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Physiological response is an important component of an emotional episode. In this 
paper, we introduce a Toolbox for Emotional feAture Extraction from Physiological signals 
(TEAP). This open source toolbox can preprocess and calculate emotionally relevant 
features from multiple physiological signals, namely, electroencephalogram (EEG), 
galvanic skin response (GSR), electromyogram (EMG), skin temperature, respiration 
pattern, and blood volume pulse. The features from this toolbox are tested on two 
publicly available databases, i.e., MAHNOB-HCI and DEAP. We demonstrate that we 
achieve similar performance to the original work with the features from this toolbox. The 
toolbox is implemented in MATLAB and is also compatible with Octave. We hope this 
toolbox to be further developed and accelerate research in affective physiological signal 
analysis.

Keywords: physiological signals, emotions, affective computing, electroencephalogram signals, physiological 
signal processing, code:MATLAB, code:octave, toolbox

1. INTRodUCTIoN

Affective computing thrives to teach machines to understand and express emotions (Picard, 1997). 
Emotions are multifaceted phenomena with physiological manifestations and bodily expressions 
(Scherer, 2005). Although the majority of existing methods for automatic emotion recognition are 
based on audiovisual analysis (D’Mello and Kory, 2015), there is a growing body of research on 
emotion recognition from peripheral and central nervous system physiological responses (Picard 
et al., 2001; Lisetti and Nasoz, 2004; Chanel et al., 2009, 2011; Kolodyazhniy et al., 2011; Koelstra 
et  al., 2012; Soleymani et  al., 2012b; Mühl et  al., 2014). There are certain advantages for using 
physiological signals for emotion recognition compared to the audiovisual signals; for example, 
they cannot be easily faked, they do not require a front facing camera, and they can be used in 
any illumination and in noisy environments. Moreover, they can be combined with audiovisual 
modalities to construct a more robust and accurate multimodal emotion recognizer (D’Mello and 
Kory, 2015).

In order to train machines to automatically recognize emotions, we use machine learning 
techniques. Typically, the procedure includes translating raw signals to a lower dimensional rep-
resentation space (features) that will be fed into a statistical model. Current physiological feature 
extraction methods involve calculating statistical moments and time-frequency analysis over 
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segments of physiological signals with the goal of generating 
emotionally discriminative features. For example, heart rate 
increase is associated with excitement and activation (arousal) 
and, as a result, we extract heart rate as a feature for detecting 
arousal or the level of activation.

To extract features from physiological signals, one can 
implement methods that translate raw signals into features. 
Emotional features extracted from physiological signals are 
often based on the previous work in psychophysiology (Kreibig, 
2010). To facilitate research on physiological signal analysis, 
a number of tools have been developed to the benefit of the 
community, e.g., EEGLAB (Delorme and Makeig, 2004). To 
the best of our knowledge, the Augsburg Biosignal Toolobox 
(AuBT) (Wagner et al., 2005) is the only toolbox available with 
the goal of extracting emotionally significant physiological 
features. However, the number of features and the type of 
signals in AUBT are limited. In this paper, we introduce a 
Toolbox for Emotional feAture extraction using Physiological 
signals or TEAP. We aim to create an open source platform 
that can be further extended by the community with the goal 
of advancing the field of affective physiological signal analysis. 
We developed TEAP in MathWorks MATLAB but it also works 
with Octave, its free alternative. TEAP is able to preprocess 
and extract features from multiple central and peripheral 
physiological signals including electroencephalogram (EEG), 
galvanic skin response (GSR), electrocardiogram (ECG), blood 
volume pulse (BVP), skin temperature, respiration pattern, 
and electromyogram (EMG). New physiological channels can 
be easily added to this toolbox and the implemented statistical 
and time-frequency analysis functions can be applied on any 
signal.

TEAP is designed to be useful for both novice and advanced 
users. A user can simply choose the desired features, define the 
channels in the input files, and extract physiological features. 
More advanced users are able to add new functionalities and 
modules, including support for new signals.

2. TooLBoXeS FoR PHYSIoLoGICAL 
SIGNAL PRoCeSSING

In this section, we review the existing freely available and open 
source tools for physiological signal analysis. There are a number 
of toolboxes for processing physiological signals and most of 
them are tuned for only one type of signal. For instance, EEGLAB 
(Delorme and Makeig, 2004) and FieldTrip (Oostenveld et  al., 
2011) are dedicated to brain signal analysis, focusing on sig-
nals such as EEG and magnetoencephalogram (MEG). There 
are also tools for analyzing peripheral physiological signals 
such as Kubios,1 which analyzes heart rate variability, Ledalab 
(Benedek and Kaernbach, 2010), and PsPM (Bach and Friston, 
2013), which focus on the analysis of galvanic skin responses. 
There are also tools for analyzing a wide range of physiological 
signals including Biosig (Schlogl and Brunner, 2008) and the 

1 http://kubios.uef.fi/.

