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In response to widespread looting of archaeological sites, archaeologists have used sat-
ellite imagery to enable the investigation of looting of affected archaeological sites. Such 
analyses often require time-consuming direct human interpretation of images, with the 
potential for human-induced error. We introduce a novel automated image processing 
mechanism applied to the analysis of very high-resolution panchromatic satellite images 
and demonstrate its ability to identify damage at archaeological sites with high accuracy 
and low false-positive rates compared to standard image classification methods. This 
has great potential for large-scale applications whereby countrywide satellite datasets 
can be batch processed to find looting hotspots. Time is running out for many archae-
ological sites in the Middle East and elsewhere, and this mechanism fills a needed gap 
for locating looting damage in a cost and time efficient manner, with potential global 
applications.

Keywords: machine vision, archaeology, heritage, looting, automation, computational analysis, high resolution,  
egypt

inTrODUcTiOn

Recent estimates indicate that looting at archaeological sites is a worldwide problem (Proulx, 
2013): 98% of 2,358 field archaeologists surveyed reported looting at or near their research sites. 
Recent and ongoing conflicts in Egypt (Ikram, 2013; Ikram and Hanna, 2013) as well as in Syria 
and Iraq (Pringle, 2014; Gill, 2016) create opportunities for organized looting for profit. While 
the exact numbers and amounts require more in-depth research (Chulov, 2014; Felch, 2014), it is 
clear that widespread damage to ancient sites and monuments is occurring as a result of looting 
and damage from war. In response, such looting and damage is monitored manually using space-
based radar (Tapete et al., 2016), repeat visits from commercial imaging satellites (Parcak, 2007, 
2009; Hritz, 2008; Stone, 2008; AAAS, 2014; Casana and Panahipour, 2014; Newson and Young, 
2015), or from free public resources such as Google Earth (Thomas et al., 2008; Contreras and 
Brodie, 2013). However, manual analysis can be expensive, time intensive, difficult to replicate, and 
gappy. In addition source data can contain hundreds of megapixels. For example, a new looting 
mapping study used all the publicly available satellite imagery of Egypt to map looting from 2002 
to 2013 across 1,200 “sitescapes” (with each site landscape containing one to hundreds of sites) 

Abbreviations: BF, branching factor; DBS, disrupted burial site; HCAL, hierarchical categorization and localization (this 
algorithm); 1NN, one nearest neighbor classification; GIS, geographic information system; PCA, principal component analysis; 
ROC, receiver operating characteristic; SVM, support vector machine.
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(Parcak et  al., 2016). It took 6  months of manual assessment 
to draw over 200,000 individual looting pits, with thousands of 
additional polygons around sites or features of interest. Even 
with high-resolution data at <1 m/pixel resolution, expertise is 
required to discriminate between looting pits and modern holes 
or excavation units. Since looting is increasing across the globe, 
we need an algorithmic early warning system to focus human 
monitoring and intervention toward sites of interest in protec-
tion and preservation of ancient sites.

As others have done in illegal construction monitoring 
(Hofmann, 2001; Hofmann et al., 2008; Ioannidis et al., 2009), 
we cast illegal looting pit detection as a change detection task, 
wherein the goal is to detect new looting pits and not preex-
isting pits or new instances of other categories. Approaches 
to satellite-based change detection often fall into one of two 
categories: those which classify pixels in the difference image 
and those which compare two images post-classification [for 
details, see Singh (1989), Mas (1999), Coppin et al. (2004), and 
Lu et al. (2004)]. Difference-image-based methods require very 
strict pixel alignment between images (e.g., Dai and Khorram, 
1998). This requirement is problematic when using very high-
resolution imagery, multiple sensors, and differing photographic 
angles. Difference-image-based methods are commonly insensi-
tive to variations in the types of change that occur (Bruzzone 
and Prieto, 2000), making them susceptible to moving shadows, 
seasonal changes, and displaced objects such as sand dunes or 
re-parked trucks. Additionally, difference images are greatly 
impoverished by the removal of non-changing structures. This 
is fundamentally limiting; non-changing structures may still 
be good exemplars of the emergent targets and distractors, and 
modeling these structures may enhance the identification of 
targets.

