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Smart musical instruments are a class of IoT devices for musicmaking, which encompass

embedded intelligence as well as wireless connectivity. In previous work, we established

design requirements for a novel smart musical instrument, a smart cajón, following

a user-centered approach. This paper describes the implementation and technical

evaluation of the designed component of the smart cajón related to hit classification

and repurposing. A conventional acoustic cajón was enhanced with sensors to classify

position of the hit and the gesture that produced it. The instrument was equipped

with five piezo pickups attached to the internal panels and a condenser microphone

located inside. The developed sound engine leveraged digital signal processing, sensor

fusion, and machine learning techniques to classify the position, dynamics, and timbre

of each hit. The techniques were devised and implemented to achieve low latency

between action and the electronically-generated sounds, as well as keep computational

efficiency high. The system was tuned to classify two main cajón playing techniques at

different locations and we conducted evaluations using over 2,000 hits performed by two

professional players. We first assessed the classification performance when training and

testing data related to recordings from the same player. In this configuration, classification

accuracies of 100% were obtained for hit detection and location. Accuracies of over

90% were obtained when classifying timbres produced by the two playing techniques.

We then assessed the classifier in a cross-player configuration (training and testing

were performed using recordings from different players). Results indicated that while hit

location scales relatively well across different players, gesture identification requires that

the involved classifiers are trained specifically for each musician.

Keywords: smart musical instruments, internet of musical things, embedded systems, sensor fusion, gesture

classification, machine learning

1. INTRODUCTION

The cajón is a cuboid-shaped percussion instrument originally from Peru, which has recently
become widely used worldwide and across various musical genres (Tompkins, 2007). The large
diffusion of such an instrument may be attributable to its ability to produce a multitude of
percussive sounds by hitting one or more of its sides, as well as to its portability. These aspects
provide a viable and more cost effective alternative to the drumset.

A typical cajón consists of a hollow wooden box with a resonant chamber, which has a hole in
the back wall for producing bass tones. A supplemental rattle device consisting of metal strings
or snares is usually attached to the interior side of the front panel, to produce a snare-like sound
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especially when the top part of the front panel is struck. Typically,
musicians who play the cajón sit on the top side and slap
the front and side panels with their hands. When struck, each
panel vibrates causing the displacement of air to produce sound
(Ludwigsen, 2017). Striking a cajón panel in different places
(e.g., high or low parts, the corners, or the central portion), and
with different techniques (e.g., open or closed hands, fingers,
palms, knuckles, or fingernails) can produce a variety of distinct
percussive sounds. Like the vast majority of conventional acoustic
instruments, the cajón affords high intimacy of control as it
accommodates a wide variety of performance gestures and offers
tactile feedback from the interaction of the hands with the panels
which is coherent with the produced sound and in response
to the performed gesture. This high level of “control intimacy”
(Moore, 1988) is typically lost in most common percussive digital
music interfaces, which are capable of tracking only the time and
intensity of a hit, and in some cases different hit locations along
a same surface (for reviews of percussive digital controllers see
Aimi, 2007; Jathal, 2017).

In the past few years, a handful of acoustic cajones
embedding electronic components have been proposed by
different companies to extend the sonic possibilities of the
instrument in its original version. Examples include Roland’s
Electronic Cajón1, De Gregorio’s Cajón Centaur2, and Duende’s
Magik Cajón3. These instruments are equipped with sensors that
can detect players’ hits on specific regions of the instrument
and trigger in response audio samples from different percussive
instruments. In the De Gregorio’s and Duende’s cajones the
sensors consist of pads placed on one of the side panels, and
thus the electronic sounds resulting from hitting on them are
unrelated to the acoustic sound and tactile sensation a musician
would experience by interacting with the actual wood. Roland’s
instrument leverages another approach, by placing sensors
underneath the wood on the middle-bottom and top central
zones of the front panel. However, to date such instruments are
not capable of detecting with high accuracy the location of a hit
on all panels musicians interact with (i.e., the front, left, and right
panels) nor capturing the richness of the hand-panel interactions
in terms of amplitude and timbral nuances. Therefore, the
rendering of the simulated percussive instrument sounds cannot
be informed by a plethora of data describing how and where
the hit was performed. Consequently, as stated by some of the
cajón players we worked with in a previous study (Turchet et al.,
2018), the quality of the gesture-to-electronic sound interaction
is largely impoverished compared to the level of control intimacy
of the acoustic cajón. Enabling subtle interaction and nuances
in electronically-controlled cajones is deemed crucial by players
(Turchet et al., 2018) and is the focus of the current study.