ANSLAB.2 Tools dedicated to one specific physiological signal 
offer advanced functionalities (e.g., source reconstruction). More 
general purpose tools handle a diverse range of signals with a 
more limited set of choices for their analysis. The spirit of TEAP 
is to allow for the processing of several types of signals, e.g., 
BVP, ECG, EEG, while maintaining the possibility to extract 
specific features from each signal. In addition, its architecture 
and license permits further development in the future.

Most of existing toolboxes requires to have some knowledge 
about physiological signal processing. In contrast, TEAP can 
serve researchers who aim at developing data-driven techniques 
with limited knowledge on the nature of physiological signals. 
Taking advantage of the BioSig code in its data import interface 
(Schlogl and Brunner, 2008), TEAP accepts several data formats 
which are traditionally used to store physiological signals (e.g., 
the EDF—(European Data Format), while its output is a design 
matrix representing a set of features for several samples. The 
Augsburg Biosignal Toolobox (AuBT) (Wagner et al., 2005) has 
been designed with the same objective in mind. It can perform 
feature extraction, feature selection, and classification. However, 
the AuBT only offers the possibility to extract general features 
based on statistical moments of signal derivatives (e.g., mean 
of first derivative). In addition, the AuBT input data should be 
properly formatted and have limited filtering capabilities. This 
leads to the need to develop file parsers and to gain knowledge 
in the properties of physiological signals to build proper pre-
processing filters. The reviewed characteristics of the existing 
and proposed toolboxes are summarized in Table 1.

3. TeCHNICAL SPeCIFICATIoNS

3.1. Architecture
TEAP has been developed in MATLAB and is compatible 
with Octave. It is open source and is licensed under the GNU 
General Public License (GNU GPL). This makes TEAP a 
completely free and customizable solution. We avoided object 
oriented programming in MATLAB not to jeopardize Octave 
compatibility. Although TEAP is programmed without using 
MATLAB objects, two principal structures are used: signals and 
bulksigs (hereafter called bulks); bulks are structures contain-
ing signals. Functions were created as interfaces to the users to 
manipulate these two structures. Hence, a user does not need 
to know how the data are handled by the toolbox in order to 
use it. However it remains possible to access the content of the 
structures directly or using the available visualization functions 
(e.g., Signal_plot()).

TEAP can read many data formats including EDF and 
EEGLAB. TEAP accepts data recorded from any device as long 
as the format is supported by Biosig interface, e.g., Biosemi 
BDF format. Importing EEGLAB data allows performing some 
preprocessing, which is not available in TEAP. For instance, the 
raw signals can be segmented using EEGLAB (e.g., according to 
triggers) and the result can be imported in TEAP. TEAP relies on 

2 http://www.anslab.net.
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TABLe 1 | Relevant open source toolboxes for physiological signal analysis.

Toolbox Signals Language Functionality

AuBT GSR, ECG, EMG, and respiration Matlab Feature extraction and selection, classification

EEGLAB (Delorme and Makeig, 
2004)

EEG, MEG Matlab Source modeling, time frequency analysis, forward and 
inverse source modeling

FieldTrip (Oostenveld et al., 
2011)

EEG, MEG Matlab Time-frequency analysis, source reconstruction and 
modeling, non-parametric statistical testing

Ledalab (Benedek and 
Kaernbach, 2010)

GSR Matlab Continuous and discrete decomposition analysis, 
visualization

PsPM (Bach and Friston, 2013) GSR Matlab Modeling

Biosig (Schlogl and Brunner, 
2008)

EEG, electrocorticogram (ECoG), ECG, EMG, EOG, 
respiration

Matlab and 
Octave

Data acquisition, artifact processing, feature extraction, 
classification, modeling, visualization

ANSLAB GSR, ECG, EMG, respiration, BVP, continuous arterial 
pressure, capnography, temperature, accelerometry

Matlab Feature extraction and selection, classification

TEAP EEG, GSR, ECG, BVP, EMG, temperature, respiration Matlab and 
Octave

Feature extraction, visualization
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MATLAB and only requires the signal processing and statistical 
toolboxes. TEAP can run on the equivalent settings in Octave 
with its freely available equivalent toolboxes.

