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Modeling Instruction (MI) for University Physics is a curricular and pedagogical approach

to active learning in introductory physics. A basic tenet of science is that it is a

model-driven endeavor that involves building models, then validating, deploying, and

ultimately revising them in an iterative fashion. MI was developed to provide students

a facsimile in the university classroom of this foundational scientific practice. As a

curriculum, MI employs conceptual scientific models as the basis for the course content,

and thus learning in a MI classroom involves students appropriating scientific models

for their own use. Over the last 10 years, substantial evidence has accumulated

supporting MI’s efficacy, including gains in conceptual understanding, odds of success,

attitudes toward learning, self-efficacy, and social networks centered around physics

learning. However, we still do not fully understand the mechanisms of how students

learn physics and develop mental models of physical phenomena. Herein, we explore

the hypothesis that the MI curriculum and pedagogy promotes student engagement

via conceptual model building. This emphasis on conceptual model building, in turn,

leads to improved knowledge organization and problem solving abilities that manifest

as quantifiable functional brain changes that can be assessed with functional magnetic

resonance imaging (fMRI). We conducted a neuroeducation study wherein students

completed a physics reasoning task while undergoing fMRI scanning before (pre) and

after (post) completing a MI introductory physics course. Preliminary results indicated

that performance of the physics reasoning task was linked with increased brain activity

notably in lateral prefrontal and parietal cortices that previously have been associated

with attention, working memory, and problem solving, and are collectively referred to as

the central executive network. Critically, assessment of changes in brain activity during

the physics reasoning task from pre- vs. post-instruction identified increased activity after

the course notably in the posterior cingulate cortex (a brain region previously linked with
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episodic memory and self-referential thought) and in the frontal poles (regions linked

with learning). These preliminary outcomes highlight brain regions linked with physics

reasoning and, critically, suggest that brain activity during physics reasoning is modifiable

by thoughtfully designed curriculum and pedagogy.

Keywords: modeling instruction, physics reasoning, mental models, force concept inventory, fMRI, STEM learning,

brain network, neuroeducation

INTRODUCTION

Active learning is neither a curriculum nor a pedagogy.
Active learning is a class of pedagogies and curriculum
materials that strive to more fully engage students and promote
critical thinking about course material. Students learn more
effectively when they engage in investigations, discussions,
model building, problem solving, and other active explorations
(National Research Council, 2012; Kober, 2014). However, typical
university instruction in physics (and other Science, Technology,
Engineering, and Mathematics [STEM] fields) has been lecture-
based. While lectures can be interesting, and some students
clearly have been trained to become engaged during lectures
(Schwartz and Bransford, 1998), for the majority of students,
lectures are passive activities. This mismatch between the ways
that students learn and the way many classes are taught
is the primary motivation for the transformation of STEM
instruction. When classrooms are transformed, the evidence
is overwhelming; students learn more and are more likely to
succeed in active learning settings (Freeman et al., 2014).

Multiple transformative curricula and pedagogical approaches
have been developed for introductory physics to promote active
learning. For example, Peer Instruction emerged to enhance
standard lecture-based approaches by incorporating conceptual
questions for discussion and, in turn, facilitated development
of personal response systems (Crouch and Mazur, 2001).
Tutorials in Physics were developed to supplement standard
lectures through use in recitation sections (McDermott and
Shaffer, 2001). Other materials such as Student Centered Active
Learning Environment with Upside-down Pedagogies [SCALE-
UP] (Beichner and Saul, 2003) and Investigative Science Learning
Environments [ISLE] (Etkina et al., 2006; Etkina and Van
Heuvelen, 2007) implement a studio-format that integrates lab
and lecture, including greater amounts of conceptual reasoning
and greater emphasis on exploration. Modeling Instruction (MI)
is an active learning approach (Brewe, 2008) similar to SCALE-
UP and ISLE in that it is a complete course transformation
integrating lab and lecture components into one studio format
class. However, MI is distinct from other reforms in that it was
built around an explicit epistemological theory of science, and
this foundation is one of the motivations for using functional
magnetic resonance imaging (fMRI) to study how learning
physics may impact brain network development.

Hestenes (1987) avers that science by its very nature is a
modeling endeavor. Science proceeds by developing models
that describe and ultimately predict phenomena. As a model
is developed, it is validated through the interplay between
the predictions generated by the model and the evidence that

emerges supporting such predictions. Once a valid model has
been developed, the model is deployed to new situations. This is
a process which Kuhn (1970) called “normal science,” whereby
scientists use existing prevalent models to explore the models’
limits of applicability and search for places where the models
give rise to predictions in contrast with evidence. Ultimately,
models reach their limits of applicability and need to be revised
or in some cases abandoned entirely, beginning what Kuhn called
“revolutionary science.” When this happens, a new model is
proposed, and the cycle begins anew.

The modeling theory of science is the theoretical and
epistemological basis of MI. This, however, is a theory of science,
not a theory of science instruction. It translates to instruction
through the premise that, if modeling is how science proceeds
and we believe students should be engaged in authentic scientific
practices, then instruction should be designed to engage students
in the process of modeling. Wells et al. (1995) describe the
Modeling Cycle as the recursive process of engaging students in
model development, validation, deployment, and revision.

In this paper, we first provide an overview of the theoretical
background, development process and critical features behind
MI as a transformative curricula and model-building endeavor.
This overview serves to motivate why scientific model
development in students resulting from university instruction
warrants further investigation not only at the academic (e.g.,
grades) and social level (e.g., social networks) but also at the
neurobiological level as a putatively measurable phenomena that
occurs within the brain. Then, we shift focus to present results
from a fMRI study in which we measured brain activity among
students engaged in physics reasoning and model use before and
after they completed a MI course. We subsequently discuss the
results which show distinctive brain activity related to physics
reasoning and that instruction consistent with a Modeling theory
of science modifies brain activity from pre to post-course.