Electronic cajones currently available in the market belong to
the family of the so-called “augmented instruments” (Miranda
and Wanderley, 2006), which are familiar instruments whose
musical capabilities are enhanced with sensors or actuators.
Recently, a new family of musical instruments that builds

1www.roland.com/us/products/el_cajon_ec-10
2www.cajondg.com/product/cajon-centaur/?lang=en
3https://www.youtube.com/watch?v=zZO1y0aVnXQ

upon the augmented instruments concept has been proposed,
that of the “smart instruments” (Turchet et al., 2016). This
is a class of Internet of Musical Things devices for music
making, which encompasses embedded intelligence responsible
for handling sensors and audio processing, as well as wireless
connectivity. Internet of Musical Things (IoMusT) refers to
interfaces, protocols and music-related data in an ecosystem
of interoperable devices dedicated to the production and/or
reception of music, which can lead to novel forms of interactions
between performers and audiences (Turchet et al., 2017).

In previous work, we established design requirements for a
smart cajón, following a user-centred approach (Turchet et al.,
2018). Specifically, we conducted individual co-design sessions
with five professional cajón players, which resulted in crafting
and evaluating a prototype. Such prototype consisted of an
acoustic cajón enhanced with a two-head contact microphone
attached on the front panel; a sensor interface tracking various
performing gestures mapped to different sound processing
algorithms; a system of actuators delivering tactile feedback in
response to messages sent from connected devices; a loudspeaker
for delivering electronically-generated sounds, used along with
a smartphone placed on top of it providing a touchscreen;
an embedded computational unit responsible for wireless
connectivity as well as processing of audio, sensors, actuators, and
visual display. The sound engine was devised to track two zones
of the front panel, the central top and the middle-bottom one.
This was achieved by applying a discriminative threshold on the
value of the spectral centroid extracted in real-time, leveraging
the fact that hits on the two zones are typically characterized
by different spectra (i.e., richer in high frequencies for hits on
the central top part). However, such a method proved to be non
optimal as in various cases the two zones were wrongly tracked.

In this paper, we investigate a more robust technique
overcoming the limitations of our previous method based on
spectral centroid. We focus on the design and development
of a system capable of addressing some of the suggestions
made by professional players that assessed the smart cajón
prototype reported in Turchet et al. (2018). Those players
highlighted the following areas of improvements related to
expressive control: (i) track hits on more areas on the front
panel, specifically the two top corners; (ii) track hits on the side
panels; (iii) improve the sound quality of the triggered samples
to render more adequately the type of gesture used (especially
in terms of dynamics and timbral nuances); (iv) automatically
transcribe the played patterns into a digital score. The present
paper describes the implementation and technical evaluation
of the designed component of the smart cajón related to the
classification of the hit position and gesture that produced it,
as well as its repurposing into a transcribed score and sound
samples.

