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Quantum annealing algorithms belong to the class of metaheuristic tools, applicable for 
solving binary optimization problems. Hardware implementations of quantum annealing, 
such as the quantum processing units (QPUs) produced by D-Wave Systems, have 
been subject to multiple analyses in research, with the aim of characterizing the tech-
nology’s usefulness for optimization and sampling tasks. In this paper, we present a 
real-world application that uses quantum technologies. Specifically, we show how to 
map certain parts of a real-world traffic flow optimization problem to be suitable for 
quantum annealing. We show that time-critical optimization tasks, such as continuous 
redistribution of position data for cars in dense road networks, are suitable candidates 
for quantum computing. Due to the limited size and connectivity of current-generation 
D-Wave QPUs, we use a hybrid quantum and classical approach to solve the traffic flow 
problem.

Keywords: optimization, quantum annealing, traffic flow, quantum computing, optimization algorithms

1. InTRoDUcTIon

Quantum annealing technologies such as the quantum processing units (QPUs) made by D-Wave 
Systems are designed to solve complex combinatorial optimization problems (Johnson et al., 2011). 
Previous experiments have shown how these QPUs implement quantum annealing and that the 
quantum bits (qubits) in the QPU remain coherent and entangled during the annealing process 
(Lanting et  al., 2014). It has also been shown how the quantum properties of qubits play a role 
in the computation of solutions in both sampling and optimization tasks (O’Gorman et al., 2015; 
Perdomo-Ortiz et al., 2015; Rieffel et al., 2015; Venturelli et al., 2015a,b; Denchev et al., 2016; Los 
Alamos National Laboratory, 2016; Raymond et al., 2016). The QPU is designed to solve quadratic 
unconstrained binary optimization (QUBO) problems, where each qubit represents a variable, 
and couplers between qubits represent the costs associated with qubit pairs. The QPU is a physical 
implementation of an undirected graph with qubits as vertices and couplers as edges between them. 
The functional form of the QUBO that the QPU is designed to minimize is:

 Obj( )x Q x Q xT, = ⋅ ⋅ , (1)

where x is a vector of binary variables of size N, and Q is an N × N real-valued matrix describing 
the relationship between the variables. Given the matrix Q, finding binary variable assignments to 
minimize the objective function in equation (1) is equivalent to minimizing an Ising model, a known 
NP-hard problem (Lucas, 2014).
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FIgURe 1 | OSMnx graph for the downtown area of Beijing.
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In this paper, we will introduce the traffic flow optimization 
problem. We start with the T-Drive trajectory data set1 of cars’ GPS 
coordinates and develop a workflow to mimic a system that aims 
to optimize traffic flow in real time. We show how to transform 
key elements of the problem to QUBO form, for optimization on 
the D-Wave system (including both the machine and software 
tools that use it). We treat the D-Wave system as an optimizer 
and show that it is possible to integrate D-Wave QPU calls into 
a workflow that resembles a real-world application. The method 
presented here is a novel approach to mapping this real-world 
problem onto a quantum computer.

2. FoRMUlATIon oF The TRAFFIc FloW 
pRoBleM

The objective of the traffic flow optimization problem is to 
minimize the time for a given set of cars to travel between their 
individual sources and destinations. We used the simplifying 
assumption that time to traverse a street is proportional to a 
function of the number of cars currently occupying the street. 
Thus, we minimize total time for all cars by minimizing total 
congestion over all road segments. Congestion on an individual 
segment is determined by a quadratic function of the num-
ber of cars traversing it in a specific time interval. To ensure 
reproducibility, we used the publicly available T-Drive trajec-
tory data set containing trajectories of 10,357 taxis recorded 
over 1 week. The data set features 15 million data points, and 
the total distance of the trajectories makes up about 9 million 
kilometers (Yuan et al., 2011, 2013; Zheng, 2011). We required 
every car to transmit its GPS coordinates in intervals of 1–5 s. 
Because not all cars in the data set provide transmission data 
at this rate, we enriched the data set by interpolating between 
GPS points. We split the problem into a step-by-step workflow, 
outlined below. “Classical” refers to calculations on classical 
machines, and “quantum” refers to calculation on the D-Wave 
system:

 1. Classical: preprocess map and GPS data.
 2. Classical: identify areas where traffic congestion occurs.
 3. Classical: determine spatially and temporally valid alternative 

routes for each car in the data set, if possible.
 4. Classical: formulate the minimization problem as a QUBO 

(to minimize congestion in road segments on overlapping 
routes).

 5. Hybrid quantum/classical: find a solution that reduces con-
gestion among route assignments in the whole traffic graph.

 6. Classical: redistribute the cars based on the results.
 7. Iterate over steps 2–6 until no traffic congestion is identified.