The source code and user manuals are available on.3

3.2. Signals and Features
Each signal currently supported by TEAP is presented below. In 
addition to this list of signals, we added a template dummy signal 
(DMY), which will facilitate adding new signals and features. The 
set of features were chosen based on their proven performance in 
the literature (Kim and André, 2008; Chanel et al., 2009; Koelstra 
et al., 2012; Soleymani et al., 2012a). The list of existing features 
and their descriptions are given in Table 2.

3.2.1. Electrocardiogram—ECG
Due to the nature of heart muscles, cardiac activity generates an 
electrical potential difference, which can be measured by placing 
electrodes on one’s chest. Electrocardiography (ECG or EKG) is a 
measurement of this electrical activity. ECG signals can be used 
to detect heart rate (HR) and heart rate variability (HRV). HR 
and HRV changes are associated with emotions. For example, 
pleasant emotions increase heart rate response (Lang et al., 1993), 
and HRV decreases with fear, sadness, and happiness (Rainville 
et al., 2006). In TEAP, we analyze ECG signals from one lead (a 
pair of electrodes) to detect inter-beat-interval (IBI) and HRV 
features. After calculating the IBI, we can construct a tachogram, 
which is a signal representing IBIs over time. Tachogram can 
be further used to extract additional HRV features.

3.2.2. Blood Volume Pulse—BVP
Blood volume pulse (BVP) is the measurement of blood volume 
in peripheral vessels generally obtained by photoplethysmogra-
phy. A photoplethysmograph usually consists of a light emitter 
and detector. The measurement of the reflected light on skin 

3 https://github.com/Gijom/TEAP.

(usually finger) is an indicator of the volume of blood in periph-
eral vessels. Since blood volume varies by pulse heart rate can be 
detected from BVP signals. Similar to ECG, TEAP can extract 
heart rate (HR) and heart rate variability (HRV) related features 
from BVP.

3.2.3. Galvanic Skin Response (GSR)
Galvanic skin response (GSR) is a measurement of electrical resist-
ance (or conductance) on one’s skin. Skin’s electrical conductance 
varies with the activity of sweat glands which are controlled by 
the sympathetic nervous system. GSR responses consists of tonic 
(slow) and phasic (fast and associated with a stimuli) responses 
and are related to emotional arousal (Lang et al., 1993; Dawson 
et al., 2000). TEAP calculates features related to both tonic and 
phasic responses.

3.2.4. Human Skin Temperature—HST
Skin temperature is a reflection of blood flow and changes in dif-
ferent emotional states (McFarland, 1985). Although temperature 
changes are slower than other signals, they are associated with 
emotional responses (Kreibig, 2010). Skin temperature is meas-
ured by attaching a temperature sensor on one’s skin. Statistical 
moments and low frequency power spectral features are extracted 
from HST by TEAP.

3.2.5. Electromyogram (EMG)
Activity of skeletal muscles generates electromyogenic electrical 
signals (EMG), which can be recorded by means of electrodes 
attached to the skin covering those muscles. Typically, a pair of 
electrodes is attached along the muscle of interest to record the 
electrical potential between two points. Facial and body expres-
sions associated with emotions activate different muscles. One 
can record emotionally significant expressions using EMG. For 
example, smiling activates the zygomaticus major (Ekman, 2006). 
Spectral power density (in f > 20 Hz) and statistical moments are 
calculated by TEAP as features from EMG.
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TABLe 2 | The signals supported by TeAP and features that can be extracted are listed.

Cha. Feature description

GSR Number of peaks Number of peaks in resistance exceeding 100 Ω

Amplitude of peaks GSR peak amplitude from the saddle point preceding the peak

Rise time The time it takes GSR to reach its peak from the saddle point in seconds

Statistical moments Mean and SD

RES Main frequency Frequency at which the power spectrum reaches its maximum value (f ∈ [0.16, 0.6]Hz)

PSD log(PX(f)), f ∈ {[0, 0.1], [0.1, 0.2], [0.2, 0.3], [0.3, 0.4], [0.4, 0.7], [0.7, 1.0]}Hz (Wang and Gong, 2008)

Statistical moments Mean, SD, skewness, and Kurtosis

HST PSD log(PX(f)), f ∈ {[0, 0.1], [0.1, 0.2]}Hz (Wang and Gong, 2008)

Statistical moments Mean, SD, skewness, and Kurtosis

EMG Power log(PX(f)), f ∈ [20, fs/2] Hz

Statistical moments Mean, SD, skewness, and Kurtosis

ECG IBI Mean IBI, HRV (std(IBI))