Post-classification analysis exposes the entire scene of each 
image to processing and has become a popular approach. We 
take this approach to change detection here. Human-supervised 
classifiers, such as support vector machines (SVMs), have 
proven popular for the classification step, as well as for other 
topics in remote sensing. For example, Pal and Mather (2005) 
evaluated SVMs against maximum likelihood and artificial neu-
ral network classifiers trained to recognize land cover types in 
multispectral satellite data. They found that each classifier was 
successful, while SVMs were the superior choice. Mountrakis 
et  al. (2011) describe a sharp increase in the application of 
these methods in recent years, particularly to ground cover 
classification using multispectral data. Ballabio and Sterlacchini 
(2012) go so far as to train an SVM classifier to predict regions 
susceptible to landslides in the future. Despite the popularity of 
supervised classifiers for change detection tasks on geographic 
information system (GIS) images, we will show that, for our 
particular task, our proposed partially supervised algorithm is 
superior: it produces better accuracy and false-positive rates 
while modeling unsupervised categories in the data, as well as 
localizing them.

Sophisticated unsupervised and partially supervised alter-
natives have recently gained traction. If each pixel or pixel 

neighborhood in the image is considered to be a data point, 
K-means clustering (Hartigan and Wong, 1979; Rekik et al., 2006) 
or a linear regression model (Galton, 1894; Zhang et al., 2011) can 
be used to separate out groups of changed and unchanged pixels, 
and principal component analysis can be effectively used to pre-
pare the data (Celik, 2009a). Scientists have used the kernel trick 
(Camps-Valls and Bruzzone, 2009) to improve performance by 
creating non-linear classifiers. For example, one group clustered 
a preselected set of changed and unchanged pixels using kernel 
K-means, then assigned new pixels to categories using their one 
nearest neighbor (1NN) (Volpi et al., 2012b). Others studies have 
used K-means on the undecimated discrete wavelet transform 
of the images, as well as a genetic algorithm to minimize the 
within-class errors of “changed” and “unchanged” assignments 
with equivalent effectiveness (Celik, 2009b, 2010). Each of these 
algorithms fails to build a generative model of the data and, 
therefore, is unlikely to build the detailed decision boundaries 
required for the classification of looting pits against a landscape 
of myriad structural distractors.

Partially supervised or unsupervised approaches can be 
improved with a variety of models. Bruzzone and Bovolo (2013) 
propose the manual creation of a tree-like hierarchical model 
of all changes expected to occur across images for the purpose 
of modeling both desired and undesired changes. Modeling the 
underlying data structure using unsupervised clustering often 
improves supervised classifier performance. For example, one 
group used K-means clusters to select data points for which 
human feedback might improve an SVM classifier (Liu et  al., 
2008). More recently, Volpi et al. (2012a) used a similar approach 
to select data points for human feedback using hierarchical 
K-means and an adaptive heuristic. The search for looting pits 
among multiple instances of desert and urban targets using a 
minimal dataset is especially demanding of a model-based 
approach. However, modeling the entire set of observed objects 
requires a prohibitively large dataset. The software of eCognition 
(Hofmann, 2001; Hofmann et al., 2008) is capable of simultane-
ously modeling color histogram objects at multiple scales and 
segmenting the image to localize them. Localization aids in 
unsupervised object discovery by removing irrelevant pixels 
from each category prototype, performing feature selection. 
However, because eCognition’s approach to this task ignores 
structural information and is fundamentally unsupervised, it 
cannot be guided to identify relatively few looting pit structures 
among numerous instances of so many distractor classes. 
Ioannidis et  al. (2009) describe an algorithm to identify new 
buildings in a rural environment. The authors identified changed 
buildings using a knowledge-based approach on stereo images to 
categorize “ground” vs “above-ground,” but only after they used a 
number of tricks to eliminate false positives (FPs) by increasing 
the ratio of target and non-target pixels. In a common pattern, 
these algorithms either attempt to model all observed classes or 
only the classes of interest.

We propose a novel categorization scheme and its use as the 
central component of a post-classification analysis technique for 
change detection. Our algorithm is derived from hierarchical 
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FigUre 1 | satellite image from saqqara desert, egypt. Mean ground sample distance 0.71 m. (a) Full image (10,148 × 23,561 pixels) of border between 
unsettled desert and populated regions (see text). (B) Close-up of region indicated by outline in panel (a), in 2011, in which evidence of looting can be seen (small 
dark spots in circled regions). (c) Close-up of several looting pits. All relevant permissions have been obtained for figure publication.
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clustering performed by the brain for use in the identification of 
repeated structurally consistent small-scale targets among many 
repeated distractors. Our approach improves the identification 
of a specific category of observation by modeling numerous 
categories. It avoids modeling all potential object categories by 
only modeling those relevant to the distinctiveness of the target. 
It localizes instances of each observational category in order to 
ignore uninformative pixels. It accomplishes this using only the 
positions of members of the relatively rare target category as 
supervised labels and avoids the need for costly human interven-
tion for parameter tweaking or resolution of high false-positive 
rates. Finally, it may exemplify the first algorithm for satellite-
based identification of structurally consistent ground feature 
changes for archaeology.