Role of Conceptual Models in Introductory
Physics Curriculum
Building instruction around modeling necessitates a working
understanding of models. To date, research in the MI context has
focused on conceptual models, which are instructionally useful,
rather than mental models, which have been difficult to directly
observe. Herein, we seek to expand upon existing research
by adopting neuroimaging techniques to interrogate mental
models among students receiving instruction via an explicit
conceptual modeling approach (i.e., MI). We operate from the
following definition of a conceptual model: conceptual models
are purposeful coordinated sets of representations (e.g., graphs,
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equations, diagrams, or written descriptions) of a particular
class of phenomena that exist in the shared social domain of
discourse. This definition has several features worth elaborating.
First, it fits on a t-shirt. Second, this definition establishes the
domain, purpose, and composition of conceptual models, which
we expand upon below. Finally, this definition of conceptual
models has helped us design research to look for evidence
of the modeling process in classrooms. Figure 1 illustrates the
relationship between conceptual and mental models.

Attempting to synthesize the many definitions and
descriptions of models is not our purpose. Instead, we aim to
highlight some of the features of our definition that were relevant
to the development of the MI approach based on building,
validating, deploying and revising models. These features (i.e.,
the composition, purpose, and domain of conceptual models),
then will be used to structure the investigations into the nature of
student’s mental model formation as measured via brain-based
fMRI data.

Composition
Conceptual models are composed of representations.
Representations are human inventions/constructs that stand in
for the phenomena (Morgan and Morrison, 1999; Giere, 2005;
Frigg and Hartmann, 2006; Windschitl et al., 2008; Schwarz et al.,
2009). In physics, common types of representations include
graphs, vector diagrams, equations, simulations, words, and
pictures (Krieger, 1987). From the MI perspective, this means
that instruction should focus on helping students to identify, use,
and interpret representational tools that are useful in describing
physical systems. Instruction around model building necessarily
focuses on what representations are common to a discipline, how
they are used, and how information can be extracted from them.
Further, the coordination of these representations helps to build
a more robust model, and provide a variety of ways to extract
information from the model (Hestenes, 1992; Halloun, 2004).

FIGURE 1 | Schematic of the relationship between conceptual and mental

models in physics curriculum.

Purpose
Morgan and Morrison (1999) described mental models as
mediators of thought, autonomous from, but in correspondence
with the system they represent. This mediating function of
models establishes the roles that models have within science
as the center of thought, explanation, and prediction (Craik,
1943; Johnson-Laird, 1983). For example, Craik (1943) stated,
“If the organism carries a ‘small-scale model’ of external reality
and of its own possible actions within its head, it is able to try
out various alternatives. . . ” Instructionally, if models fill this
role of mediators of thought, then models should structure
the organization of the curriculum. Models also allow students
to address new phenomena (Odenbaugh, 2005; Svoboda and
Passmore, 2011; Gouvea and Passmore, 2017). This purpose
is built into the instructional modeling cycle where students
are encouraged to understand new phenomena by deploying
existing models to extract information about and characterize the
phenomena. When existing models do not work, students are
expected to adapt or redevelop models that can account for these
new phenomena.

Domain
We propose a distinction between scientific conceptual and
mental model domains and place conceptual models in the
shared social domain of discourse. This perspective differs
from other conceptualizations where mental models within
individuals’ minds/brains are implicitly or explicitly the center of
focus (Greca and Moreira, 2000, 2001). Specifically, to infer the
status of a student’s mental model, investigators typically assess
students’ actions or behaviors, such as writing, speaking, drawing,
predicting, or arguing (Halloun, 1996a; Justi and Gilbert, 2000;
Lehrer and Schauble, 2006). Thus, evidence of model-based
reasoning exists external to the individual and is contingent on
an external evaluation. Instructionally, our efforts have been to
help students develop models as a distributed cognitive element.
Meaning that each individual student will have an instantiation
of the shared model, but the visible elements of the model
exist external to individuals through writing, speaking, drawing,
diagraming, predicting, and/or simulating. This notion of shared
models improves team performance and the learning process
(Mathieu et al., 2000). As such, the design of the MI curriculum
and pedagogy focuses not on mental models per se, but on the
social construction of a model. In other words, we focus students
on using consistent representational tools to build models of
phenomena in an interactive team environment. Models are
shared among class members and agreed upon before deploying
these models to analyze new situations. We provide a more
detailed description of the classroom setting in section “Features
of MI Learning Environment” but much of class time is spent in
small groups developing models of specific phenomena on small
portable whiteboards, which are then presented at larger “board
meetings.” The interplay between smaller and larger groups
provides a vehicle for students to use diagrams, equations, or
graphs to represent elements of the model.

We do not reject that individuals have internal mental
models, or that these mental models include connections
between representations and concepts, or interactions between
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mathematics and intuition, for example. As Rogoff (1990)
points out, cognitive functions are essential components of
purposeful action. We are aligned with the notion that scientific
conceptual models are distributed cognitive elements, which
are then appropriated by individuals. During the appropriation,
students construct the mental models in correspondence with the
scientific conceptual models. Rather our point is that assessing
external behaviors speaks to the conceptual model domain and
assessing the mental model domain would benefit from directly
considering the brain.