MSE Multiscale entropy at 5 levels (Costa et al., 2005)

Tachogram power log P f log P f log P f log P f log PX
LF

X
MF

X
HF

X
MF( ( )) ( ( )) ( ( )) ( ( )) ( (, , , / XX

LF
X
HFf log P f( )) ( ( )))+  where LF:f ∈ [0.01, 0.08]Hz, MF:]0.08, 0.15]Hz, and 

HF:]0.15, 0.4]Hz 

PSD log(PX(f)), f ∈ {[0, 0.1],[0.1, 0.2],[0.2, 0.3],[0.3, 0.4]}Hz log P f P fX
LF

X
HF( ( ) ( )/ , where LF:f ∈ [0.0, 0.08]Hz & HF: f ∈ [0.15, 5.0]Hz

BVP IBI Mean IBI, HRV (std(IBI))

MSE Multiscale entropy at 5 levels (Costa et al., 2005)

Tachogram power log P f log P f log P f log P f log PX
LF

X
MF

X
HF

X
MF( ( )) ( ( )) ( ( )) ( ( )) ( (, , , / XX

LF
X
HFf log P f( )) ( ( )))+ , where LF:f ∈ [0.01, 0.08]Hz, MF:]0.08, 0.15]Hz, and 

HF:]0.15, 0.4]Hz

PSD log(PX(f)), f ∈ {[0, 0.1],[0.1, 0.2],[0.2, 0.3],[0.3, 0.4]}Hz log P f P fX
LF

X
HF( ( ) ( ))/ , where LF:f ∈ [0.0, 0.08]Hz and HF:f ∈ [0.15, 5.0]Hz

Statistical moments Mean

EEG PSD log(PX(f)) in different bands: delta: f ∈]0, 4]Hz, theta: f ∈]4, 8]Hz, slow alpha: f ∈]8, 10]Hz, alpha: f ∈]8, 12]Hz, beta:f ∈]12, 30]Hz, 
and gamma: f ∈]30, fs/2]Hz)
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3.2.6. Respiration
Respiration pattern can be measured from the expansion of the 
chest or abdomen circumference. This can be done by a flex-
ible belt with a piezoelectric crystal sensor, which measures the 
belt’s expansion. Respiration pattern (RES) varies by emotional 
responses. Slow respiration is linked to relaxation and irregular 
rhythm, quick variations, and cessation of respiration correspond 
to high arousal, e.g., anger or fear (Rainville et  al., 2006; Kim 
and André, 2008). Principal frequency, power spectral density, 
and statistical moments are the features that Teap extract from 
respiration pattern.

3.2.7. Electroencephalogram—EEG
There is a strong evidence demonstrating the neural activities 
and circuits engaged in different emotional states (Damasio 
et al., 2000; Adolphs et al., 2003). Electroencephalogram (EEG) 
signals are a measurement of electrical neural activity on scalp. 
EEG signals contain waves in different frequency bands that 
are associated with different cognitive states. Therefore, power 
spectral density (PSD) features from different frequency bands 
are calculated as features in TEAP.

3.3. Usage
The goal of this section is to give an example of TEAP’s usage. 
Readers are redirected to the user manual (see text footnote 4) 
for a more detailed documentation.

Suppose a user has an ECG signal and that they want to 
extract some features. First, a user shall choose which feature to 
extract; users can use “include” or “exclude” arguments to add 
or remove features from the available set of features, or simply 
extract all available features. With TEAP, the process is as follows:

  %import probe 1
  probe1 = csvread ( ’ ECG example_probe1 . csv ’);
  %import probe 2
  probe2 = csvread ( ’ ECG example_probe2 . csv ’);
  %create the signal from two electrodes and a given sampling
  %frequency then display the resulting signal
  ECG_sig = ECG_aqn_variable (probe1, probe2, 1,024);
  Signal_plot (ECG_sig);

  %compute some features (all available features)
  [ECG_features, ECG_feats_names]= ECG_feat_extr (ECG_sig);

http://www.frontiersin.org/ICT/
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TABLe 3 | The recognition rate and F1 scores of emotion recognition compared to the original work.