In the following sections, we introduce our algorithm based on 
recently developed image analysis methods for recognition and 
localization (Chandrashekar and Granger, 2012; Chandrashekar 
et  al., 2014). We apply our algorithm to a large (239 million 
pixel) satellite image of the pyramid field zone in Egypt, where 
organized looting of burial sites is ongoing (Figure 1). We show 
cross-validated success and false-alarm rates for looted pits and 
compare these directly against SVM on bags of visual words, a 
standard method for classification in satellite imagery and other 
fields.

algOriThM DescriPTiOn

The new hierarchical categorization and localization (HCAL) 
algorithm introduced here is a method for partially supervised 
classification and localization, derived from previous work 
on partially supervised classification alone (Chandrashekar 
and Granger, 2012) and on unsupervised localization alone 
(Chandrashekar et  al., 2014). The resulting algorithm clusters 
images by similarity while simultaneously identifying image 
regions likely to contain examples of these clusters. It then suc-
cessively narrows category descriptors for these images until they 
identify specific features that constitute target images of disrupted 
archaeological burial sites or usefully discriminable non-target 
objects.

Intuitively, the HCAL algorithm first identifies repeated fea-
tural motifs occurring in the set of images using unsupervised 
methods, thus localizing candidate feature sets. It then (again 
without supervision) categorizes images based on similarity. 
Finally, the members of these similarity-based categories are 
checked for mismatching (supervised) labels—the first time 
supervised information is referenced. When mismatched labels 
are found (such as a category containing both looting pits and 
other objects), the algorithm hierarchically splits categories again 
in a purely unsupervised manner. This method is repeated until 
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FigUre 2 | hierarchical categorization and localization (hcal) flowchart and pseudocode. DisruptedSitesArchived

� ����������������
 contains a list of coordinates for known 

disrupted burial sites. The joint localization and classification algorithm (JLC) receives a document map (DMap
� ������

), a set of subphotos from preselected training satellite 
images. JLC returns LocFG

� ���
, the location of those labeled items in global coordinates, and HFG

��
, the histogram of foreground pixel values. CSLTrain returns CForest, the 

data structure representing the hierarchical clustering solution. HCALTest receives CForest as a representation of what was learned, and DMapNew

� ������
, a set of tiled 

subphotos from new “test” satellite observations—the data to analyze. When HCALTest completes, it has generated L


FG

edPr
, a list of labels for each subphoto.
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clusters contain purely pit images, purely non-pit images, or very 
few (e.g., 7) images. The resultant data structure contains hierar-
chical categories of image regions, with leaves of the hierarchical 
tree corresponding to subcategories each sharing a common 

supervised label. The use of unsupervised splits causes the HCAL 
algorithm to learn the structural model of the data, enabling more 
intelligent decision boundaries than supervised learning alone. 
Figure 2 provides a flowchart and pseudocode for the algorithm.
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FigUre 3 | Pseudocode for the cslTrain component of the algorithm, 
derived with permission from algorithm 1 of chandrashekar and 
granger (2012).
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Training steps
The four training steps of the HCAL algorithm can be summa-
rized as follows:

 1. DMap GISImagesArchived Archiv

� ������ � ����������
← FeatureExtr( eed )

DMap GISImagesNew New

� ������ � ����������
← FeatureExtr( )

GIS data from a site of interest are split into numerous small 
images. For each image, we extracted features from each 
image using a process similar to Chandrashekar et al. (2014). 
Dense scale-invariant feature transform (SIFT) (Lowe, 2004), 
histogram of oriented gradients (HOG) (Dalal and Triggs, 
2005), or speeded up robust features (SURF) (Bay et al., 2008) 
created a high-dimensional representation of each pixel. 
Clustering each image using K-means produced a 40 cluster 
solution in pixel feature space. Finally, we clustered the set 
of all means (40 per image) with K-means to produce a 40 
cluster vocabulary of visual words in pixel feature space for 
the entire training dataset and renumbered the pixels for 
each image with its closest cluster as identified via nearest 
neighbor. Each image can be thus viewed as a document of 
visual words (Chandrashekar et al., 2014). A document map  
(DMap
� ������

) was then created wherein each pixel was labeled 
based on the vocabulary word representing its feature. Based 
on the comparison of overall algorithmic performance on 
several different mean sizes, we determined our choice of 40 
means analytically, and may be increased for application to 
more complex urban datasets.