Role of Conceptual Models in Instruction
For instructional purposes, models represent an appropriate and
accessible level of abstraction (Halloun, 2004). Within a larger
context, models occupy themiddle level of a conceptual hierarchy
(Table 1; Halloun, 2004; Matthews, 2007) which is best illustrated
by a representative example (Lakoff, 1987). Veterinarians are not
likely to study the superordinate category of animals, which is too
broad a categorization to be useful. Nor are they likely to study
the subordinate category of retrievers; this is too specific to be
broadly useful. Instead, dogs are likely to be the level of focus.
This level is referred to as the “basic” level and is considered the
ideal focus for instruction (Halloun, 2004).

In the MI classroom, building basic conceptual models
begins with considering a specific phenomenon to be described.
Once a target phenomenon is established, the next step is to
characterize the phenomena through relevant representational
tools. For example, using velocity vs. time graphs to represent
the motion of a moving object. As students create representations
of the object’s motion, a model of this specific phenomenon
is being developed, or what we call a specific model. These
specific models are not generally applicable, they pertain to the
specific details of the situation being considered. By necessity,
specific models are predecessors to basic models. Specific models
are made more robust as additional representational tools are
introduced and integrated with existing ones. Introduction of
representational tools and the subsequent negotiation of their use
and interpretation are motivated by specific phenomena to be
modeled, so the models created are always specific models.

However, a desirable scientific skill is to reason based on
general models (Nersessian, 1995, 2002a,b). As such, the MI
curriculum and pedagogy is specifically designed to facilitate the
students’ transition from specific to basic models. Basic models,
which are general and represent entire classes of phenomena
(such as a constant acceleration model), are abstracted from
a collection of specific models (Halloun, 1996b, 2004). For

TABLE 1 | Conceptual and Categorical Hierarchies.

HIERARCHY

Conceptual Level Categorical

Theory Superordinate Animal

Model Basic Dog

Concept Subordinate Retriever

example, the general features of a basic constant acceleration
model can be abstracted from specific models of objects
undergoing constant acceleration, such as objects in free fall, or
uniformly slowing down. This is achieved in the MI classroom
by having students consider a number of specific models, and
then identifying the features that are similar to all such models.
For example, all constant acceleration models include a linear
velocity time graph. These similar features are then compiled
into one model that can be used for all situations, a basic
model. Basic models are useful because they are not tied to
a specific phenomenon, much like the Standard Model is a
basic model built up and abstracted from the specific models
of atomic collisions, particle interactions, etc. Basic models are
essential in science as they promote abstract reasoning about
novel phenomena (Nersessian, 1995); when physicists seek to
understand interactions of atomic particles they start by using the
Standard Model.

Once a basic model is established, students deploy the
model in a variety of settings. This deployment phase is most
aligned with the standard problem solving that happens in
physics classes. The purpose is to develop skill at adapting
the representations that make up the model to new situations
and extracting information about the situation from the
representations.

The final stage in the MI instructional cycle is revision.
Revision of a basic model happens when students encounter a
phenomenon that does not fit with the model’s assumptions.
An example often encountered comes when students attempt
to generate a specific model of two-dimensional motion on
the basis of a one-dimensional constant acceleration model.
The one-dimensional case is inadequate without modification to
understand motion in two dimensions, and thus must be revised.
In some cases, revision involves a simple modification of the
representational tools, and in other cases, it requires starting with
an entirely different model.

In summary, the modeling cycle of MI describes the
progression of course content. In addition, MI also interweaves
social interactions designed to facilitate discourse in the service
of building conceptual models. Next, we more fully describe the
precise aspects of the MI learning environment that support the
development, validation, deployment, and revision of models.

Features of MI Learning Environment
Basic conceptual models are often well-developed for scientists
and course instructors, yet these models are not well-developed
for the students in introductory physics courses. Accordingly, the
first contextual feature of the MI classroom is to support students
in re-developing constituent basic models within their own
learning environment. The MI instructor’s role is thus to guide
students through the development of these basic conceptual
models by establishing activities and providing scaffolding to
manage student discourse and promote model building and
deployment. In this way, the MI curriculum and pedagogy can be
considered a guided inquiry approach. Students are not expected
to discover physical laws without strong instructor guidance who
chooses activities, introduces representational tools, and guides

Frontiers in ICT | www.frontiersin.org 4 May 2018 | Volume 5 | Article 10

https://www.frontiersin.org/journals/ICT
https://www.frontiersin.org
https://www.frontiersin.org/journals/ICT#articles


Brewe et al. Modeling Instruction and the Brain

students toward their appropriate use and interpretation. In this
way, the instructor is a guide to the disciplinary norms and tools.

Student Participation in a Model-Centered Learning

Environment
Accomplishing this fundamental re-development of basic
conceptual models requires students to be active and engaged
participants in the learning environment. Accordingly, there are
specific ways MI students are expected to participate in the
re-development of basic conceptual models. First, students are
expected to be involved in identifying the way that tools such as
pictures, diagrams, graphs, and equations are used to represent
phenomena. They are not expected to invent or discover these
tools, but instead to determine with instructor guidance how
these tools are used and how to interpret these representations.
For example, how does a vector representation of forces describe
interactions the object is involved in, and what do these forces
allow us to infer about the current state of the object and its
future behavior? Second, students are expected to be involved
in the interpretation of these representational tools and drawing
inferences from them as they pertain to physical laws. Third,
students are expected to then deploy these established basic
conceptual models by extending them to novel situations. Finally,
students are expected to communicate basic conceptual models.
This promotes greater expertise with the models when presenting
to others and facilitates competence in scientific communication
skills.

Studio Format
MI is designed for implementation in a studio-format classroom.
In studio physics classrooms students are able to flexibly engage
in various types of activities, which may include labs, conceptual
reasoning, or problem-solving activities. At Florida International
University (FIU), the MI classroom integrates both the lecture
and lab components of the introductory physics course andmeets
for a total of 6 h per week across 3 days. Typically, students work
in small groups of three to complete in-class activities. This small
group work is summarized on small portable whiteboards. These
whiteboards are then presented in larger group “board meetings”
where all students in the class actively participate.