Peripheral signals eeG signals

(Soleymani et al., 2012a) (MAHNoB)—inter-participant, 3 classes

Classification rate↑ Average F1↑ Classification rate↑ Average F1↑

dimension Arousal (%) Valence (%) Arousal Valence Arousal (%) Valence (%) Arousal Valence

TEAP 49.3 46.0 0.347 0.346 56.1 57.7 0.489 0.557

Original 46.2 45.5 0.38 0.39 52.4 57.0 0.42 0.56

(Soleymani et al., 2012b)—inter-participant, 3 classes

Classification rate↑ Average F1↑ Classification rate↑ Average F1↑

dimension Arousal Valence Arousal Valence Arousal (%) Valence (%) Arousal Valence

TEAP 42.7% 41.3% 0.315 0.375 63.0 57.1 0.618 0.546

Original – – – – 62.1 50.5 0.60 0.50

(Koelstra et al., 2012) (deAP)—intra-participant, 2 classes (mean)

Classification rate↑ Average F1↑ Classification rate↑ Average F1↑

dimension Arousal (%) Valence (%) Arousal Valence Arousal (%) Valence (%) Arousal Valence

TEAP 55.9 58.6 0.523 0.570 60.5 65.6 0.570 0.645a

Original 57.0 62.7 0.533 0.608 62.0 57.6 0.583 0.563

Classification rate↑ Average F1↑ Classification rate↑ Average F1↑

dimension Liking (%) Control Liking Control Liking (%) Control Liking Control

TEAP 54.9 58.9% 0.494a 0.538 58.3 58.3% 0.534 0.533

Original 59.1 – 0.538 – 55.4 – 0.502 –

(Soleymani et al., 2011)—intra-participant, regression, mean absolute error (Sd) ↓

dimension Arousal Valence Control Liking Arousal Valence Control Liking

TEAP 1.65 (0.46) 1.75 (0.38) 1.69 (0.58) 1.97 (0.57) 1.61 (0.46) 1.71 (0.37) 1.68 (0.58) 1.92 (0.49)
Original 1.70 (0.51) 1.81 (0.41) 1.64 (0.49) 1.96 (0.64) 1.53 (0.40) 1.59 (0.39) 1.53 (0.49) 1.78 (0.51)

aImplies significant difference (α < 0.05) in a two-tailed t-test on F1 scores. We were unable to perform the statistical test for Soleymani et al. (2011).

5

Soleymani et al. TEAP

Frontiers in ICT | www.frontiersin.org February 2017 | Volume 4 | Article 1

  %compute one feature (for example average inter_beat intervals) 
[ECG_features, ECG_feats_names] = ECG_feat_extr (ECG_
sig, ’ include ’ , ’ meanIBI ’ );

  %compute some features (all available features except HRV) 
[ECG_features, ECG_feats_names] = ECG_feat_extr (ECG_sig , ’ 
exclude ’ , ’HRV ’);

It should be noted that for some specific signals (e.g., HST or 
GSR), a preprocessing, e.g., filtering, will be automatically applied 
when the signal is loaded; thus, the user does not have to worry 
about all the necessary steps.

4. eXPeRIMeNTAL VALIdATIoN

In order to verify TEAP’s performance in emotion recognition, 
we made use of two publicly available databases to serve as our 
benchmark, namely MAHNOB-HCI (Soleymani et  al., 2012a) 
and DEAP (Koelstra et  al., 2012). We tried to replicate the 
work presented in four original articles on these databases, 

i.e., Soleymani et al. (2011, 2012a,b) and Koelstra et al. (2012). 
In addition to TEAP, reproduction of these results required 
LIBSVM (Chang and Lin, 2001). We tried to re-implement the 
same procedure in terms of cross-validation strategy, feature 
selection, machine learning models, and evaluation metrics. 
For MAHNOB-HCI database, we only analyzed the emotion 
experiment whose original results are published in Soleymani 
et  al. (2012a,b). The results of participant-independent cross 
validation on MAHNOB-HCI database are reported alongside 
the original results in Table 3. The regression and classification 
results on DEAP database are also given in Table  3. In  most 
cases, TEAP features are performing similarly with small differ-
ences compared to the original work, the reasons behind this 
difference is twofold. First, we shortened and simplified the set 
of features in TEAP compared to the original work to make 
them more generally applicable. For example, EEG asymmetry 
features are not implemented in TEAP, since it depends on 
the electrode placement and do not make a large difference. 
Second, even though we tried to replicate the same machine 
learning models, our hyper-parameter optimization and feature 

http://www.frontiersin.org/ICT/
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5. CoNCLUSIoN

We propose a new open-source toolbox dedicated to extract-
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physiological signals. This toolbox will facilitate and accelerate 
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and event-related potentials (ERP). We hope this toolbox can 
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