The remainder of the paper is organized as follows. Section 2
reviews the literature on which our work is grounded. Section 3
describes the design requirements, while sections 3.1 and 4
present our implementation at hardware and software levels.
Section 5 presents the results of the technical evaluation
performed with cajón players, while section 6 proposes a
discussion and conclusion.
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2. RELATED WORKS

2.1. Real-Time Music Information Retrieval
Music Information Retrieval (MIR) is an interdisciplinary
research field focusing on retrieving information from music
(Burgoyne et al., 2016). One of the main goals of this field is the
development of effective methods capable of extracting temporal
and spectral aspects of a music signal, especially for automatic
music transcription purposes (Benetos et al., 2013). To date,
the majority of MIR research has focused on offline methods
analyzing audio files. Nevertheless, different techniques have also
been developed for real-time scenarios, especially for retrieving
information from the audio signal of a single musical instrument.
In the context of percussive instruments, Miron et al. proposed a
real-time drum transcription system available for the two real-
time programming languages Pure Data (Pd) and Max/MSP
(Miron et al., 2013a,b).

One of the crucial steps in the information retrieval process
is the onset detection of musical events, that is the instant at
which a pitched or unpitched musical sound starts. A plethora of
techniques have been developed for this purpose (see e.g., Bello
et al., 2005; Dixon, 2006; Stowell and Plumbley, 2007), including
those that rely on the fusion of various methods (Tian et al.,
2014). Real-time implementations of some of such techniques
have been made available in the aubio open source library for Pd
currently maintained by Paul Brossier4.

After the detection of an onset it is possible to retrieve
information from the corresponding musical event, such as for
instance its timbre, which is a crucial aspect for expressivity
(Barthet et al., 2010). Various techniques are available for this
purpose, some of which are more specific for percussive sounds
and for real-time contexts. In Brent (2009), the author describes
a set of temporal, spectral, and cepstral features that are relevant
and useful for percussive timbre identification, and which can be
computed in real-time. These are included in the timbreID library
for Pd5 (Brent, 2010). Such library, besides providing efficient
implementations of a set of low-level temporal, spectral, and
cepstral feature-extraction techniques, also integrates a real-time
classifier based on machine learning algorithms, which takes in
input vectors of extracted audio features.

2.2. Musicians’ Gestures Tracking
A considerable amount of research in the fields of MIR and
NIME has focused on the automatic sensing of the gestures
of the performers interacting with their instruments (Jensenius
and Wanderley, 2010). There are two main approaches to
sensing gestures performed on musical instruments: sensor
augmentation and indirect acquisition (Driessen and Tzanetakis,
2018). Sensor augmentation entails the modification of the
conventional instrument by adding sensor technology to
it (e.g., force sensing resistors, accelerometers) to measure
various aspects of the performers’ gestures. Various augmented
instruments have been crafted for this purpose, including the
percussive ones (e.g., Kapur et al., 2004; Young and Fujinaga,

4Available online at: www.aubio.org
5Available online at: www.williambrent.com

2004; Michalakos, 2012). In indirect acquisition the only sensor
utilized is a microphone that captures the sound produced by the
instrument. Examples of indirect acquisition systems developed
for percussive instruments gesture extraction are reported in
Gouyon and Herrera (2001), Tindale et al. (2004, 2005), and
Jathal (2017). The algorithms proposed in those works rely on
signal processing, possibly followed by machine learning.

Both sensor augmentation and indirect acquisition have
advantages and disadvantages. While sensor augmentations
provide relatively straightforward and reliable measurements,
they require invasive modification of the instrument, which is
frequently undesirable. On the other hand, indirect acquisition
is non-invasive but requires the use of sophisticated signal
processing and possibly machine learning algorithms to extract
from the audio signal the information relevant to classify a
gesture. This requires high development efforts and in the
presence of machine learning techniques, time consuming
manual labeling processes (for supervised learning) and model
training are necessary. Moreover, indirect acquisition may not
achieve the same performance accuracy as direct sensors, and
audio feature extraction typically adds latency. Tindale et al.
proposed a sensor fusion approach to exploit the advantages of
the two methods, by developing an efficient and effective system
that used direct sensing via sensors to train a machine learning
model for indirect acquisition (Tindale et al., 2011).