 2. Loc HFG FG
� ��� �� � ������

,   JLC(DMap)←
The (unsupervised) joint localization and classification algo-
rithm (JLC) is performed on the set of archived and newly 
processed images (DMap

� ������
), producing three data structures: 

(i) LocFG
� ���

, which is the location of an image’s region that is 
believed to contain the “foreground” object (expected to recur 
in the images) and (ii) the histogram of features HFG

��
 occurring 

within that LocFG
� ���

 region (a bag of visual words). This expecta-
tion–maximization algorithm finds K-means cluster centroids 
in the feature histograms HFG

��
 for each image, then redefines 

the foreground of each image LocFG
� ���

 to best match its cluster’s 
centroid. Each image’s histogram HFG

��
 is redefined using only 

foreground pixels, and the process repeats; see Chandrashekar 
et al. (2014).

 3. L LocFG FG
� � ��� � �����

←  CalculateTrainLabels( DisruptedSites ,
����������

Archived )
Foreground locations identified by the JLC subroutine are 
compared with a list of known locations DisruptedSitesArchived

� ��������������
 

for disrupted burial sites (DBSs) and labeled based on whether 
one or more looted sites are present in the foregrounds.

 4. C L HForest FG FG
Train

←  CSLTrain(  
� ��

, )
The semi-supervised CSL classification algorithm 
(Chandrashekar and Granger, 2012) is applied to the set of 
pairs of image-foreground histograms HFG

��
 and supervised 

labels LFG


 (DBS/non-DBS) corresponding to each such histo-
gram. The CSL algorithm generates a tree (or forest of trees) in 
which each node performs unsupervised K-means clustering. 
For each cluster in the root node containing members of more 
than one supervised label, a child node is created. This child 
node is passed as data only the members of that cluster. The 
process recurses until leaf nodes each contain members of 

only one category label. Refer to Figure  3 for pseudocode. 
Since the maximum number of child nodes that can be created 
at any node is equal to the number of clusters, the branching 
factor (BF) of this tree is equal to K (the number of means) in 
K-means. The time complexity of this training algorithm is 
O(NK), where N is the number of images and K is the number 
of means. Space complexity is the same (Chandrashekar and 
Granger, 2012).

Testing step
The HCAL procedure to evaluate new data can be summarized 
as follows:

 1. 
 

L HCSLTest CFG
Pred

FG
Test

Forest← ( , )
For each run, we tested the CSL algorithm on hold-out 
images not originally part of the training set; what is returned 
is the set of predicted labels (LFG

Pred

) that correctly and incor-
rectly classified as DBS. In the root node, each data point is 
assigned to its nearest cluster and is recursively passed to 
the corresponding child node. This repeats until the data 
point enters a leaf node, where it is assigned a label based 
on the label of training points assigned that leaf node during 
training. Since this approach amounts to a traversal from the 
root node to a leaf, in a full tree the time complexity is log-
linear. Using a simple voting scheme, multiple trees can be 
combined in a random forest. For this experiment, we used 
repeated random subsampling to generate validation/test sets 
(see “Materials and Methods”).

contrasts with Prior art
Many categorization techniques customized to change detection 
in very high-resolution satellite imagery are not directly applica-
ble to the task at hand. Looting pits are defined by their structure, 
so pixel-based, texture-based, or multispectral methods will not 
work. Distractors are numerous, and both targets and distractors 
are varied, so fully unsupervised methods are likely to fail. These 
limitations leave few options in the prior art fit for comparison. 
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However, our method can be contrasted with supervised methods 
such as the SVM, one of the most widely used statistical classifica-
tion methods for remote imaging and other data, in two key ways: 
(i) SVMs classify entire input images, without localizing those 
features within the image which are most responsible for the clas-
sification and (ii) whereas SVMs laboriously (and computation-
ally expensively) construct a “separator surface” containing all of 
one category on one side of the separator (in high-dimensional 
input feature space) and the other category on the other side, the 
HCAL algorithm simply identifies regional volumes in the space 
containing similar looking data, and iteratively sub-partitions 
those volumes whenever they contain mismatching labels. More 
fine-grained splits are performed only where necessary. The 
HCAL’s CSLTrain mechanism is estimated to cost roughly an 
order of magnitude less in terms of time complexity than SVMs 
[for evidence, see Chandrashekar and Granger (2012)]. Here, we 
will compare against an SVM with linear, quadratic, and cubic 
polynomial kernels (see “Materials and Methods”), and against 
Naïve Bayes and linear discriminant analysis (LDA) classifiers.