Small Group Participation
During the small group component, students work on model-
building activities. In these groups, students begin the process
of reaching consensus by creating whiteboards for sharing or
“publishing” their lab results and/or solutions to problems.
The instructor’s role is to circulate through the classroom,
asking questions, introducing new content, and examining the
whiteboards that are being prepared. This small group work
allows students to work together on a model-building activity,
generate conceptual models, and practice communicating
scientific information in a relatively “low-stakes” setting.

Large Group Participation: The “Board Meeting”
The practice of having students first work in small groups
and then present their outcomes to a larger group provides
students with multiple opportunities to negotiate the use of

conceptual models. The board meetings involve all students
in the class gathering in a circle such that every member
can see every other member and every groups’ boards.
During the board meeting, the instructor assumes the role
of disciplinary expert and guides the discourse toward a
shared conceptual model. Facilitating the discussion involves
moderating the groups’ whiteboard presentations, addressing
student questions, and helping groups clarify their presentations
and understanding. The instructor’s guidance during the board
meetings relies heavily on providing student groups with
formative feedback. The explicit goal of these board meetings
is to reach consensus regarding the conceptual models. In
addition to the explicit goals, tacit goals include establishing
the norms of a discourse community and encouraging students
to utilize scientific argumentation strategies (Passmore and
Svoboda, 2012). These strategies include supporting claims
with evidence and reasoning based on the shared conceptual
models.

Pairing Large and Small Group Interactions
The combined interaction structure is designed to elicit target
conceptual models. The structure of these interactions also
mimics the structure of science in general and physics in
particular as practiced in a research setting. Students work
in small research groups, building up and synthesizing the
conceptual model that is subsequently ‘published’ at the board
meeting, much like a scientific meeting. Both the small and large
group settings rely on the pedagogical skill of the instructor. In
MI-like environments (which are less “instructor-centered” than
traditional classrooms), the trajectory of the learning takes varied
paths based on the input of the participants. For this reason, the
curriculum and pedagogy of MI are less like a script for an actor
to follow, and more like a set of guidelines for an improvisational
comedienne.

Impact on Student Outcomes
The combination of curriculummaterials designed to recursively
implement the modeling cycle and a learning environment
and pedagogy that are similarly supportive have been shown
to be effective at promoting learning. Like other transformed
curricula in university physics, MI promotes both conceptual
understanding and student success in introductory physics
(Brewe et al., 2010b). A survival analysis suggests that the
increased success rate in introductory physics is not a result
of lowered standards, as students from MI classes showed
equivalent likelihood of success in completing a major in physics
as students from lecture classes (Rodriguez et al., 2016). MI
students also report improved attitudes about learning physics
(Brewe et al., 2009, 2013) and these attitudinal shifts are
equitable in terms of ethnicity (Traxler and Brewe, 2015).
The group interactions in a MI class promote more well-
developed classroom networks (Brewe et al., 2010a), and
these networks are known to facilitate retention in physics
courses (Zwolak et al., 2017). Positive shifts in self-efficacy
associated with participating in MI have been documented,
(Sawtelle et al., 2010) although not consistently (Dou et al.,
2016). We are in the process of studying qualitatively the
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construction of a conceptual model in MI (Brewe and Sawtelle,
2018) and investigating students’ representational choices in
problem solving (McPadden and Brewe, 2017). These studies
are consistent with students constructing and using conceptual
models to solve problems and analyze physical systems. The
successes coming from the MI classroom motivate our current
research into the neurobiological mechanisms of reasoning in
physics.

Investigating Mental Model Development
Using Neuroimaging
While prior assessments of MI’s impact on students has
typically focused on the social construction of conceptual
models (Brewe, 2008, 2011; Sawtelle et al., 2012), here we
consider MI’s potential impact on mental models using brain
imaging techniques. This study aimed to investigate brain
activation during a physics reasoning task and changes in brain
activation after MI course instruction relative to before such
instruction. Previous neuroimaging studies have localized brain
activity associated with reasoning across various modalities (e.g.,
mathematics, formal logic, and fluid reasoning; Prabhakaran
et al., 1997; Arsalidou and Taylor, 2011; Prado et al., 2011),
but no investigations have probed for such brain activity in
the field of physics or across physics classroom instruction.
Because of this, no standardized tasks have been adapted
for the MRI environment to examine such brain activation.
Therefore, as a first step, we sought to develop a novel
neuroimaging paradigm to probe brain activity during physics
reasoning. We focused the development of this task on mental
model use during physics reasoning, as previous research
has provided evidence that students’ use a variety of mental
models during conceptual physics reasoning (Nersessian, 1999;
Hegarty, 2004). Thus, we adapted items from the well-known
Force Concept Inventory (FCI; Hestenes et al., 1992) which is
known to engage conceptual physics reasoning. FCI questions
were modified to fit with the parameters of the MRI data
collection, and to investigate physics reasoning, (see section
“Physics Reasoning Task” for further details. Simultaneously,
to facilitate formation of neuroanatomical hypotheses regarding
the brain networks we might observe during physics reasoning,
we conducted a neuroimaging meta-analysis (Bartley et al.,
in press) of fMRI studies that investigated problem solving
across a diversity of representation modalities. Briefly, the
primary outcome of that meta-analysis was that similar
reasoning tasks using mathematical, verbal, and visuospatial
stimuli involving attention, working memory, and cognitive
control, activated dorsolateral prefrontal and parietal regions.
Participants completed this physics reasoning task while
undergoing functional magnetic resonance imaging (fMRI)
scanning, both before (pre) and after (post) completing a physics
course in order to investigate the putative impact of physics
instruction on brain function. Driving this neuroeducation
project were two main hypotheses: (1) This novel physics
reasoning task would induce increased activity in brain regions
previously associated with attention, working memory, and
problem solving (e.g., lateral prefrontal and parietal regions), and

(2) Activation patterns would differ from pre- to post-course,
indicating that brain activity can bemodified as a result of physics
instruction.

