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Machine learning algorithms have increased tremendously in power in recent years 
but have yet to be fully utilized in many ecology and sustainable resource manage-
ment domains such as wildlife reserve design, forest fire management, and invasive 
species spread. One thing these domains have in common is that they contain 
dynamics that can be characterized as a spatially spreading process (SSP), which 
requires many parameters to be set precisely to model the dynamics, spread rates, 
and directional biases of the elements which are spreading. We present related work 
in artificial intelligence and machine learning for SSP sustainability domains including 
forest wildfire prediction. We then introduce a novel approach for learning in SSP 
domains using reinforcement learning (RL) where fire is the agent at any cell in the 
landscape and the set of actions the fire can take from a location at any point in 
time includes spreading north, south, east, or west or not spreading. This approach 
inverts the usual RL setup since the dynamics of the corresponding Markov Decision 
Process (MDP) is a known function for immediate wildfir e spread. Meanwhile, we 
learn an agent policy for a predictive model of the dynamics of a complex spatial 
process. Rewards are provided for correctly classifying which cells are on fire or 
not compared with satellite and other related data. We examine the behavior of five 
RL algorithms on this problem: value iteration, policy iteration, Q-learning, Monte 
Carlo Tree Search, and Asynchronous Advantage Actor-Critic (A3C). We compare to 
a Gaussian process-based supervised learning approach and also discuss the rela-
tion of our approach to manually constructed, state-of-the-art methods from forest 
wildfire modeling. We validate our approach with satellite image data of two massive 
wildfire events in Northern Alberta, Canada; the Fort McMurray fire of 2016 and the 
Richardson fire of 2011. The results show that we can learn predictive, agent-based 
policies as models of spatial dynamics using RL on readily available satellite images 
that other methods and have many additional advantages in terms of generalizability 
and interpretability.

Keywords: reinforcement learning, machine learning, deep learning, a3c, forest wildfire management, 
sustainability, spatially spreading processes
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1. inTrODUcTiOn

There is a clear and growing need for advanced analytical and 
decision-making tools as demands for sustainable management 
increase and as the consequences of inadequate resources for 
decision-making become more profound. Artificial intelligence 
and machine learning methods provide ways to combine multiple 
modes of information such as spatial statistical ground data, 
weather data, and satellite imagery into a unified model for clas-
sification or prediction.

One high impact example of this potential is forest wildfire 
management. The risk, costs, and impacts of forest wildfires are 
a perennial and unavoidable concern in many parts of the world. 
A number of factors contribute to the increasing importance 
and difficulty of this domain in future years including climate 
change, growing urban sprawl into areas of high wildfire risk, and 
past fire management practices which focused on imme diate 
suppression at the cost of increased future fire risk (Montgomery, 
2014).

There are a wide range of challenging decision and optimization 
problems in the area of forest fire management (Martell, 2015), 
many of which would benefit from more responsive fire behavior 
models which could be run quickly and updated easily based on 
new data. For example, one simple decision problem is whether 
to allow a fire to burn or not, since burning is a natural form 
of fuel reduction treatment. Answering this question requires a 
great deal of expensive simulations to evaluate the policy options 
fully (Houtman et al., 2013).

These simulations are built by an active research community 
for forest and wildland fire behavior modeling. Data are collected 
using trials in real forest conditions, controlled lab burning 
experiments, physics-based fire modeling, and more (Finney 
et al., 2013). These hand crafted physics-based models’ simula-
tions have high accuracy but are expensive to create and update 
and computationally expensive to use. The question we ask is: 
Can we learn a dynamics model from readily available satellite 
image data and treating wildfire as an agent spreading across 
a landscape in response to neighborhood environmental and 
landscape parameters?

In this work, we provide evidence for an affirmative answer to 
this question by introducing a new approach for using reinforce-
ment learning (RL) (Sutton and Barto, 1998) to automatically 
learn wildfire spread dynamics models by treating fire as an agent 
on the landscape taking spatial actions in reaction to its environ-
ment (Subramanian and Crowley, 2017).

Forest wildfire spread as a specific case of a more general 
problem which we call spatially spreading processes (SSPs), 
which occur when local features are changed over time by some 
dynamic process which is a function of properties at different 
locations in space and their proximity to the target location. This 
is to be distinguished from mere prediction of impact of a physi-
cal object moving across space as the SSP can be active in many, 
or all, locations at once. This is also more than merely spatial 
auto-correlation that measures the degree to which features at 
two locations are similar based on their proximity. Spatial auto-
correlation can be an indicator of the presence of an SSP, but the 
dynamic changes over time between spatial locations may not 

result in values being similar or inversely correlated in a simple 
way. In many of these domains, the dynamics are often modeled 
by hand using agent-based models and geostatistics methods. 
In other areas, they are increasingly learned from data streams 
by being treated as videos. However, each of these approaches 
has their drawbacks. One of the goals of our research is to find 
novel representations of local dynamics for SSPs that can provide 
transparent and interpretative solutions to learning of dynamics 
models and decision-making across many domains. The approach 
proposed here offers the tantalizing possibility to represent and 
learn a causal agent-based policy representation using RL which 
would be a much easier model to interpret and analyze for human 
decision makers.

In this article, we carry out experiments on the accuracy of 
interpolation and forward prediction using five different RL 
algorithms in a new formulation of agent-based learning. We 
use easily accessible Landsat satellite data from the USGS satel-
lite data portal and provide a prediction accuracy of resulting 
policies learned with each algorithm upon comparison with the 
same. The dataset is a set of satellite photos of massive wild fires 
in Northern Alberta in 2011 and 2016. We show that Monte Carlo 
Tree search and the Deep RL algorithm A3C (Mnih et al., 2013) 
perform the best but have advantages in different situations in 
this domain. For comparison, we also implemented a Gaussian 
Process (GP) classifier (Rasmussen and Williams, 2006) as a 
supervised learn ing model on the dataset. This classifier places 
a Gaussian Process prior on a latent function, which is then 
squashed to the domain [0, 1] through a link function to obtain 
the probabilistic classification.