A visualization of the input graph is shown in Figure 1. This 
visualization was generated using the OSMnx API, which is 
based on OpenStreetMap and allows for retrieving, constructing, 

1 This open source data set provided by Microsoft can be found at: https://www.
microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/. 

analyzing, and visualizing street networks from OpenStreetMap 
(Boeing, 2017).

2.1. Determination of Alternate Routes
To illustrate how we formulate the problem, we focus on a 
subset of the T-Drive data set. Of the 10,357 cars in the data 
set, we select 418 of those that are traveling to or from the city 
center and the Beijing airport. In this specific scenario, the goal 
was to maximize traffic flow by redirecting a subset of the 418 
cars to alternative routes such that the number of intersecting 
road segments is minimized. For this, optimizing over all cars 
simultaneously is required, which means that any redistribu-
tion of cars that resolves the original congestion must not cause 
a traffic jam anywhere else in the map. We used the OSMnx 
package to split the map of Beijing into segments and nodes and 
assign a unique ID to each. Our procedure can be summarized 
as follows:

 1. Extract the road graph from the Beijing city map using 
OSMnx. This returns lists of segments and nodes with IDs. 
Nodes represent connections between segments, and seg-
ments are edges connecting the nodes, representing the streets 
(Figure 1).

 2. Map the T-Drive trajectory data set cars’ GPS coordinates 
onto street segments in the graph, to determine the routes 
taken by the cars.

 3. For each car, and each source and destination node, we extract 
all simple paths from source to destination and obtain 3 candi-
date alternative routes.2 We use these 3 candidates as proposed 
alternative routes to redistribute traffic.

2 A simple path can traverse several nodes from source to destination, but without 
returning to nodes which were already visited (no cycles). Several thousands of 
simple paths from source to destination (per car) may exist. We selected two simple 
paths that are most dissimilar to the original route, and to each other, and proposed 
these as alternates, along with the original route. To do this we used the Jaccard 
similarity index.
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FIgURe 2 | An example of a single car (with ID 10012) and its assigned 
routes, split into segments.
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2.2. Formulating the Traffic Flow 
optimization in QUBo Form
The definition of variables for the QUBO (equation (1)) requires 
some classical preprocessing on the input. In rare cases, it may 
not be possible to switch a car to different routes. For example, 
if there is no intersection or ramp near the car, it will not be 
considered for rerouting and will remain on its original path. 
Nevertheless, this car will still affect possible routings of other 
cars, so it is included in the QUBO. Figure 2 shows an exam-
ple with road segments assigned to a car, as it is used in our 
workflow.

To optimize the traffic flow, we minimize the number of 
overlapping segments between assigned routes for each car. 
Thus, we formulate the optimization problem as follows: “Given 
3 possible routes per car, which assignment of cars to routes 
minimizes the overall congestion on all road segments?” We 
require that every car should be assigned one of the 3 possible 
routes, while simultaneously minimizing total congestion over 
all assigned routes. It is important to emphasize that in this 
example each car was proposed 3 possible alternative routes—
not the same set of 3 routes for all cars. This need not be the case 
in general; cars can have many possible routes. For simplicity, 
we take (maximum) 3 routes per car, because the mathematical 
description of the problem is identical regardless of the number 
of routes.

For every possible assignment of car to route, we define a 
binary variable qij representing car i taking route j. Because each 
car can only occupy one route at a time, exactly one variable per 
car must be true in the minimum of the QUBO. We define a con-
straint such that every car is required to take exactly one route. 
This can be formulated as the following constraint (assuming 3 
possible routes):
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simplified using the binary rule x2  =  x. As stated previously, 
routes are described by lists of street segments (S being the set 
of all street segments in the graph). Therefore, for every street 
segment sϵS, we identify all binary variables qij associated with 
routes that share street segment s (call this set Bs) and formulate 
the occupancy cost function:
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In general, there can be many car/route variables qij that share 
some street segment s. equation (3) will then give a linear term 
for each of the binary variables (with a coefficient of +1) and 
a quadratic mixed term for every combination of two binary 
variables (with a coefficient of + 2). The global cost function for 
the QUBO problem, Obj from equation (1), can now be simply 
described by summing the cost functions for each street segment 
and the constraint from equation (2):

 
Obj cost= + −









 .

∈
∑ ∑ ∑
s S i j
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1
 

(5)

When summing components of the global cost function, the 
scaling parameter λ must be introduced. This ensures that equa-
tion (2) is satisfied for all cars in the minimum of the QUBO. To 
find this scaling factor, we find the maximum number of times 
some car i is present in cost functions of the form equation (3) 
and use this value as λ. This makes the cost of violating equa-
tion (2) greater than the cost of increasing the segment occupancy 
in every route by 1.