Sensor fusion refers to a process by which data from different
sensors are merged to compute something more than could be
determined by any one sensor alone (Liggins et al., 2017). Such a
technique has been utilized in the context of musical instruments.
For instance, MacRitchie and McPherson proposed a method
to integrate streams of information coming from a markers-
tracking camera and capacitive touch sensors attached to the keys
of a piano (MacRitchie and McPherson, 2015). The method was
successful in accurately analyzing pianists’ fingers movements.
Odowichuk et al. combined data extracted from a Kinect motion
sensing device (by means of computer vision techniques) with
data of a the Radio-drum (an electromagnetic capacitive 3D
input device) in order to infer gestures of a performer playing a
vibraphone (Odowichuk et al., 2011). A complicating factor in
these systems is that the sources of information are sensed by
different devices, each of which has its own clock and its own
sample/frame rate. This may lead to issues with temporal and
spatial alignment of the collected data. In a smart instrument
instead, all sources of information may be processed with the
same clock and in some cases even with the same sampling
rate. Along these lines, Pardue and McPherson presented an
approach to violin pitch tracking combining audio and position
sensor data, showing that the combination of the two sources
of information outperformed audio-only methods (Pardue et al.,
2015).

3. DESIGN

To progress the state of the art compared to our previous
prototype as well as existing commercial solutions, we designed
a system with the following requirements for tracking and
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repurposing the hits. In reference to Figure 1, the system was
designed to track:

• hits on 3 zones in the front panel: bottom (FB), top-left (FTL),
top-right (FTR);

• hits on the left (L) and right (R) panels;
• hits with a wide range of dynamics in each of the zones above;
• hits with a high temporal resolution;
• two different types of gestures associated to hits in each of the

zones;
• different timbral nuances for each zone and each gesture.

The requirements for repurposing the hits were:

• to map each of the five zones (i.e., FB, FTL, FTR, L, and R) to
a different sound sample;

• to map each gesture detected within a same zone to a different
sound sample, to render the different gestures;

• to apply different equalizations for each gesture detected
within a same zone, to render timbral nuances;

• to map the dynamics of each detected hit to the dynamics of
the triggered sample;

• to automatically create a score.

The performance requirements for the overall system were:

• to deliver with imperceivable latency the electronically-
generated sounds in response to hits;

• to keep as low as possible the computational load.

The design process was informed not only by the results of the
study reported in Turchet et al. (2018), but also by consultations
with three professional cajón players who were involved in co-
design and testing sessions before the final evaluation.

In general, control intimacy was adopted as a design criterion
(Moore, 1988). Therefore, we focused on the most crucial aspects
for the interaction such as hit detection, hit position and gesture
classification, rendering of timbral nuances, and latency.

Notably, the concept of zone described here is just a
simplification. Indeed, what really matters for a player is the
match between the generated sound and the intention to generate
it. For instance a bass sound, that is a sound richer in low
frequencies, might be produced not only by playing exclusively
in the FB zone, but also by playing at the same time on the FTR
and FB zones (see Figure 2). The capability of producing specific
timbres largely varies with the playing technique of a performer
and his/her hand dimensions. Our system was designed to cope
with this situation, taking into account the timbre of the sound
produced. For convenience’s sake, in the reminder of the article
we will use BAS to indicate a zone that corresponds to a hit
producing the bass sound (which typically comprises, but it is not
limited to, the FB zone).

In this study we focused on the detection of two types of
gestures utilized by cajón players: slap hit and tap hit. These
gestures generate respectively a sharp sound and a more muted
sound. Generally, slap hits are accomplished by slapping the
instrument with the open hand and using the finger pads, while
tap hits are produced by using the fingertips or having a more
closed hand (see Figure 2). The detection of only these two hits
was motivated by the fact that not only they are the ones most

FIGURE 1 | Illustration of the zones of the instrument tracked by the system.

widely used, but also to keep the accuracy of hit detection high
and the design of the related algorithms efficient. Other less
common techniques such as those involving knuckles or nails will
be investigated in future research.