This approach has applications in forest wildfire management 
and opens up possibilities for interpretative dynamics models as 
well as providing new challenging data sets for RL research. Our 
approach promises to provide another source of validation for 
existing wildfire models as well as gives us the opportunity to 
perform faster and more accurate prediction by learning patterns 
in the raw data. Another application of our approach would be 
learning transferable models from one data-rich region or time 
period and applying it to another region or time period where 
less data are available if there is evidence that fires in both regions 
behave similarly.

In prior work (Houtman et al., 2013), we have used standard, 
physics-based simulators such as Farsite (Finney, 1998) to carry 
out automated planning of fire control policies using Monte 
Carlo simulations and optimization. These simulations took on 
the order of 1 h to run for 100-year simulations of forest fire 
futures, which present a challenge when thousands of simula-
tion trajectories are needed for statistical confidence. Thus, aug-
menting these detailed simulators with faster approximations 
learned from data could improve the ability to do automated 
planning.

2. reVieW OF liTeraTUre

We provide an overview of the relevant literature on the forest 
wildfire prediction and management problem in general and 
then on the previous use of machine learning algorithms for this 
domain.
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2.1. Machine learning on satellite imagery
Researchers have attempted to use machine learning in combina-
tion with satellite imagery in a series of ecological applications 
in the past. In Kubat et al. (1998), the authors use satellite radar 
images and machine learning for the detection of oil spills. 
Algorithms, such as C4.5 and 1-nearest neighbor, are used along 
with expert rules to train the classifier which the authors specify 
was hard and not completely accurate. Our work completely 
removes the need for such expert rules.

In Jean et al. (2016), satellite imagery and machine learning 
has been used to tackle the case of poverty. Convolutional neural 
nets and transfer learning have been used to derive models having 
good performances in terms of accuracy. This research demon-
strated how machine learning tools, which are typically suited 
for data-rich domains, can be used for data-scarce settings too.

Coral reef research is another aspect that has been studied 
using satellite images and machine learning (Knudby et al., 2010). 
In Knudby et al. (2010), a series of statistical and machine learn-
ing models have been used on the IKONOS satellite imagery to 
produce spatially explicit predictions of species richness, biomass, 
and diversity of fish community. This research motivates the 
exploration of importance of different variables in the predictive 
models by using permutations techniques.

2.2. Forest Wildfire Prediction and 
Management
Montgomery (2014) discusses the increased future fire risk at 
the consequence of fire management practices, which focused on 
immediate suppression. The three core themes of externalities, 
incentives, and risk-based decision analysis in the case of wild 
fire suppression are described. The goal is to determine how the 
core themes contribute to the evolution of an effective future fire 
policy. This problem is also enumerated in Houtman et al. (2013).

The standard for wildland fire behavior and forest fire modeling 
is described in Finney et al. (2013), which carried out exhaustive 
lab experiments, real forest condition simulations, and trials to 
build sound and coherent fire spread theory for model reliability. 
The resulting models are used by the US Forest Service but are 
very computationally expensive to run. The model accuracy 
also varies widely across wild fires in different regions. Cellular 
automaton models are also widely used to predict wildfire spread 
(Yongzhong et  al., 2004). Our approach is easier to apply than 
these methods and is shown to perform better than the same.

The work in Martell (2015) describes the need for a computa-
tionally simple and accurate model for wild fires. They highlight 
a number of challenging decision and optimization problems in 
the area of forest fire management and recent efforts to develop 
decision support tools to overcome them. The focus is on using 
methods of Operations Research to aid fire managers making 
complex decisions about fire suppression and resource allocation.

2.3. Machine learning in Forest Fire 
Management
In Castelli et al. (2015), the authors discuss the application of an 
intelligent system based on genetic programming for the predic-
tion of burned areas in a wild fire situation. They also compare the 

genetic programming methodology to state-of-the-art machine 
learning techniques in fire modeling and conclude that genetic 
programming techniques are better. The major machine learn-
ing techniques used are SVM with a polynomial kernel, random 
forests, radial basis function network, linear regression, isotonic 
regression, and neural networks.

Significant problems have arisen while dealing with large 
databases or long periods of observation (e.g., pattern recogni-
tion, geophysical monitoring, monitoring of rare events (natural 
hazards), etc.). The authors in Forsell et al. (2009) stipulate that 
the major problems in such cases are how to explore, analyze, and 
visualize the oceans of available information. Several important 
applications of machine learning algorithms for geospatial data 
are presented: regional classification of environmental data, 
mapping of continuous environmental data including automatic 
algorithms and optimization (design/redesign) of monitoring 
networks.

Machine learning algorithms use an automatic inductive 
approach to recognize patterns in data. Once learned, pattern 
relationships are applied to other similar data to generate predic-
tions for data-driven classification and regression problems. The 
work in Cracknell and Reading (2014) takes a task of supervised 
lithology classification (geological mapping) using airborne 
images and multispectral satellite data and compares the app-
lication of popular machine learning techniques to the same.  
A 10-fold cross validation was used to select the optimal param-
eters to be used in all the methods. These selected parameters 
were used to train the machine Learning classification models on 
the entire set of samples.

In Sehgal et  al. (2006), the authors use a machine learning 
approach for Geospatial Entity resolution which is the problem of 
consolidating data from diverse sources into a single data source 
referenced by location (in the form of coordinates). Several 
feature-based matching techniques like location name matching, 
coordinate matching, and location-type matching are introduced 
and evaluated. These feature-based matching techniques use each 
location feature independently. A new method integrating spatial 
and non-spatial features and learning a combined spatial similar-
ity measure is introduced.