A few prior studies have demonstrated that short- and long-
term course instruction can impact brain function. Differences
in brain function have been observed from pre- to post-course
among students enrolled in a 90-day Law School Admission Test
preparation course (Mackey et al., 2013). Mason and Just (2015)
showed that providing information to research participants about
mechanical systems while in the MRI scanner, which they called
physics instruction, led to changes in knowledge representation
during successive stages of learning. In a separate study, they
were also able to use machine learning and factor analysis
to identify neural representations of four physics concepts:
motion visualization, periodicity, algebraic forms, and energy
flow (Mason and Just, 2016). However, to our knowledge, this is
the first neuroeducational study to consider the impact of a full,
semester-long physics class on the brain.

Brief Primer on Neuroimaging Studies
This manuscript is intended for an educational research
audience, with the expectation that readers have not had
extensive experience with neuroimaging as a research
methodology. As such, this section provides a brief overview
of neuroimaging studies, particularly fMRI. In neuroimaging
studies, researchers develop an experimental task to isolate
mental operations of interest that participants perform lying
in a MRI scanner while a series of three-dimensional brain
images are acquired. Typically, these brain images are acquired
approximately every 2 s and are composed of small volume
elements called voxels, which in this study measured 3.4 mm3.
Within each voxel, the blood’s changing oxygen levels (known
as the blood-oxygenation level-dependent [BOLD] signal) are
measured. Task-related changes in the BOLD signal provide an
indirect measure of brain activity. In one implementation of
fMRI experimental design, brain images are collected in blocks.
During ‘active task’ blocks, participants are presented a stimulus
(e.g., a physics question) engendering cognitive processes of
interest (e.g., physics reasoning) and are instructed to make
a response using a MRI-compatible keypad. During carefully
constructed ‘control task’ blocks, participants are also presented
with stimuli and give responses; however, the stimuli presented
do not engender the cognitive processes of interest. Contrasting
active blocks with control blocks presumably isolates task-related
brain activity associated with the cognitive processes of interest
and excluding those common to both conditions (e.g., visual
processing, word reading, button pressing).

Following data collection, fMRI data are processed to correct
for in-scanner head movement and fitted to a standardized brain
template to enable averaging over a group of participants. BOLD
time series from each voxel are input into a general linear model
(GLM) including distinct regressors for various task events (and
other known sources of noise) to characterize the degree to which
variability in the BOLD signal correlates with those task events.
Resulting beta weights from active and control task blocks can
then be contrasted and significant differences are interpreted
as differences in brain activity between blocks. This procedure
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is repeated for the BOLD time series across all voxels in the
entire brain. Additional multi-level modeling can be performed
on these results, as was done in this study, to test for changes
in brain activity across repeated measures (i.e., from pre- to
post-instruction).

METHODS

Participants
Participants were drawn from MI classes at FIU over the
course of 3 years (academic years 2014–2017). We recruited
55 students (33 male, and 22 female) in the age range of 18–
25 years old (mean ± SD: 20.1 ± 1.4). All participants were
screened to be right-handed, not using psychotropicmedications,
and free of psychiatric conditions, cognitive or neurological
impairments, and MRI contraindications. Volunteers invited to
participate had not previously taken a college physics course
and met either a GPA (>2.24) or SAT Math (>500) inclusion
criteria. These criteria were implemented to minimize between-
participant variability that could confound brain measurements
associated with the experimental conditions. Written informed
consent to a protocol approved by the FIU Institutional Review
Board was obtained from all participants. Imaging data were
collected on a General Electric 3-Tesla Healthcare Discovery
750W MRI scanner located in the Neuroimaging Suite (NIS) of
the Department of Psychology at the University of Miami (Coral
Gables, FL). Each participant completed a 90-min MRI scanning
session at both a pre- and post-instruction time point. The pre-
session scans were scheduled within the first 4 weeks of the
semester and the post-session scans were completed in the first 2
weeks following the semester. All participants were compensated
for their time participating in the MRI assessment ($50 for pre-
and $100 for post-scans).

Physics Reasoning Task
We adapted a set of questions from the Force Concept Inventory
(FCI) for presentation in the MRI scanner (Figure 2A). The
FCI was chosen given the substantial amount of extant data
from students in MI at FIU on this measure (Brewe et al.,
2010b), established reliability measures (Lasry et al., 2011),
and known time requirements (Lasry et al., 2013). The FCI is
a 30 question, multiple choice conceptual survey of students
understanding of Newtonian mechanics (Hestenes et al., 1992).
Each question has five multiple choice options, one correct and
four distractors which were originally generated from student
responses to open-ended versions of the same questions. The
questions present “every-day scenarios,” do not require any
mathematical calculations, and are presented as text describing
the scenario accompanied by a representational diagram. To
ensure that MRI data collection sessions were manageable and
well-tolerated by participants, we reduced the number of FCI
questions from 30 to nine (FCI 2, 3, 6, 7, 12, 14, 27, and 29). These
nine questions were selected to span a range of difficulty levels
that were simultaneously challenging enough to tax the mental
resources of participants, but not necessarily the most difficult
items in the FCI, as determined by item response curves inMorris
et al. (2012) (Table 2). Additionally, because measurement of

brain networks via fMRI require the repeated observations across
multiple yet similar experimental trials, we sought to narrow the
broad range of physics-related cognition being probed in this
task and selected questions that required students to determine
the trajectories and motion of objects as resulting from different
scenarios and combinations of initial velocities and/or force
configurations. Given technical constraints associated with the
use of a four-button MRI-compatible keypad, the questions were
modified by removing the least chosen of the five multiple choice
options, as indicated by the item response curves of Morris et al.
(2012). In the current neuroimaging task implementation, each
question was parsed into three self-paced presentation phases;
participants were allowed to control the timing of these phases.
The first phase of the question involved presentation of the text
describing the phenomena and an accompanying diagram. The
second phase posed the question, and the third phase presented
the multi-choice answer options. FCI responses were assessed for
overall and item-specific accuracy.