Now the cost function can be formulated as a quadratic, upper-
triangular matrix, as required for the QUBO problem. We keep 
a mapping of binary variable qij to index in the QUBO matrix Q 
(as defined in equation (1)), given by I(qij). These indices are the 
diagonals of the QUBO matrix. The elements of the matrix are 
the coefficients of the qij terms in equation (5). To find these terms 
explicitly, whenever two routes j and j′ share a street segment s:

 1. We add a (+1) at diagonal index I(qij) for every car i proposed 
with route j containing segment s.

 2. We add a (+2) for every pair of cars i1 and i2 taking route 
j containing segment s at the off-diagonal element given by 
indices I qi j( )

1
 and I qi j( )

2
.

We then add the constraints to enforce that every car has only 
one route, as per equation (2):

 1. For every car i with possible route j, we add (−λ) to the diago-
nal of Q given by index I(qij).

 2. For every cross-term arising from equation (2), we add (2λ) to 
the corresponding off-diagonal term.

A special case occurs if a car is proposed only one route, 
meaning qij = 1. As stated previously, despite car i being assigned 
to route j, this assignment still affects other cars. This forces the 
quadratic constraint terms from equation (3) to be turned into 
additional linear terms: 2 2q q qij i j i j′ ′ ′ ′→ . Additionally, by keeping a 
record of which routes every segment appears in, we can remove 
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FIgURe 3 | QUBO matrix describing the traffic flow problem.
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the redundant constraints, as some routes may overlap in more 
than one segment.

This results in a QUBO matrix as shown in Figure 3.

2.3. Summary of the Traffic Flow 
optimization Algorithm
Expressed as pseudo-code, the important high-level steps of the 
traffic flow optimization algorithm are as follows:

 1. For each car i:
 a. Determine the current route.
 2. For each car i’s current route:
  a. Map the source and destination to their nearest nodes in 

the road graph.
 3. For each with source/destination pair:
  a. Determine all simple paths from source to destination.
  b. Find two alternative paths that are maximally dissimilar to 

the original route and to each other.
 4. For each car i, define the set of possible routes needed to form 

the QUBO.
 5. Define the matrix Q with binary variables qij as described in 

Section 2.2.
 6. Solve the QUBO problem.
 7. Update cars with the selected routes.

3. D-WAVe SolVeRS AnD 
ARchITecTURe

Here, we briefly introduce the solvers and tools provided by 
D-Wave, to help understand how the problem was solved using 
the QPU.

3.1. connectivity and Topology
The topology of the D-Wave 2X QPU is based on a C12 Chimera 
graph containing 1,152 vertices (qubits) and over 3,000 edges 
(couplers). A Chimera graph of size CN is an N  ×  N grid of 
Chimera cells (also called unit tiles or unit cells), each containing 
a complete bipartite graph of 8 vertices (K4,4). Each vertex is con-
nected to its four neighbors inside the cell as well as two neighbors 
(north/south or east/west) outside the cell; therefore, every vertex 
has degree 6 excluding boundary vertices (King et al., 2015).

The 418-car example used 1,254 logical variables to represent 
the problem. A challenge in this scenario is the restricted connec-
tivity between qubits on a D-Wave QPU, which limits the ability 
to directly solve arbitrarily structured problems. When using 

the D-Wave QPU directly, an interaction between two problem 
variables can only occur when there is a physical connection 
(coupler) between the qubits representing these variables. For 
most problems, the interactions between variables do not match 
the QPU connectivity. This limitation can be circumvented using 
minor embedding, a technique that maps one graph structure to 
another. The QPU we used has 1,135 functional qubits, thus it was 
not possible to embed the 1,254 logical variables on the QPU at 
once. Therefore, the problem was solved using the hybrid classi-
cal/quantum tool qbsolv (described in the next section).

3.2. The qbsolv Algorithm
In January 2017, D-Wave Systems open-sourced the software 
tool qbsolv (D-Wave Systems, 2017).3 The purpose of this algo-
rithm is to provide the ability to solve larger QUBO problems, 
and with higher connectivity, than is currently possible on the 
QPU. Given a large QUBO input, qbsolv partitions the input 
into important components and then solves the components 
independently using queries to the QPU. This process iterates 
(with different components found by Tabu search) until no 
improvement in the solution is found. The qbsolv algorithm can 
optimize subproblems using either a classical Tabu solver or via 
submission to a D-Wave QPU. In this paper, we run qbsolv in 
the hybrid classical/quantum mode of submitting subproblems 
to the D-Wave 2X QPU.

The high-level steps performed by qbsolv in hybrid mode are 
as follows:

 1. Find the largest clique4 that can be minor embedded in the 
QPU topology, or in the full Chimera graph if using the VFYC 
feature.5 This one-time operation can be done in advance.

 2. Given a QUBO problem, initialize random bit string repre-
senting a solution to the problem.

 3. Use a heuristic method to rank nodes according to importance; 
create a subproblem that fits on the QPU using the importance 
ranking.