Modeling forest areas is concentrated upon in Garzón et al. 
(2006). The environmental variables consisting of both topo-
graphic and climatic factors are considered in this work. A mod-
eling framework for habitat modeling is established to train, test, 
and validate the popular predictive machine learning methods. 
Neural Networks, Random Forests, and Tree-Based Classification 
are used as predictive models. A ROC curve (Specificity vs 
Sensitivity graph) analysis is done for parameter selection. 
Species distribution and habitat modeling are described to be 
complex problems much like the wild fire problem with many 
responsible factors and the authors admit that modeling all the 
factors are impossible with the current state of the art. Hence, 
having an agent-based approach that learns the relevant factors 
on its own seems to be the most suitable idea.

Machine learning is used for the spatial interpolation of 
environmental variables in Li et al. (2011). In this study, around 
23 methods are considered including popular machine learning 
methods and their combinations. Along with machine learning, 
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the considered methods were drawn from a large pool of catego-
ries including geostatistical methods, non geostatistical methods, 
statistical methods, and combined methods. The dataset consists 
of about 177 samples of sea bed mud content in the southwest 
of Australian Exclusive Economic Zone, and the problem is to 
determine the mud content in the other points by interpolation. 
Several primary and secondary variables are considered to influ-
ence this decision. Random forest seems to perform the best 
among the methods considered. RF performance was attributed 
to its relative robustness to outliers and noise, its nature of not 
over fitting with respect to the source data, and its ability to model 
complex interactions.

Recknagel (2001) discusses a summary of all the different 
ecological modeling applications of machine learning. Artificial 
Neural nets, Genetic Algorithm methods, and Adaptive Agents 
seem to perform the best, but they seem to have advantages for 
different problems. The conclusions are that Artificial Neural Nets 
perform well in problems of non-linear ordination, visualization, 
multiple regression, time series modeling, and image recogni-
tion and classification. Genetic algorithms are suitable to evolve 
causal rules, process equations, and optimize process parameters. 
Adaptive agents are suggested for providing a novel framework 
in the aid of the discovery and forecasting of emergent ecosystem 
structures and behaviors in response to environmental changes. 
This review demonstrates that while various classical AI and 
ML techniques have been applied to this domain in preliminary 
forms, there is a gap in the literature on attempting to use modern 
deep learning and RL techniques.

The existing state-of-the-art methods for building fire predic-
tion models directly satellite images include the Forest Fire risk 
prediction model used in China (Zhang et al., 2011), the Canadian 
systems like Forest Fire Weather Index (FWI) System, and the 
Forest Fire Behavior Prediction (FBP) System (Stocks et al., 1989; 
Zhang et al., 2011). These systems are still quite difficult to imple-
ment due to the requirement of large amount of heterogeneous 
sources of data such as fuel property and fire characteristics 
(Zhang et  al., 2011), which requires data from high resolution 
close-range sensors. The work by Alkhatib (2014) explains the 
advantages of the satellite-based fire prediction systems but 
specifies that the temporal resolution of available data serves as a 
serious impediment. Our work specifies a method to learn from 
available data and reliably interpolate to fill the missing spaces to 
get an acceptable overall performance.

We model the forest fire domain as a Markov Decision Process 
(MDP). This approach is becoming more common (Mcgregor 
et al., 2016), but these are usually focused on finding treatment 
actions to be taken to reduce or alter fire spread. We take the novel 
approach of modeling the fire itself as a decision agent attempting 
to minimize prediction error. This is related to work in Forsell 
et al. (2009), which investigated using the state variable to rep-
resent land vegetation cover and environmental characteristics 
but to use the action variable to represent interaction between 
characteristics of nearby locations. This was not on a domain as 
dynamic as forest fire, however, and our approach differs entirely 
in implementation.

Machine learning has also been used to detect and classify burn 
areas in Indian forests (Saranya and Hemalatha, 2012). Saranya 

and Hemalatha (2012) use spatial data mining to obtain useful 
information from a series of datasets and subsequently apply 
supervised algorithms such as Artificial Neural Nets (ANN) and 
Sequential minimal optimization (SMO) to quantify ignition 
risk of different regions and hence predict the occurrence of fires. 
Similarly, Sitanggang and Ismail (2011) use Decision Trees and a 
series of IF–THEN rules to develop a classification model for for-
est fires in Indonesia. We prove the superiority of RL techniques 
to such supervised methods in our work. For instance, the results 
in Sitanggang and Ismail (2011) show an accuracy of about 63%, 
whereas our best RL models perform much better than that in 
similar test cases. In addition, Angayarkkani and Radhakrishnan 
(2009) use fuzzy logic and fuzzy membership rules to make a 
forest fire detection system from satellite images. The methods 
outlined are only capable of predicting fires at the time of satellite 
image availability, and it is not possible to predict forward or in-
between as demonstrated in our work.

Our work also has similarities to the use of intelligent systems 
for predicting burned areas as suggested in Castelli et al. (2015). 
However, that work focused on burned area alone whereas we 
look at the more specific problem of prediction of actual fire 
spread location over the short term.

3. PrOBleM FOrMUlaTiOn

The problem is formulated as a Markov Decision Process (MDP) 
<S, A, P, R> where the set of states S describes any location on 
the landscape. A state s ∈ S corresponds to the state of a cell in 
the landscape (x, y, t, l, w, d, rh, r) where x and y are the location 
of the cell, t is the temperature at the particular time and location, 
and l is the land cover type of the cell, which could be one of 
water, vegetation, built up, bare land, and other (derived from 
satellite images), and w and d are wind speed and direction, rh is 
relative humidity, and r is amount of rainfall. The “agent” taking 
actions is a fire spreading across the landscape. The action a ∈ A 
indicates the direction the fire at a particular cell “chooses” to 
move: north, south, east, or west or to stay put. These variables 
are considered to be the most contributing to fires as they are the 
primary variables in the Canadian Forest fire weather index as 
specified in Cortez and Morais (2007).