In addition to FCI questions, participants answered a
series of “control questions” (Figure 2B), each of which had
similar characteristics to the FCI questions in terms of reading
requirements, visual complexity, and overall design. However,
control questions did not inquire about physics-related content,
instead these questions focused on reading comprehension and
shape discrimination. Control questions allowed us to isolate
cognitive processes presumably related to physics reasoning
when contrasting FCI (“active task”) vs. control questions
(“control task”).

FCI and control questions were presented in pseudo-random
orders within three task runs. Each question was followed by
20 s of “rest,” during which participants maintained their gaze
on a fixation cross centrally projected on the screen. These
three runs lasted approximately 6min each. Participants received
instruction and practice on the task in a carefully managed mock
scanner training session to ensure correct performance during
the MRI session. In addition to acquainting participants to the
task, the mock scanner also allows participants to experience
what the actual MRI scan will be like.

Data Analysis
Details on fMRI data acquisition parameters can be found
in the Supplementary Materials. Prior to analysis, the data
were preprocessed using commonly used neuroimaging analysis
software packages: FSL (FMRIB Software Library, www.fmrib.
ox.ac.uk/fsl) and AFNI (Analysis of Functional NeuroImages,
http://afni.nimh.nih.gov/afni). Standard fMRI preprocessing
procedures involved motion correction to remove signal artifacts
associated with head motion, high-pass filtering to remove low
frequency trends in the signal associated with non-brain noise
sources (i.e., cardiac or respiratory), and spatial smoothing to
increase signal to noise ratio during analysis. The data were then
mapped to a standardized brain atlas (MNI152) to allow for
group-level assessments.

We conducted two primary analyses to identify: (1) brain
regions linked with physics reasoning (task effect) and (2)
changes in brain activity associated with physics instruction
(instruction effect). To delineate brain regions linked with
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FIGURE 2 | Example items from the physics reasoning fMRI task. (A) FCI questions described a physical scenario using pictures and words and then asked a physics

question followed by four potential answers. (B) Control question shared basic visual and linguistic features with FCI questions, however control questions did not ask

students to engage in physics reasoning.

TABLE 2 | Overall and individual item accuracy for pre and post instruction FCI

questions in the scanner.

Pre Post Change Item Difficulty

FCI Question % % (Post–Pre) (%) Morris et al., 2006 (%)

2 29.5 39.3 +9.8 34.6

3 42.6 58.9 +16.3 51.5

6 78.7 78.6 −0.1 73.6

7 54.1 71.4 +17.3 66.4

8 39.3 46.4 +7.1 50.4

12 45.9 69.6 +23.7 65.2

14 24.6 41.1 +16.4 39.5

27 44.3 46.4 +2.1 59.4

29 42.6 85.7 +43.1 50.8

Total 44.6 59.7 15.1

Item difficulty measures from Morris et al. (2006) are included for comparison.

physics reasoning at the pre-instruction time point, each
preprocessed fMRI data set was input into a voxel-level General
LinearModel (GLM) including regressors for the FCI and control
task conditions (and various nuisance signals). Contrast images
were created for each participant by subtracting the beta weights
associated with the control questions from those for the FCI
questions representing the degree to which each voxel responded
more during physics reasoning as compared to the control
condition (FCI > Control). These participant-level contrast

images were then input into a group-level, one-sample t-test
and significant physics reasoning-related brain activations were
defined using a threshold of Pcorrected < 0.05 (Pvoxel−level < 0.001,
family-wise error [FWE] cluster correction). To delineate brain
regions showing physics reasoning-related activation changes
following a MI course, the participant-level FCI > Control
task contrast images (described above) from the pre- and post-
instruction data collection sessions were input into a group-
level, paired samples t-test. Both Pre > Post and Post >

Pre contrasts were computed and significant instruction-related
brain activity changes were defined using a Pcorrected < 0.05
threshold (Pvoxel−level < 0.001, FWE cluster correction). Follow
up correlational analyses were also conducted between the BOLD
signal change across instruction (Post > Pre) in the four largest
significant clusters (≥1,000 voxels) identified in the instruction
effect analysis described above and accuracy post-instruction on
the FCI using P < 0.0125, Bonferroni corrected,. Because the
clusters probed showed significant extent across multiple brain
areas, BOLD signal was extracted from spherical seeds centered
at the peaks z-score of each cluster.

RESULTS

Accuracy
Table 2 includes the accuracy results of student responses for
the nine questions in the pre and post-instruction scans along
with item difficulties based in classical test theory, Morris et al.
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(2006). A paired-samples t-test was conducted to compare post-
vs. pre-instruction means. Cohen’s d, was calculated to identify
the magnitude of the effect, and 95% confidence intervals on
the effect. The results of the t-test [t(55) = 6.31, p < 0.001] and
Cohen’s d (d = 0.84) with a 95% confidence interval of 0.45–1.23
indicated with a high degree of confidence that response accuracy
increased after instruction. These results are consistent with prior
results examining increased FCI accuracy after course instruction
(Brewe et al., 2010b). Furthermore, these accuracy results from
participants in the scanner are in line with the classical test
theory item difficulty (outside the scanner performance), where
difficulty is calculated as the average score on a particular item.