DaTa

The primary dataset used in the current study included a set of 
satellite images from the pyramid fields region of Egypt, cap-
tured by the EROS-B1 satellite at a panchromatic mean ground 
sample distance (spatial resolution) of 0.71 m per pixel. A large 
(3,200  ×  4,300 pixels) region was tested. This region contains 
multiple instances of looted burial sites, substantial expanses of 
open desert, and multiple distractors such as farmland, buildings, 
modern (non-archaeological) graveyards, and military bases with 
bomb craters. Like many similar approaches to the monitoring of 
structural objects (e.g., Wei et al., 2004; Sirmacek and Unsalan, 
2009), we restrict analysis to grayscale images to demonstrate 
broad applicability across high-spatial-resolution commercial 
satellites many of which are panchromatic in high resolution (e.g., 
GeoEye-1, WorldView-2 and 3, and Ikonos). Luminance was 
normalized across the entire dataset to improve dynamic range.

MaTerials anD MeThODs

Our team split the very high-resolution satellite data into tiled 
images of dimensions 30 × 30 pixels with an overlap of 10 pixels 
to ensure that features on the scale of looting pits (generally 
smaller than 10 pixels in diameter) could be intact in at least 
one image. From these images, 300 looting sites and 2,000 other 
locations were randomly sampled for use (visualized in Figure 
S1 in Supplementary Material). This unbalanced ratio better 
mimics real world conditions, wherein looting pits cover only a 
small fraction of the land mass. To better take advantage of the 
limited number of training examples, we reduced the number 
of training images without looting pits to equal the number of 
training images with pits for the supervised components of the 
algorithm (CSLTrain). Human experts identified initial sets of 
DBSs for training and validation manually, with crosschecking 
by multiple trained participants.

We ran JLC with an a  priori expectation of 32 clusters of 
images being present in the dataset. JLC-utilizing bounding 

boxes incorporated a tree-based pyramid search for the opti-
mal rectangle. Using superpixel-based localization (sample 
localizations in Figure 4; results in Figure S2 in Supplementary 
Material), JLC identified a contiguous combination of superpix-
els, which together produced the most likely feature histogram 
most likely to belong to a cluster. Superpixels resulted from an 
over-segmentation of the image; most objects are assumed to be 
comprised of numerous adjacent superpixels. Readers may refer 
to Chandrashekar et al. (2014) for more details. While the degree 
of segmentation in this study was hand-tuned to over-segment 
desert scenes, interesting future work would be to apply an adap-
tive segmentation technique, such as fuzzy binarization applied in 
Santosh et al. (2016) to automatically identify the optimal degree 
of over-segmentation based on weather conditions.

CSLTrain was implemented with a forest of 100 CSL trees 
wherein each node of each tree attended to a randomly selected 
20% of the 40 available feature histogram dimensions. We chose 
branching factors of 2 and 6 from an exploration of the relative 
accuracies of many branching factors. In this case, accuracy peaks 
just above a branching factor of 2, and falls off if the branching 
factor is increased further. Practically, many branching factors 
performed acceptably. Leaf nodes claiming less than seven data 
points did not include splitting and, instead, had labeling as 
looting pits based on whether the majority of their data points 
contained one or more pits. We recombined the final results for 
CSLTest using a simple voting scheme. Our team performed each 
validation trial by randomly selecting 2,300 unique images (300 
with looting and 2,000 without) with replacement between trials. 
Within each trial, we selected unique random initializations for 
JLC and CSLTrain, each of which functions via error reduction 
from an initial state. Results for each trial are the mean across 3 
different random initializations, each of which is scored as the 
mean results of CSLTrain across 10 bootstrapped samples. Two 
algorithms are compared; CSL on the outputs of JLC and SVM 
(linear, quadratic, and cubic kernels) on bags of visual words 
representing the original images. In Figure S3 in Supplementary 
Material, we also compare CSL on the outputs of JLC against SVM 
(linear, quadratic, and cubic kernels), LDA, and Naïve Bayes on 
the outputs of JLC in place of CSLTrain and CSLTest.