The dynamics function for any particular cell P(s′|s, a) is a 
mapping from one state s to the next s′ given an action a. Note, 
unlike most RL domains where the unknown dynamics of the 
system can be very complex, in our formulation the dynamics are 
actually straightforward. Most properties of the cell state do not 
change quickly, or at all, in response to our actions. So the action 
of spreading a fire into a neighboring cell directly alters p in that 
cell, the probability that the neighboring cell in that direction will 
move to a burn state.

The reward function R maps a cell state to a continuous value 
in the range [−1, 1]. Rewards are based on the land-cover, for 
example, a cell predominantly filled with water has less chance 
catching fire compared with one filled with vegetation. Thus, 
there is a negative reward for choosing to spread fire to a cell 
with high percentage of water and a small positive reward for 
choosing to spread to a cell covered with vegetation. Other 
reward function components, are derived from the ground truth 
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FigUre 1 | Forest wildfire satellite data domain: a schematic of the wildfire 
motion domain at a particular state and timestep. The red (dark) cells are on 
fire, the green cells (light) are not on fire, and the dark circle indicates the 
current cell or agent being spread by the policy. The arrows around the dark 
circle indicate the action choices possible. The white circle indicates that 
other cells will be considered for spread. The arrows from the white circle 
indicate that there is a strong wind blowing toward north, and the north 
action is the most likely action choice for these cells (effect of wind).

FigUre 3 | Thermal image. Images obtained from USGS/NASA Landsat 
Program.

FigUre 2 | Raw color image. Images obtained from USGS/NASA Landsat 
Program.
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data for the training sets. Thus, in the training phase, the fire is 
given a positive reward for taking action choices similar to the 
actual scenario and negative rewards otherwise. These are applied 
for particular experiments and algorithms as explained in the 
experimental setup.

Figure  1 shows a schematic representation of the domain 
where some cells are currently affected by fire and have a potential 
to spread fire to other cells nearby which is treated as the “deci-
sion” of an agent at that location. The task then is to learn a policy 
for this agent, which minimizes the total error at different future 
steps.

The initial state will come from satellite images that corre-
spond to the beginning of a fire. We are focusing on fire growth 
rather than ignition detection, so we set certain cells to have just 
ignited fire and assign these to the initial state. As it is impos-
sible to predict precisely from where a “fire starts,” these ignited 
cells are decided based on thermal image data, media reports, 
and approximations based on the burning areas in the first day 
on which the satellite image is available. Wind speed and wind 
direction are assumed to be a constant for a small area at a fixed 
point of time.

The goal is to learn a policy for this agent that recreates the 
spread of the fire observed in later satellite images by maximizing 
discounted rewards designed to reward high accuracy simula-
tion. Actions are constrained to not cross the boundary of the 
domain of study.

3.1. Data acquisition
The Richardson fire occurred in a region called Richardson 
Backcountry north of Fort McMurray in Northern Alberta in 
2011. Fort McMurray was also affected by forest fires in 2016 dur-
ing the massive Fort McMurray fires (Woo and Tait, 2016). The 
coordinates of Fort McMurray is (56°43′36″ N, 111°22′51″ W) 

and the coordinates of Richardson Backcountry is (57°22′02.3″ 
N, 111°19′27.1″ W). The satellite images are downloaded from 
the USGS Earth Explorer data portal1 for Alberta. The Landsat 
Enhanced Thematic Mapper Plus (ETM  +) sensor carried on 
Landsat 7 was the most important source of data. A summary 
(Kanevski et al., 2008) of the merits of various software packages 
and tools (such as GeoMISC, GeoKNN, GeoMLP, etc.) in relation 
to machine learning on geospatial data was useful in develop-
ing this work. Figure  2 shows an example where the smoke 
over burning areas can be seen. A series of visual and thermal 
images corresponding to the duration of occurrence of the Fort 
McMurray fire (approximately from April 2016 to September 
2016) and Richardson fire (approximately from May 2011 to 
October 2011) were collected for the corresponding regions of 
Alberta. All the images were corrected for missing values and 
outliers. Additional pre-processing steps were carried out as 
outlined in Cracknell and Reading (2014). These images gave a 
clear description of the ground scenario in case of fire and are a 
reliable source of burn areas. The pixels on fire are clearly at a far 
higher temperature corresponding to the pixels not on fire, and 
this can be easily delineated from the thermal images. Figure 3 
shows the areas in darker shades of black are on fire. The spatial 
resolution of the satellite images was 30 m. This means that a pixel 

1 https://earthexplorer.usgs.gov/ (Accessed: December 5, 2016).
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in the satellite image corresponds to 30 m × 30 m on the ground. 
This also means that two objects, at least 30 m long or wide, sit-
ting side by side, can be separated (resolved) on a Landsat image. 
The temporal resolution of this satellite is 16 days. Thus a 16-day 
periodic information of a particular area during the course of the 
fires are available. The Landsat Enhanced Thematic Mapper Plus 
(ETM +) sensor is capable of sensing in 8 different spectral bands, 
which are made available in its datasets. Only the bands in the 
visible spectrum (red, blue, and green) and the thermal band are 
used in this work. Landsat 8 imagery has a radiometric resolution 
of 12-bits (16-bits when processed into Level-1 data products).