Task Effect
MI students exhibited physics reasoning-related brain activity
(FCI > Control) at the pre-instruction time point in four
general brain areas, the prefrontal cortex, the parietal cortex,
the temporal lobes, and the right cerebellum (Figure 3, red;
Supplemental Table 1). More specifically, in the prefrontal cortex
(PFC), activation peaks were observed in the left superior frontal
gyrus (SFG), dorsomedial PFC (dmPFC), bilateral dorsolateral
PFC (dlPFC), inferior frontal gyri (IFG), and orbitofrontal
cortex (OFC). Within the posterior parietal cortex, brain activity
was observed bilaterally in the supramarginal gyri, intraparietal
sulcus (IPS), and angular gryi (AG). Large bilateral clusters
of activation during physics reasoning were also observed in
middle temporal (MT) and medial superior temporal (MST)
areas. These same patterns of task-related brain activity from
the pre-instruction stage were also observed when performing a
similar assessment at the post-instruction stage (data not shown).

Instruction Effect
Significant increases in brain activity following instruction (Post
> Pre) were observed within prefrontal and parietal cortices
(Figure 3, blue; Supplemental Table 2). In particular, three
clusters of increased PFC activity were identified in the left dlPFC
along the inferior precentral sulcus, and bilaterally in the frontal
poles. Parietal areas demonstrating increased activation after
instruction were located in the posterior cingulate cortex (PCC)
extending into retrosplenial cortex and the precuneus and in the
left angular gyrus. No brain regions showed significantly more
task-related activity at the pre-instruction stage as compared to
post-instruction (Pre > Post). Follow up correlation analysis
between the left PCC, left angular gyrus, left orbital frontal pole,
and left DLPFC and accuracy on the FCI yielded no significant
correlation (rpcc = −0.12, pcorrected = 1; rag = −0.07, pcorrected =
1; rofc =−0.01, pcorrected = 1; rdlpfc = 0.02, pcorrected = 1).

DISCUSSION

This neuroeducational study represents an initial effort to
understand how physics reasoning may translate to the level
of brain function assessed by fMRI and how instruction brings
about changes in brain activity. To this end, we have provided
fMRI results of brain activation from twomain assessments. First,
we observed that the physics reasoning task (FCI > Control
questions) was associated with increased brain activity notably

in lateral prefrontal and parietal regions. Second, we observed
that students who completed the MI course showed increased
activation during the physics reasoning task after the course in
the posterior cingulate cortex and frontal pole regions.

Accuracy and Physics Reasoning
Participant responses to the FCI questions in the scanner show
accuracy that is in line with published item difficulties and post
course improvement in accuracy are consistent with Brewe et al.
(2010b). This suggests that the MRI version of the task we
developed is prompting physics reasoning that is consistent with
that observed out of scanner environment. Effect sizes from pre-
to post-instruction indicate similar performance on this task with
modified FCI questions as on the full FCI. This improvement is
indicative of a shift in physics reasoning as a result of instruction.
We do not interpret these changes as recall effects for two reasons,
the results of the FCI were not discussed with students, and
the task itself was not identified as being derived from the FCI.
Further, Henderson (2002) has shown that recall effects over
the duration of a full semester are minimal. While accuracy
is important for characterizing and to some degree validating
the task that was developed for the fMRI environment, we did
not expect accuracy to correlate with brain activity. Instead,
physics reasoning, regardless of accuracy, is linked to brain
activity.

Task Effect: Brain Activity Linked With
Physics Reasoning
Our initial analysis identified brain activity among college
students associated with physics reasoning (FCI > Control) in
lateral prefrontal and parietal regions. One interpretation is that
activity in these regions supports cognitive processes critical for
answering physics reasoning problems such as attention, working
memory, spatial reasoning, and mathematical cognition. More
specifically, the lateral PFC’s role in executive functions such as
working memory and planning are well-characterized (Bressler
andMenon, 2010) and these areas are important in manipulating
representations in working memory and reasoning (Andrews-
Hanna, 2012; Barbey et al., 2013). Lateral parietal regions are
involved in motor functioning as well as spatial reasoning,
mathematical cognition, and attention (Wendelken, 2015). Such
an interpretation is reasonable in the context of the current
task which likely involves generating mental simulations and
representations in the service of identifying the correct answer
choice. From a large-scale brain network perspective, the brain
regions showing physics reasoning-related activation resemble
one commonly observed functional brain network known as the
central executive network (CEN). The CEN, consisting of lateral
prefrontal and parietal regions (Bressler and Menon, 2010),
is generally associated with externally oriented attentional and
executive processes (e.g., working memory, response selection,
and inhibition; Cole and Schneider, 2007; Seeley et al., 2007).

The task-related brain regions we observed were generally
similar when separately considering data collected during
the pre- and post-instruction scans. While speaking to the
consistency of such brain activity, this analysis is not intended to
determine which brain regions differ as a function of completing
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FIGURE 3 | Group-level fMRI results. (Red) Task effect: Brain regions showing increased activity during the physics reasoning task (FCI > Control) at the pre-instruction

stage. (Blue) Instruction effect: Brain regions showing increased activity at the post- relative to pre-instruction (Post > Pre) scan during the physics reasoning task.

a MI course (see below). We suspect that such task-related brain
activity would be similar among students in other instructional
environments.