resUlTs

We trained HCAL and comparison algorithms on random 
subsamplings of the data for cross-validation (see “Materials 
and Methods”). Results of identification and localization are 
shown for a Dashur satellite image (Figure S1 in Supplementary 
Material). The HCAL algorithm can operate in either bound-
ing box localization mode or superpixel localization mode. 
Localization of looting pits within images appeared reasonable 
in both localization modes. It is important to re-note that HCAL 
always localizes the most likely object in the image given the other 
images, regardless of its supervised label.

Figure 5 illustrates the statistical findings using SIFT features 
and bounding boxes for localization. Figure  5A shows the 
accuracy of predictions made by the HCAL method introduced 
here and by SVM trained on a simple bag of visual words run 
on the original images using the same visual vocabulary. In the 
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FigUre 4 | localization results for three example satellite image patches. Top row: superpixel-localized regions. Middle row: bounding box-localized 
regions. Bottom row: heat maps of the same images wherein brighter colors indicate the location of features more indicative of the subimage’s similarity cluster. Red 
circles mark human-localized looting pits. Examples (a) and (B) contain looting pits, while example (c) contains structural walls, with no graves or looting pits 
present.
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SVM case, linear, quadratic, and cubic kernels were evaluated 
(see “Materials and Methods”). The HCAL method outperforms 
the SVMs. Shown in Figure 5B are accuracy measures given a 
varying percentage of the data used for training (from 20 to 90%). 
It can be seen that the HCAL method reliably outperforms linear 
SVMs by 2–4 accuracy percentage points for all sizes of training 
data used. A receiver operating characteristic plot (Figure  6) 
shows that HCAL results (again, SIFT features and bounding box 
localization) are competitive with the results of linear SVMs not 
only in terms of accuracy of prediction but also in terms of low 
false-positive rates (14.62 ± 0.18% for HCAL with a branching 
factor of 2; 14.96 ± 0.17% for HCAL with a branching factor of 6; 
17.75 ± 0.06% for linear SVM). Using SIFT features, HCAL with 
a branching factor of 2 scores an accuracy of 85.33 ± 0.16 against 
linear SVM’s 82.11 ± 0.06. Results are similar using SURF features. 
Accuracy is reduced across the board using the less descriptive but 
more concise HOG features, although HCAL still outperforms 
SVM in this case (Figure S2A in Supplementary Material). We 
also tested superpixel-based localization, which generally per-
formed more poorly; see Figure S2B in Supplementary Material 
for details. Examples of typical localization results are available 

in Figure 4. Resultant tree structures are available in Figure S4 in 
Supplementary Material. See Figure S6 in Supplementary Material 
for a large number of localization examples for the bounding box 
localized SIFT feature condition.

DiscUssiOn

The HCAL algorithm outperforms SVM regardless of branching 
factor used. This is a reflection of the importance of localizing 
repeated features, further enhanced by HCAL’s ability to model 
the hierarchical substructure of the data in order to create more 
intelligent decision boundaries. Meanwhile, the algorithm can 
run on a commodity workstation, making it affordable for wide-
scale implementation.

As our data show both SVM and HCAL perform better 
on SIFT- and SURF-transformed images than on HOG. This 
was found to be true anecdotally for several other feature 
transforms as well. Two factors could underlie this difference. 
First, subpar localizations during the JLC stage could forestall 
class separability during CSLTrain by excluding regions or 
including distractor pixels. However, this would not explain the 
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FigUre 5 | (a) Predictive accuracy using a bounding box localizer with scale-invariant feature transform (SIFT) features for the frontend, N = 100 per SE bar;  
(B) predictive accuracy for support vector machine (SVM) and hierarchical categorization and localization (HCAL) as a function of number of training examples, using 
identical parameters (N = 50 per SE bar).
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reduced performance in SVM results, where localization was not 
performed. Alternately, the DMap histograms (HFG

��
) generated 

from those localizations could be less informative due to the 
impoverished feature information encoded in HOG descriptors. 
This explanation seems more likely.