The land-cover value is obtained by processing the satellite 
images in an open source geoprocessing software (Multispec). 
Temperature is obtained from processing thermal images from 
the same data source. Wind speed, rain, and wind direction 
are obtained from the historical datasets present in the Canada 
Information Portal2 and World Clim datasets for the region of 
study. Relative humidity is obtained from processing satellite 
datasets from the USGS as explained in Peng et al. (2006).

The resolution for all the inputs was fixed to be 30 m in accord-
ance with the spatial resolution of the satellite images. As all the 
other information came from data sources that have lesser resolu-
tion that 30 m all the inputs were comfortably generalized to 30 m. 
For example, the initial state of the Richardson fire contained 
the following values for a particular spatial location (fixed x, y) 
and calendar day. Date = May 8, 2011, geographic coordinates  
(x, y) = (57°24′11.2″ N, 111°13′20.8″ W), temperature (t) = 10.1 C, 
land cover (l) = vegetation (black spruce), wind speed (w) = 8.05 
mph, wind direction (d) = NW, rainfall (r) = 35.1 mm, and rela-
tive humidity (rh) = 50%.

4. DeFiniTiOn OF algOriThMs

We compare five very different, widely used RL algorithms on this 
domain to see the range and application of the idea. We begin with 
three classic approaches for iteratively solving MDPs, value itera-
tion, policy iteration, and Q-learning. We then consider the recent 
and very different approaches of Monte Carlo Tree Search and A3C, 
a recent policy gradient RL algorithm that utilizes deep Learning for 
value function representation. These algorithms will be reviewed 
briefly with modifications needed for our problem highlighted.

For all of the following methods each cell in the target area 
that is visited has the resulting value estimate stored in a hash 
data structure so it expands only as new states are encountered.

4.1. asynchronous Value iteration (Vi)
The optimal value of the state V*(s) under the greedy fire spread 
policy is given by the following Bellman equation:

 
V s R s P s s a V sa

s

∗

′

∗= + ′ | , ′∑( ) ( ) ( ) ( )max γ
 

(1)

where s′ is the successor state and γ denotes the discount factor 
which we set to 0.9. States are randomly sampled to update the 

2 https://www.canada.ca/en/services/environment/weather.html (Accessed: December 5,  
2016).

value function according to equation (1) and updates are stopped 
when the change in value made by the successive iterations is less 
than 0.1. To provide a signal for training, a pixel in the center of 
the region of consideration that is currently burning in the next 
time step is given a high positive reward. This can be considered 
the goal state to reach for the burning cell as in a classic naviga-
tion problem using RL. This approach is utilized for training both 
value and policy iteration algorithms.

4.2. Policy iteration (Pi)
We begin with an initial random policy for acting in each state 
and iteratively improve it through alternating policy evaluation 2 
and improvement 3 steps defined as follows:

 
V s R s T s s s V ss

s S
π ππ γ π( ) ( ) ( ( ) ) ( )( )= , + , , ′ ′

′∈
∑

 
(2)

 
π γ π
k a

s
is T s a s R s a s V sk

+
′

= , , ′ , , ′ + ′∑1( ) ( )[ ( ) ( )]argmax
 

(3)

The discount factor γ was fixed to be 0.9. For this algorithm, 
the value function Vπ(s) is an array of Net Policy Worth values 
for all states, which is the highest cumulative reward that could 
be obtained for an optimal policy passing through that state. This 
is required to maintain single-step dynamics since each cell could 
take more than one action at a time as fire spreads in multiple 
directions.

4.3. Q-learning (Ql)
This algorithm (Watkins, 1989) performs off-policy exploration 
and uses temporal differences to estimate the optimal policy. In 
Q-learning, the agent maintains a state-action value function 
Q(S,A) instead of a state value function. This is updated as follows:

 Q s a r Q s a^ ( ) ( (max ( ))), = + ′, ′γ  (4)

and

 Q s a Q s a Q s a Q s a( ) ( ) ( ( ) ( ))^
, = , + , − ,α  (5)

where α denotes the learning rate and γ denotes the relative value 
of delayed vs immediate rewards. S′ is the new state after action a. 
a and a′ are actions taken in states s and s′, respectively. maxa Q(s′, a′)  
denotes the estimate of maximum discounted future reward 
expected.

The learning rate for Q-learning was chosen to be 0.9 as we 
need the most recent information to have a higher impact in a 
continuous spatial environment like that of forest fire. There is 
a high positive spatial auto-correlation in spatial datasets cor-
responding to fire as the similar pixels(on fire or not fire) tend to 
cluster together. The Q-learning is made to exploit this property 
using the appropriate learning rate. The discount factor is deter-
mined to be 0.9 as the long-term rewards are more important 
than the short-term rewards in our model and we want the model 
to converge. Using a lower discount rate decreases the level of 
exploration and the risk of falling into a local optimum becomes 
high. Each state-action pair is considered as a step taken in the 
real world. For every valid state, the highest Q value (utility value) 
for the state is recorded. The burned area is determined to be all 
the states having utility values over the threshold. Further, for 
each successive time step in the real world, a suitable number of 

https://www.frontiersin.org/ICT/
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steps taken by the fire are determined approximately using the 
difference between the total number of cells being burnt between 
successive time steps and is used to cap the total number of steps 
(state—action pairs analyzed) in the Q-learning implementation 
for the time step at which the learning is taking place. This is done 
to obtain a faster convergence.

4.4. Monte carlo Tree search (McTs)
These are a class of algorithms that perform approximate, but 
confidence-bounded, RL by performing short roll-outs of the 
current policy to obtain enough statistical information about a 
state to keep it or discard it as belonging to the optimal path.  
A good survey is provided in Browne et al. (2012).