 4. Create subproblem using the importance order.
 5. Solve subproblem by submitting it to the QPU and update 

variable states in the bit string.
 6. Iterate steps 3–5 until no improvement in the objective func-

tion is found.

A full description of how the qbsolv algorithm works is 
detailed in Booth et al. (2017).

4. ReSUlTS

The goal of these experiments was to map a real-world problem 
to a quantum annealing machine, which we have shown. When 

3 The source code can be found at: github.com/dwavesystems/qbsolv. 
4 A clique is a graph where all nodes are connected to each other.
5 D-Wave has recently introduced a “virtual full-yield Chimera” (VFYC) solver, 
which takes the working QPU and simulates the missing qubits and couplers using 
classical software. This allows for some programs to be standardized across the 
different QPUs, and within generations of QPUs. This VFYC version of the D-Wave 
2X solver was used in our experiments.
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qbsolv with calls to the D-Wave 2X QPU. The y-axis shows the distribution of 
number of congested roads. The red line is the number of congested roads 
given the original assignments of routes.
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evaluating the solutions produced by the D-Wave QPU, the focus 
was on finding good quality solutions within short periods of 
calculation. To quantify the quality of a solution, we count the 
number of congested roads after optimization. Keeping in mind 
that routes are described by sets of road segments, we simply count 
the number of segments that appear in routes more than a given 
number of times (Nintersections). Here, we assume that a segment that 
appears in more than Nintersections routes will become congested. For 
this experiment, we chose Nintersections = 10.

To evaluate the QUBO formulation of the traffic flow problem, 
we designed the following experiment: for the 418 car QUBO 
problem (as presented in Section 2.2), we solved the problem 50 
times using qbsolv. We also generated 50 random assignments of 
cars to routes as reference for the results. Intuitively, one would 
expect random route assignments to spread traffic across the 
alternative routes, thus reducing the number of congested seg-
ments. In Figure 4, we show the distribution of results (measured 
as the number of congested segments) after running the experi-
ments using qbsolv and random assignments.

From the results in Figure  4, we can see that qbsolv redis-
tributes the traffic over possible routes in a way that reduces the 
number of congested roads. This is evident both with respect to 
random assignment of routes and also shows improvement over 
the original assignment of routes. It should be noted that in the 
original assignment, there was a relatively small number of streets 
that are heavily occupied (meaning above the Nintersections  =  10 
threshold), as all the cars shared the same route, and that the 
average occupancy was much higher than Nintersections =  10. It is 
also worth noting that all 50 experiments using qbsolv resolved 
the congestion.

Additionally, we measured the performance of qbsolv as a 
function of its run time. The qbsolv source code was compiled and 
executed on a server in Burnaby, Canada, to minimize the latency 
between submitting jobs to the QPU and obtaining the results. 
However, since the QPU used was a shared resource via the cloud, 
run time of qbsolv varied greatly. Therefore, we consider the run 
time of qbsolv to be the minimum of the observed run times, as 
this represents most faithfully the algorithm, independent of the 
load on the D-Wave system. This run time was observed as 22 s. 
There is also no evidence of correlation between the run time of 

FIgURe 5 | Left: Unoptimized situation under consideration of cars causing traffic jam in the network. Right: Optimized redistributed cars using qbsolv. Note that 
the areas in red, which indicate high traffic density, are mostly absent from the right picture.
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qbsolv and performance (the long run times are due to waiting 
in the job submission queue). Given the performance results of 
qbsolv, it is reasonable to assume that a dedicated D-Wave QPU 
(circumventing the public job submission queue) could be suitable 
for these kinds of optimization problems. A visual showing the 
traffic density on the Beijing road graph before (original routes) 
and after optimization (using qbsolv) is shown in Figure 5.

5. conclUSIon AnD FUTURe WoRK

The currently presented problem is a simplified version of traffic 
flow, as it incorporates only a limited set of cars, no communica-
tion to infrastructure, no other traffic participants, and no other 
optimization targets except minimization of road congestion. In 
our future work, we intend to consider all of these parameters 
and will also need to consider creative ways of formulating these 
parameters as part of the QUBO problem. We will continue to 
focus on solving real-world problems by means of quantum 
machine learning, quantum simulation, and quantum optimiza-
tion. Furthermore, we find that these types of real-time optimiza-
tion problems are well-suited for the D-Wave systems and the 

hybrid tools that use them. The more combinatorially complex 
the problem becomes, the more time would be needed for clas-
sical algorithms to consider additional parameters. However, 
D-Wave QPUs have historically grown in number of qubits from 
one generation to the next, and given that this trend is likely to 
continue, it is reasonable to assume that obtaining high-quality 
solutions quickly using the QPU will be sustainable moving 
forward. We expect that in future generations of QPUs, we will 
be able to embed larger problems directly. This will allow us to 
further leverage the performance of the QPU.
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