One of the primary driving factors of algorithm selection for 
this problem domain is the ability to function on a minimal set of 
supervised labels. HCAL accomplishes this by modeling the data 
generatively and not requiring labels for the various and plentiful 
non-target classes. Multiple subclasses of a target class can be 
modeled separately, and each can differentiate from each non-
target class with unique decision boundaries. These boundaries 
are not limited to linear functions due to the hierarchical nature 
of the CSL step. This same feature also reduces overfitting. With 
each hierarchical split of the data during CSLTrain, a very simple 
classifier is created (K-means and 1NN). Since purely disrupted 
burial site (DBS) and purely non-DBS clusters are never split 
again, the model avoids unnecessary complexity.

As can be seen in Section “Results,” HCAL remained superior 
to SVM as the training dataset shrunk. In the 20% training case, 
HCAL was able to build a forest of differentiating trees superior 
in accuracy to SVM using as few as 32 example images. The false-
alarm rate for the HCAL algorithm is quite low, as is the FP rate 
for SVM utilizing the JLC prestep. This is in contrast to compet-
ing algorithms for this problem domain, which often encounter 
many FPs, an understandable issue given the ratio of target to 

non-target images. Although unnecessary, additional reductions 
to the false-alarm rate could be achieved by training the same 
algorithm on some of the most common non-target categories 
and removing instances of those categories from the dataset. 
The low false-positive rate of the HCAL method is of particular 
interest when attempting to minimize human intervention in the 
automated monitoring of archaeological sites over extended time 
periods.

We performed an additional evaluation (Figure S3 in 
Supplementary Material) of predictive accuracy using SVM 
(linear, quadratic, and cubic kernels), LDA, and Naïve Bayes in 
place of the CSL step. Direct comparison of these algorithms 
with the CSL step is of minor interest, since only CSL learns 
the hierarchical generative structure of the data, enabling it to 
model multiple DBS and distractor appearance classes. Results 
indicate that, while CSL is often the top performer, accuracy is 
not as strongly tied to this choice—what matters most is the JLC 
localization phase.

To our knowledge, the localizations generated by HCAL 
are unique in this problem domain. All existing segmentation 
approaches identify extents of an image based not on structural 
information but based on edges, keypoints, texture, or spectral 
content (e.g., Kass et  al., 1988; Agouris et  al., 2001; Hofmann, 
2001; Wei et  al., 2004; Mayunga et  al., 2005; Peng et  al., 2005; 
Hofmann et  al., 2008; Opitz and Blundell, 2008; Sirmacek and 
Unsalan, 2009). By contrast, HCAL operates on remote sensing 
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FigUre 6 | Disrupted burial site (DBs) correct identification rate vs 
false-alarm rate. Results generated using scale-invariant feature transform 
features with bounding box localization from one complete trial (tested using 
3 random initializations, 10 bootstrapped train/test splits each). Correct 
identification rate, also known as sensitivity or true positive (TP) rate, is 
measured as the number of positive “DBS is present” responses from the 
algorithm divided by the total number of images of DBSs. False-alarm rate, 
or false positive (FP) rate, equals the number of negative “no DBS present” 
responses from the algorithm divided by the total number of images without 
DBSs. A position in the top left of a receiver operating characteristic (ROC) 
plot such as this is desirable because it indicates that all DBSs were located, 
while no distractors were mistaken for DBSs. For comparison, co-displayed 
are 30 runs on the same images for SVM (linear kernel) and the SVM 
receiver operating characteristic curve (calculated using 10-fold cross-
validation).
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data by searching for structural configurations (as described in 
Section “Algorithm Description”) that have been identified. Of 
equal interest is the subsequent ability of the method, once it has 
found a structural object, to then successively identify more fine-
grained localizations (see “Training Steps” and “Testing Step”), 
greatly facilitating identification of regions of experimenter 
interest.

Under certain conditions, HCAL can miss looting pits. In 
images where multiple instances of the same object are present, 
the algorithm will often localize a subset of the instances. This 
is likely due to the algorithm’s requirement that localizations 
take the form of a contiguous superpixel or box. Adding, to the 
histogram, the desert sand between DBSs would be detrimental 
to forming a good match, but averaging another DBS into an 
existing DBS histogram changes it little. In practice, the task of 
identifying looted regions with ongoing additional looting can 
be accomplished by masking previously identified looting pits.