In our implementation of MCTS, each node in the search 
tree is a valid cell state in the fire model. From each state, any 
possible action could be taken, which is modeled as branches 
in the tree. The nodes in the tree are made to be selected by 
the Upper Confidence Bound for trees (UCT) (Kocsis and 
Szepesvári, 2006) method to minimize the cumulative regret. 
Each “step” in the MCTS tree is defined as a possible action 
taken from any valid state. A correlation between number of 
steps a fire can take in a 16-day period has been worked out 
empirically to be about 1,000. So, the MCTS roll-out policy 
is forced to stop after taking 1,000 steps. Note that there is 
a stay action defined for every fire location. Thus, in this 
implementation, it is possible to go a few levels down the tree 
without that corresponding to any real action in the world. 
Rewards are given based at each step of the roll-out and 
when complete the combined reward is used to update the 
value for the initial state at the root of the roll-out tree. For 
computational simplicity, during the roll-out a simpler state 
representation is used which focuses only on number of cells 
burning.

4.5. Deep rl
The final comparison is using the Asynchronous Advantage 
Actor-Critic (A3C) algorithm (Mnih et al., 2016), which repre-
sents the state-action value function using a Deep Q-Network 
(DQN) (Mnih et al., 2013). This algorithm defines a global net-
work in addition to multiple worker agents with individual sets 
of parameters. The input to this global network was formalized 
as a grid of 100  ×  100 cells with each cell having state values, 
which is an average of the state values of several pixels derived 
from satellite images. For our problem, A3C has the advantage 
of defining multiple worker agents. Each separate instance of a 
fire (unconnected to other fires) in a neighborhood is given its 
environment as an input, and the fire is defined as an individual 
worker. In our data, there are 96 instances of fire (thus, 96 worker 
agents) considered for training and testing. Each worker would 
then update the global environment, and we have plotted the 
result obtained. The deep network used is based on the DQN 
network given in Mnih et al. (2013), which uses an input layer 
of 100 × 100 pixel windows from the satellite image for the start 
date. Then there is a convolution layer of 16, 8 × 8 filters with a 
stride of 4 followed by a rectifier nonlinear unit (ReLU) layer. The 
second hidden layer involves 32 4 × 4 filters using a stride of 2 also 
followed by a ReLU layer. The final fully connected layer uses 256 

ReLUs, which is output to a layer of threshold functions for the 
output of each of the five possible actions.

5. sUPerViseD classiFicaTiOn—
gaUssian PrOcess

In this supervised classification method of performing the 
experiments, the Gaussian process algorithm (Rasmussen and 
Williams, 2006) is used to estimate if a particular cell is burning 
or not based on the burning conditions of other cells in the scene. 
For each particular cell, the attributes of temperature, rain, rela-
tive humidity, land-cover type, wind speed, and wind direction 
are considered to influence the decision.

A distribution over function f can be specified by the Gaussian 
process as given by:

 p f GP f k x x( ) ( ( )),= | , , ′0  
where the mean function is 0, and the covariance is defined by 
some kernel function. We use the RBF kernel in our experiments 
because we have an assumption of 2D proximity of features being 
relevant in any direction.

The GP prior is a multivariate normal given by:

 p y Normal y K( ) ( ),= | ,0  
where K is a covariance matrix given by evaluating k(xn, xm) for 
each pair of inputs. The mean of the GP prior is assumed to be 0 
in accordance with the above equations.

To obtain a probability the output response is condensed into 
the range [0, 1], which is an appropriate choice for classification. 
The probability is given by the condensed value, and a Bernoulli 
distribution is used to determine the label.

The likelihood of an observation (xn, yn) is given by:

 p y z x Bernoulli y logit zn n n n( ) ( ( )).| , = | −1
 

Gaussian processes were chosen for this problem as they 
are known to work well for modeling non-linear relationships 
between variables especially in spatial domains. For the GP clas-
sifier, we use the logistic (sigmoid) function, whose integral is 
approximated for the binary case to map output to a probability. 
For the covariance function, we use an RBF kernel (stationary 
kernel) because we have an assumption of 2D proximity of fea-
tures being relevant in any direction. The hyper-parameters of the 
kernel are optimized by maximizing the log-marginal-likelihood 
of the optimizer. A Cholesky decomposition was used to decom-
pose the kernel matrix. The result is a binary output response, 
which can be used for classification.

6. eXPeriMenTal seTUP

To evaluate this idea of agent-based RL for SSP prediction, we 
performed a cross-comparison of five RL algorithms and a super-
vised spatial GP approach using a two-stage training process. In 
the first stage, we learn the cell-based fire spread policy directly 
using the satellite images from the start of the fire and the image 
at its next successive time step. This is the policy from the MDP, 
which describes spread of fire from one cell to another based on 
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TaBle 1 | AUC for all the methods.

Method aUc

VI 0.6806
PI 0.8983
QL 0.7138
MCTS 0.8256
A3C 0.9294

TaBle 2 | Average accuracy for each algorithm on the different test scenarios.

Method rich. fire (a) rich. fire (B)

GP 62.4% 50.8%
VI 72.2% 25.4%
PI 73.3% 38.2%
QL 67.2% 10.4%
MCTS 61.3% 60.2%
A3C 87.3% 53.2%

Bold font indicates the best performing algorithms in the corresponding experiments.
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local conditions. The training data images are spaced 16  days 
apart, so many successive calls to this policy are required to reach 
the fire spread for 16 days. Thus, the second stage of training is 
to choose a cap C for the number of calls to this policy to obtain 
the correct spread area. We use another future satellite image to 
choose this cap based on maximum number of cells the policy got 
correct. The cap is used to set the upper limit of the total number 
of moves in any experiment.

In experiment (A), we test the ability of the algorithms to learn 
the spread of fire in an intermediate time step if the previous and 
next time step are known. Thus, we optimize C based on the 
ground truth data for time step 3. Now, the learned policy and the 
cap are used to determine the fire spread at the intermediate step 
2 given that this is halfway between the state reached in step 3.

