the 
BIL&GIN dataset stands in six steps (illustrated in Figure 9):

 1. Acquisition of raw data: the BIL&GIN dataset is imported 
from the GINdb database of the GIN laboratory (Mazoyer 
et al., 2016).

 2. Processing of individual data: a pipeline that computes func-
tional connectivity between regions of the brain is automati-
cally launched with the DIMP workflow.

 3. Creation of analysis groups: groups of subjects are queried 
according to research assumption based on subjects’ char-
acteristics. The chosen criteria are: age, gender, and declared 
handedness, stated in ranges.

 4. Processing of group data: a pipeline computes median func-
tional connectivity for each group, creates from these data a 
MDG and computes a constraint layout to help the visualiza-
tion analysis. All these processing operations are performed 
with the DIMP workflow.

 5. Visual browsing of complex graphs: the resulting MDG is 
analyzed in an integrated visual browser.

 6. Publication of results: the paper presenting the results of the 
MDG analysis would be written with a versioning history 
and linked to the data used for the analysis, which enables the 
replication of the procedures involved.

The BIL&GIN dataset, stored in a SQL-based database, was 
imported into the BIOMIST platform through a scripts that 
converted SQL tables into PLMXML files readable by Teamcenter 
PLM. Figure 10 shows raw data of a subject from the BIL&GIN 
dataset in the BIOMIST platform: the subject has two exams, one 
fMRI resting-state exam with three acquisitions (resting-state, 
anatomical, debriefing form) and one exam about subject’s indi-
vidual characteristics.

Imaging raw data were processed with the DIMP method, 
with four workflows: (1) preprocessing workflow (registra-
tion, segmentation), (2) workflow to compute individual 
adjacency matrices of functional connectivity, (3) workflow 
to build group adjacency matrices, and (4) workflow to 
compute and analyze dynamic graphs from group adjacency 
matrices. Figure  11 shows how the final dynamic graph is 
obtained from individual adjacency matrices of functional 
connectivity.

The study of resting-state networks with MDGs on the 
BIL&GIN dataset is currently under process.

ongoing cohort Acquisition campaign
The MRI-Share study is a subpart of the i-Share epidemiological 
study on students’ health.5 As many as 2,000 students are expected 
to undergo an MRI protocol including structural, diffusion, and 
multiband resting-state acquisitions on a recent 3-T scanner.

The MRI-Share study is particularly suited to test the 
BIOMIST platform, as it is a multidisciplinary study: resting-state 
fMRI acquisitions are followed by a debriefing questionnaire 
(Delamillieure et  al., 2010) and other psychological data and 
genetics acquisitions. Because of the high number of subjects, 
batch data processing, as implemented with the DIMP method, 
is mandatory.

The acquisition campaign started in November 2015. Up to 10 
subjects participate every day in the study from Tuesday to Friday, 
every week. At the time of writing, 1,200 subjects have partici-
pated. The import of a typical MRI-Share DICOM study (about 
2.5 Go of data and 3,300 instances) into the BIOMIST database 
takes an average of 7 min and 56 s, with a SD of 221.7 s (3 min and 
41.7 s). The daily acquisitions are imported every night, through 
an intermediary PACS system (dcm4chee) and a web service.

DIScUSSIon

The BIOMIST platform is designed to manage, share, and reuse 
data from neuroimaging studies. Provenance is tracked through-
out the four stages of the lifecycle of a study, whatever data type 
or format, thanks to:

 – PLM systems that naturally enable collaborative work and 
lifecycle management in a secure environment.

 – The BMI-LM data model that supplements PLM features by 
introducing the concepts of a neuroimaging study and by 
allowing future semantic changes and evolutions of research 
practices. The data model enables the traceability of the data 
in ways similar to PROV-DM standard from W3C.

 – Mapping strategies that allow automated data import, such as 
DICOM files or forms.

 – The DIMP method that allows to launch processing pipelines 
and to retrieve automatically the resulting data; existing work-
flow engines and processing software can be integrated.

5 http://www.i-share.fr/.
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FIgURe 10 | Step 1 of the use case with the BIoMIST platform. (A) Raw data of a subject identified t0444 from the BIL&GIN dataset in Teamcenter client. NifTi 
anatomical image (B) and resting-state debriefing form (c) are displayed.

FIgURe 9 | The six steps of the use case on the BIl&gIn dataset.