A variant of the algorithm using superpixel-based localiza-
tions rather than bounding boxes was also analyzed (Figure S2B 
in Supplementary Material). Under such a scheme, the HCAL 
algorithm still performed reasonably well but found difficulty 

surpassing SVMs in the SIFT feature case. Superpixel-based 
localizations can form complex concave regions. These regions 
can wrap around a disrupted burial sites, capturing much 
of the pixels indicative of disruption, without covering the 
human-marked location of disruption. This could lead to DBS-
negative exemplars containing DBS features. This problem is 
perhaps specific to a point-based supervisory labeling system, 
so further work is required to ascertain the impacts of localiza-
tion boundaries on HCAL. The superpixel segmentation itself, 
performed as preprocessing step prior to all other tasks, could 
easily be supplemented to expand superpixel boundaries into 
convex regions, helping to guide superpixels toward selection of 
the entire looting pit.

Minimal parameter tuning is required to reach near-optimal 
results with HCAL, in contrast with existing methods. The most 
important parameters in this algorithm are the vocabulary size 
from which to generate DMap

� ������
, the number of generative classes 

to expect when localizing, and the branching factor of the CSL 
step. We chose a vocabulary size of 40, since it is slightly superior 
to other explored sizes such as 20 or 80. Future work might 
find improved performance by fine-tuning this parameter. We 
explored the use of 16, 32, or 64 generative classes for localization. 
The difference in accuracy was minimal, so we report results for 
32 classes here. Branching factor makes a substantial difference, 
and numbers for two branching factors, 2 and 6, are reported 
side-by-side. Figure S5 in Supplementary Material supplies accu-
racies for each of the mentioned parameter choices.

Presented here is a complete solution for target category iden-
tification in remote sensing imagery. However, the broader goal 
is to enable fast response to archaeological looting by academic 
institutions across the globe. The authors propose a system by 
which satellite images of each site of interest are downloaded at 
regular intervals (weekly or monthly depending on the risk of 
looting to the site and ongoing damage assessment), and each 
image is analyzed for looting pits. Each new image is compared 
with the category labels (DBS/non-DBS) of previous views of the 
same coordinates, and new DBSs are forwarded to humans for 
confirmation and action. Confirmed looting pits might be added 
to a supervised dataset for future retraining of the algorithm. This 
solution also has applications across entire countries where loot-
ing patterns are similar. While our error rates might be greater due 
to an increased number of land classifications units, our process 
would pick out looting hotspots for individual site inspection. 
This would effectively cut out the most time-consuming process 
of looting mapping for an entire country: scanning each site 
individually and over time. Our proposed solution would also 
pick out looting hotspots at unknown sites (i.e., not in national 
archaeological site databases or GISs), facilitating both new site 
registration and site protection.

cOnclUsiOn

The novel HCAL algorithm presented here is an ideal candidate 
for VHD satellite image analysis when the goal is to identify 
numerous instances of target categories among many distrac-
tors using minimal human intervention and training data. We 
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first acquire numerous grayscale VHD satellite images from an 
archaeological site of interest, some of which contain looting pits 
and many which do not. These images are grouped by structural 
content using unsupervised clustering while simultaneously 
localizing the regions in each image which contain structural 
content associated with the image’s cluster. We then train a hier-
archical model of the data consisting of multiple categories, some 
of which are labeled as containing pits based on human labeling. 
Numerous future images can be labeled as containing looting 
pits based upon the same system, and results can be compared 
with previous data. Changes in labels (not at the pixel level, but 
at the image level) can be flagged for human confirmation and 
intervention. These new images can be combined with archival 
images to increase the power of the model for future predictions. 
We have shown that this system works well throughout multiple 
tested subregions of an archaeological site in Egypt, producing 
advantageous false-positive rates despite the large number of 
distractors. HCAL is the first algorithm of its type to be applied 
in the defense of archaeological sites from human intervention. It 
has minimal parameters, making it easy to apply to new regions. 
We speculate that it will have high value as a tool across a broad 
range of unforested sites at risk for looting. While the methodol-
ogy presented here does not have an accuracy of 100%, it could 
be applied across satellite datasets of an entire country, finding 
the majority of total sites affected by looting (both known sites 
and previously unknown sites). Finding the actual sites affected 
by looting is the most time consuming process of a countrywide 
analysis. We simply do not have a good sense of the total numbers 
of sites affected by looting in the Middle East, nor do we have 
an efficient way of monitoring countrywide satellite data to alert 

authorities. This automated approach is at present the best tool for 
rapid analysis of large-scale site looting.
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