In experiment (B), we start with the initial state of the fire, we 
provide rewards based on the time step 2 of the fire, and we ask 
the algorithm to predict time step 3. This experiment is similar to 
asking the question: Where will the fire spread in the next 16 days, 
given its position currently? In this case, the cap value C is tuned 
for a 16-day duration.

In experiments (C)–(F), we apply the learned policy from the 
Richardson fire to the Fort McMurray fire over four 16-day time 
steps but tune the cap value C using the first transition in the 
Fort McMurray data. This was a fire that happened in Northern 
Alberta 5 years after the Richardson fire used for training. As the 
regions are similar and very near each other, the general proper-
ties that the model encapsulates should remain relevant. The 
initial state for the Fort McMurray fire is provided in a similar 
way to the Richardson fire.

After limiting the number of calls in any experiment based 
on the cap, we need a policy that determines if a fire should 
spread from one burning cell to a nearby non-burning cell. For 
the RL algorithms, this is done by applying a threshold to the 
value function to determine spread or non-spread. This threshold 
is determined for each algorithm to balance true positives and 
false positives based on the training data. For all the experiments, 
the result from the algorithms in the form of burned areas is 
compared against the actual scenario, using the satellite images 
corresponding to the predicted time step.

All experiments were run on an Intel core i7-6700 CPU with 
32GB RAM.

7. analYsis OF resUlTs

The task in these experiments is essentially to classify each cell at 
each time step correctly in terms of burning or not burning. So we 
can use the true positive rate and false positive rate to compute a 
receiver operating curve (ROC) and a corresponding area under 
the curve (AUC) metric. The AUC for experiment (A) is shown 
in Table 1 for all algorithms and shows that the A3C algorithm 
provides an excellent threshold while classic value iteration is the 
least favorable. This seems to augur well with the overall accuracy 
for experiment (A) seen in Table 2.

Figures 4 and 5 show the visualization of some of the results 
for the different experiments. For all the images, the red pixels 
correspond where fire was classified correctly, blue pixels rep-
resent those which were classified as burning but were not yet 

at that point. White pixels represent false negatives where the 
policy predicted no fire but fire was indeed present. Black pixels 
represent true negatives, the pixels that were not on fire and cor-
rectly classified.

From all the algorithms considered, A3C seems to be the best 
overall, which is not surprising as it has the most flexible state-
action value function representation. Policy Iteration in general 
comes second best in most tests. Q-learning a model free method 
of learning gives a lesser accuracy than model-based approaches 
like Value and Policy Iteration. In a spatial domain, the environ-
ment has a high influence on the spread of the agent. Thus, the 
strong consideration of the model of the spatial environment 
helps the model-based approaches.

The output images in Figures 5G,H show the two most suc-
cessful algorithms MCTS and A3C on the region on which they 
were trained, filling in fire predictions between the start state and 
the reward target. Looking at the output images in Figures 4E,F, 
we see these two algorithms applied to the Fort McMurray fire 
(similar region, different year, and not part of the training data) 
at the same number of days forward after the start state. We can 
see that the model trained on one set images applies quite well to 
a different start state it has never seen, but A3C has much fewer 
false positives than MCTS. Figure 5 visualizes the results of all the 
RL algorithms on predicting the next time step after the training 
data on the Richardson fire, here A3C clearly produces the most 
accurate prediction.

Somewhat surprisingly, MCTS outperforms A3C in experi-
ment (B) for forward prediction of the next 16-day period on 
the same location as the training data. It seems that the MCTS 
rollouts have fit a better model to the sense of real world “time” 
to predict the extent of a fire in the next time period. As can be 
seen for the results for (C) and (D) in Table 3, the A3C algorithm 
outperforms all others on prediction when the learned policy for 
one location is applied to another location in the same region. 
MCTS does significantly worse in this challenge, meaning its 
model is not as good at generalizing the essentials of the policy 
for transfer to a new location even though it seems to have a better 
model of dynamics.
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FigUre 4 | Results for experiments from the best two algorithms MCTS and A3C for filling in an (intermediary state) in the training region (A) and applying that 
policy in a different region (D). Red pixels were on fire and classified correctly (true positives), blue pixels were incorrectly classified as burning (FP), white pixels were 
incorrectly classified as not burning (FN), and black pixels were correctly classified as not burning (TN). (a) Satellite image of July 26—experiment (A). (B) MCTS for 
experiment (A). (c) A3C for experiment (A). (D) Satellite image of April 27—experiment (D). (e) MCTS for experiment (D). (F) A3C for experiment D. Images obtained 
from USGS/NASA Landsat Program.
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Note that the accuracy of all algorithms reduces with increas-
ing time after the start of a fire as can be see by looking at experi-
ments (C)–(F) in Table  3. This is unsurprising, as predicting 
multiple steps into the future is inherently harder. However, it 
is also partially due to the fact that later fires are larger, more 
intense, and spread faster, making learning more difficult. In the 
first time step, all algorithms do very well as it is easier to predict 
the first few moves of the fire. The accuracy goes down rapidly, 
and in the last time step it is only around 10%.

It is also interesting to note that even though MCTS starts of 
with a low accuracy compared with the other methods in the first 
time step, its cautious approach causes its accuracy to decrease 
much slower than other methods so that it seems tied with A3C 
when predicting three steps ahead. Similarly, the supervised GP 
method that loses out in most comparisons does far better for the 
hardest problem of predicting four time steps (about 2 months) 
ahead after all other methods have degraded. The GP approach is 

purely spatial pattern learning, with no element of dynamics. So 
one possible explanation is that, GP’s with only a spatial model 
and no notion of time loses out when changes over time are 
relevant, but once we are so far ahead after the start of the fire a 
notion of time actually proves to be detrimental as the behavior 
of a very intense fire is difficult to correlate with time and the GP’s 
more accurate spatial model wins out.