Instruction Effect: Changes in Brain
Activity Post-instruction vs. Pre-instruction
Our second analysis identified increased brain activity among
students completing the physics reasoning task after taking
a MI course (Post > Pre) in the posterior cingulate cortex,
frontal poles, dlPFC, and angular gyrus. These brain regions
(PCC, angular gyrus) overlap with regions of another commonly
observed large-scale functional brain network known as the
default-mode network (DMN). The DMN, consisting of
posterior cingulate cortex (PCC), angular gyri, medial PFC,
and middle temporal gyri (Raichle et al., 2001; Laird et al.,
2009), is generally associated with internally oriented cognitive
processes (i.e., self-reflection, mind wandering, autobiographical
memory, planning; Buckner et al., 2008). However, other lines
of evidence also implicate DMN involvement in complex
tasks such as narrative comprehension (Simony et al., 2016),
semantic processing (Binder et al., 2009; Binder and Desai,
2011) or the generation and manipulation of mental images
(Andrews-Hanna, 2012). In the context of the current task, one
interpretation is that students may generate mental images to

simulate events and formulate predictions. Additionally, post-
instruction increase in DMN activity was observed during
physics reasoning (which we show is supported by the CEN), and
such coupling between the DMN and CEN during cognition has
been hypothesized to arise during controlling attentional focus,
thereby aiding in efficient cognitive function (Leech and Sharp,
2014).

Other brain regions showing greater activation during physics
reasoning after the MI course included the dlPFC and the
frontopolar cortex. The frontopolar cortex is a component
of a decision-making network often involved with learning
(Koechlin and Hyafil, 2007). The dlPFC is critically linked with
the manipulation of verbal and spatial information in working
memory (Barbey et al., 2013). Given previous links with, for
example, mental simulation, working memory, mathematical
calculations, and attention, we speculate that post-instruction
increased activity in the PCC, angular gyrus, dlFPC and frontal
pole may reflect enhanced mental operations and/or models
involved with physics reasoning and/or generation of predictions
about physical outcomes.

The PCC, left angular gyrus, left frontal pole, and left DLPFC
were the four regions of greatest extent to show increased activity
(Post> Pre), however, we did not see correlation between change
in activity within these areas and accuracy on the FCI after
instruction. The FCI is a cognitively demanding task which
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includes intuitive but wrong answers. Thus, it may simply be
that even wrong answers on the FCI require significant mental
effort. Inaccurate physics reasoning likely still involves many of
the same mental operations successful physics reasoning does
(i.e., mental imagery, visualization, prediction generation, and
decision making, to name a few). Measures of accuracy in and of
themselvesmay not display a simple one-to-one relationship with
changes in brain activity across instruction. Rather, these changes
in brain activity may be related to more complex behavioral
changes in how student’s reason through physics questions post-
relative to pre-instruction. These might include shifts in strategy
or an increased access to physics knowledge and problem solving
resources.

We posit that the observed pre to post-instruction changes
in brain activation during physics reasoning are consistent with
what one may expect to observe as students develop refined
mental models during classroom learning. Physics reasoning,
regardless of an individual’s familiarity with the material, is a
process continually scaffolded by mental model use (Nersessian,
1995, 1999, 2002a,b; Giere, 2005; Koponen, 2006), and effective
physics learning is engendered by building and deploying
strategies to appropriately implement mental models during
reasoning (Hestenes, 1987). In this study, we framed our
exploration of learning-induced changes in brain activity in the
context of the MI classroom because this pedagogical approach
has been shown to effectively encourage the development and
flexible implementation of models during physics reasoning
(Brewe, 2008; Brewe et al., 2010b). Our experimental results do
not go as far as to implicate MI as any more or less effective than
other instructional strategies at supporting instructional-related
changes in student’s brain networks. However, if we accept that
physics reasoning inherently relies on mental model use, we can
begin to consider a more truly neuroeducational interpretation
of physics learning in which shifts in network engagement
across instruction bring about student conceptual change.
Characterizing these neurobiological changes may ultimately
help researchers and educators understand which instructional
strategies may best support successful model development. We
hold that the mental models student’s deployed at the beginning
of the semester during reasoning, upheld by a variety of CEN-
supported attentional and executive processes, shifted after
instruction, as evidenced by student’s overall increased accuracy
during reasoning. This instruction-induced shift in model use
promoted increased involvement from key DMN and CEN
regions within reasoning. This study represents an initial step
in neuroeducational research demonstrating that such shifts,
indicative of learning, are measurable and detectable using non-
invasive brain imaging techniques. Additional work is needed to
understand the relationship between external conceptual models
as studied in science education, with mental models and related
cognitive constructs as studied in neuroimaging literature.

This project has several limitations. First, we focused on
the MI class and did not assess the brain activity of students
from traditional lecture course sections or other active learning
environments. Based on the data presented, we do not make
claims that MI is a better or the only instructional tool capable of
inducing brain network alterations. Rather, in the current study,

we used MI as an exemplar case. It remains to be determined
if different pedagogies differentially influence how physics
reasoning-related brain networks develop. As noted above and
consistent with recommendations (Freeman et al., 2014), we
will explore this in the future and a future direction could
investigate differences among active learning formats. Second,
these analyses addressed brain activation and did not consider
correlation with other behavioral measures, such as mental
rotations, science anxiety, or academic performance measures
which could further aid in the interpretation of these fMRI
outcomes. Third, consideration of potential differences between
female and male students remains for future investigations.

Notwithstanding these limitations and future direction, these
preliminary outcomes implicate brain regions linkedwith physics
reasoning and, critically, suggest that brain activity during
physics reasoning is modifiable over the course of a semester of
physics instruciton. Further work should investigate differences
between MI and lecture instruction, as well as addressing
differences among different active learning strategies across
disciplines. Studying active learning broadly has the potential
to more clearly elaborate how these pedagogies impact student
learning and brain function.
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