15

Allanic et al. BIOMIST: A Neuroimaging Platform

Frontiers in ICT | www.frontiersin.org January 2017 | Volume 3 | Article 35

 – A graphical query-building interface accessible to occasional 
users and report building to perform statistical analyses.

 – Easy integration of visualization and processing tools.

The BIOMIST platform is currently used for the management 
of the BIL&GIN dataset (300 participants) and the ongoing lon-
gitudinal MRI-Share cohort acquisition of 2,000 participants, and 
its target is new neuroimaging studies from small (100 subjects) 

to medium (5,000 subjects) cohort, with multimodal, longitudi-
nal and multi-source acquisitions requiring complex pipelines, 
quality controls, and efficient access management. The studies 
managed on the BIOMIST platform are still ongoing; therefore, 
the BMI-LM has not been validated on the fourth stage of a study 
(published results).

The BIOMIST platform distinguishes from existing neuroim-
aging data management systems by providing in one environment: 

http://www.frontiersin.org/ICT/
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http://www.frontiersin.org/ICT/archive


FIgURe 11 | Steps 4 and 5 of the use case with the BIoMIST platform. (A) Traceability of the processing chain of brain connectivity for a group of subjects, 
from adjacency matrix to final dynamic graph. (B) View of the final processing pipeline to compute dynamic graph from the groups of subjects. (c) Display of the 
adjacency matrix of brain connectivity for a group of subjects. (D) Dynamic graph obtained from the matrices of all the groups. (e) Final layout of the dynamic graph 
for analysis.
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(1) study data management throughout study lifecycle, (2) 
heterogeneous data management, and not only imaging, (3) 
managing provenance in order to enable data sharing and reuse, 
(4) allowing data processing and analysis inside the platform, 
with users’ regular software tools, and (5) providing a secured 
access to preserve data consistency and confidentiality. One cur-
rent disadvantage of the BIOMIST platform is the necessity to 
train a specialized data manager in order to maintain the system, 
because it is complex with many possibilities of personalization.

One of the main objectives in designing the platform was to 
enable the use of existing neuroimaging tools and community 
standards: data formats, workflow engines, processing and 
visualization software, and ontologies. To foster data sharing 
through the community, it would also be relevant to bridge PLM 
systems with web-based archival systems such as XNAT or such 
as PubMed in order to link bibliography management of the 
BMI-LM model with the most complete bibliography database 
in medical field. Mediation between databases is possible through 

ontologies. Some work has already been done on this topic in 
the neuroimaging community (Ashish et  al., 2010). Although 
classes from ontologies are being used in the BIOMIST platform 
for the neuroimaging data classification and the graphical query-
ing interface, richer semantics would improve the management 
of relationships between the different objects in PLM systems 
(Assouroko et  al., 2012). For instance, the mapping for data 
import could rely on an ontology-based description, rather being 
described in a XML file. Therefore, future work on the BIOMIST 
platform will focus on application of ontologies within PLM 
systems for improved interoperability, reusing, and simplified 
data management.

Moreover, in order facilitate data exchange between the 
BIOMIST platform and existing neuroimaging data management 
systems, we plan to develop a feature to export data provenance 
in PROV-DM format.

GIN users’ feedback also highlighted that the eclipse-based 
graphical user interface of the deployed PLM system would be 

http://www.frontiersin.org/ICT/
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unsuitable to them, because of the daunting numbers of sub-
windows and menus that reduce the implicit use of the system; a 
simplified and more adequate user interface is being developed, 
intended for occasional users. Due to the nature of neuroimag-
ing research work, the relationships between database objects 
are complex, so the ability to navigate among data is critical. 
However, current PLM systems do not propose a satisfactory rela-
tion browser or viewer, and they exhibit shortcomings in terms 
of data visualization and analysis, all the more as complex and 
heterogeneous data are managed (Allanic et al., 2014). Therefore, 
a major concern in the upcoming work on the BIOMIST platform 
is to visualize data relationships, using a visual graph representa-
tion, in order to improve the browsing and the visualization of 
data and provenance in PLM systems.

With the current querying facilities of the BIOMIST platform, 
users can build and retrieve data reports for statistical analysis. 
One of our main goals is now to integrate more tightly analytical 
tools, such as deep learning algorithms on large, multimodal 
heteregeneous data. The objective is to be able to extract 
knowledge after analyzing correlations between inter individual 
variables (age, gender, education, handedness, etc.) and brain 
structures, in order to provide additional information for a better 
understanding of brain organization and its mechanisms and also 
to be able to make predictive assumptions about some neurologi-
cal pathologies.
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