Turning our attention to the running times, we ran all experi-
ments on similar scale problems running with the same system 
resources and training took between 5 and 7.5 h for all algorithms. 
Q-learning was the fastest to finish execution and obtained rea-
sonably results even when even training time was subjected to 
a threshold cutoff. So Q-learning is a good candidate algorithm 
for fast approximations for testing purposes. One unique aspect 
of A3C is that it can exploit multithreading of CPU cores rather 
than GPU acceleration. Each fire in our dataset could be run as 
its own thread allowing A3C use similar training time to obtain 
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FigUre 5 | Results for experiment (B) from all algorithms showing performance on the prediction of the next state directly after the training data. (a) Satellite image 
of August 11. (B) Thermal image of August 11. (c) Gaussian processes. (D) Value iteration. (e) Policy iteration. (F) Q-learning. (g) MCTS. (h) A3C. Images obtained 
from USGS/NASA Landsat Program.
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this RL approach should be able to learn a reasonable policy in 
data-scarce scenarios by focusing on the reachable state-action 
space only.

8. challenges anD FUTUre WOrK

As expounded in Malarz et  al. (2002), forest fire prediction 
requires additional information consisting of firefighting inter-
vention (such as fire fighting strategy and time elapsed), which 
are not taken into consideration in this study, as we chose a study 
region having very minimal fire fighting. In future work, we aim 
to incorporate this kind of information as well as enriching the 
model by including more land characteristics such as moisture, 

superior results. MCTS was the slowest algorithm we tried since 
it is not multithreaded and requires extra roll-out simulations and 
back propagation at every iteration.

There are several reasons why the best RL algorithms are more 
suited to such domains than supervised learning algorithms. 
The first reason is that, RL can model the spatial dynamics along 
with time in such domains. This enables RL to predict action 
choices using a policy tuned to a particular time of fire spread 
test as compared with supervised learning which estimates a 
model based on inputs and outputs only. The second reason 
being RL prepares a policy for the agent that takes actions which 
model the underlying causal fire behavior. The supervised learn-
ing algorithms do not have such a state-action mapping. Thus 
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TaBle 3 | Average accuracy of each algorithm trained on the Richardson fire but 
applied on the Fort McMurray fire for different time durations.

Method (c) (D) (e) (F)

GP 60.5% 47.9% 45.3% 20.5%
V.I 88.5% 68.4% 30.1% 6.4%
P.I 89.3% 67.8% 35.8% 8.9%
Q.L 84.2% 61.4% 26.4% 5.3%
MCTS 65.3% 55.7% 49.7% 5.8%
A3C 90.1% 81.8% 50.8% 13.4%

They are the best performing algorithms in the corresponding experiments.
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slope, and directional aspect as state variables in individual cells. 
We will also perform a wider comparison against different existing 
wildfire models algorithms such as those in Castelli et al. (2015).

We also plan to investigate improvements to the structure of 
the Deep Neural Network policy representation to tailor it more 
closely to this kind of spatially spreading problem. For example, 
the relatively better behavior of the supervised GP approach on 
distance predictions where the dynamics approximation may be 
hindrance, suggest trying a hybrid approaches, learning a pair of 
models, one temporal and atemporal to achieve the best of both.

A severe challenge in the wildfire domain is the relative paucity 
of data compared with some other image analysis problems. While 
there are vast databases of satellite imagery, they are not all readily 
available and find the very small proportion which contains forest 
wildfires is not straightforward. This study has looked at a pair of 
fires in a well known region but future work will use data from 
more locales and automate the process of data collection. We will 
also look at flooding as a similar but more data-rich domains. This 
limited amount of image data is one reason, we chose to use a 
state feature extraction approach rather than learning on the entire 
image directly. There simply may not be enough images to learn 
effectively. However, a filter-based approach such as Convolutional 
Neural Networks (CNNs) applied directly to the images would 
be possible if we use small filters on the same scale as the local 
neighborhood we used in this study. We are currently trying this 
approach using a combination of CNNs and Recurrent Neural 
Networks to better encapsulate the effect of time on the fire.

9. cOnclUsiOn

In this work, we presented a novel approach for utilizing RL for 
learning forest wildfire spread dynamics directly from readily 
available satellite images. Our approach inverts the usual RL 

setup so that the dynamics of the MDP is a simple function of 
the fire spread actions being explored while the agent policy is a 
learned model of the dynamics of a complex spatially spreading 
process. Our results indicate that A3C is better at predicting 
spread dynamics at intermediate time steps and MCTS per-
forms better while predicting the future spread. As the test data 
diverge from the training data and temporal changes become 
less relevant, such as when the intensity of fire increases, the 
fully supervised Gaussian process approach performs better 
than the RL algorithms.

The intersection between the decision-making tools of 
Artificial Intelligence, the pattern recognition tools of machine 
learning, and the challenging datasets of sustainability domains 
offers a rich area for research. For the machine learning commu-
nity, our approach opens up new set of challenging and plentiful 
datasets for learning patterns of spatial change over time in the 
form of spatially spreading wildfires and a platform for experi-
menting with new Deep RL approaches on a challenging problem 
with high social impact.

We hope this can lead to development of a comprehensive 
way of integrating deep learning and RL approaches to support 
the tasks of prediction, dynamics model learning, and decision 
making in problems with SSP structure. This would also involve 
new representations for spatial data and policies, which can 
benefit theoretical as well as applied practitioners. Finally, the 
algorithmic approach demonstrated here could lead to more 
effective modeling and decision-making tools for domain prac-
titioners in forest wildfire management which we are exploring 
with collaborators.
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