As far as the action-to-sound latency is concerned we
targeted a limit of 20 ms, despite a generally accepted limit for
latency in digital musical instrument is 10 ms (Finney, 1997;
McPherson et al., 2016). This was motivated by the results
of the evaluation of the smart cajón prototype reported in
Turchet et al. (2018) were we found that none of the participants
could perceive the measured average latency of 20 ms, likely
because of a masking effect in the attack of the acoustic sound
that superimposes over the digital one. Considering this and a
tradeoff with accuracy, as well as with computational efficiency
using low cost commercially available equipment, our targeted
latency constraint between the actual hit performed on the
instrument and the electronically-generated sound was set to 28
ms. Nevertheless, in our design we also considered that cutting
edge technologies available in the music industry would ensure a
latency of 22 ms (e.g., MIND Music Labs’ ELK operating system
for embedded platforms6).

6https://www.mindmusiclabs.com/elk/
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FIGURE 2 | Pictures of the slap and tap hits produced by a player’s hand performing a sound related to the BAS zone.

The next two sections detail the hardware and software
components of the prototype built according to the design
requirements.

3.1. Prototype’s Hardware
The prototype consisted of a conventional acoustic cajón,
smartified with different hardware components. The
computational unit consisted of a Bela board for low-
latency audio processing (based on a Beaglebone Black board)
(McPherson and Zappi, 2015). Bela was extended with a shield to
obtain 10 audio inputs. Wireless connectivity was accomplished
by means of a small wireless router (TL-WR902AC by TP-Link),
which featured the IEEE 802.11ac Wi-Fi standard. Sound
delivery was accomplished by a loudspeaker (Monitor Supreme
Center 250 by Magnat) with small pre-amplifier (SA-36A Pro
HIFI Digital Amplifier by SMSL). Power was supplied externally
using AC power plugs.

To detect the acoustic sound produced by the instrument
in response to a hit we used a pickup system composed by
five piezoelectric microphones (Big Shot by K&K), as well as
a condenser microphone. The piezoelectric microphones were
attached to the instrument’s internal panels by means of blu-
tack adhesive, in correspondence to the five zones indicated in
Figure 1. The reason for using a pickup system was motivated
by the fact that a pickup relatively far from another is capable of
producing temporally and dynamically different pickup signals
for a same hit. Such differences could be exploited to detect
the zone of the instrument in which the hit was produced.
Critical to the use of this pickup system is the positioning of
the each piezo as well as the hardware adjustment of the level
of the corresponding input signal (by means of potentiometers)
in order to limit as much as possible cross-talking effects.
Specifically the piezo pickup placed on zone FB needed to have
a much lower input gain than the other pickups due to the fact
that it is attached to the more resonant part of the instrument.

The condenser microphone utilized was the Beta 91A by
Shure. It is a preamplified, flat shaped, half-cardioid microphone
with a wide and accurate dynamics tracking, as well as a

tailored frequency response, which is designed specifically for
kick drums and other bass instruments. It is frequently involved
in professional contexts, such as recording and live performances,
for miking the cajón: its placement inside the instrument allows
for an optimal capture of the acoustic sound and also limits
the interference from external sound sources (e.g., other musical
instruments playing on stage). In our prototype such a boundary
microphone was attached, by means of velcro, to a foam sealed
to the rear part of the bottom side, to prevent the microphone
to move around inside. Being a condenser microphone made
necessary the use of a supplier of 48 V phantom power (we
selected the PS400 model by Behringer for a tradeoff between
small size and quality).

The reason for using these two miking apparati was due to
their different and complementary tracking capabilities, which
made them ideal candidates for the adoption of sensor fusion
techniques. The piezo pickups, even when their signals are
merged together, are unable to capture with the same level
of accuracy than a condenser microphone all the timbral and
dynamic nuances of the produced hits (this is especially true in
our system due to the signal conditioning performed to achieve
optimal spatial tracking of the hits, see section 4.2). On the other
hand, the condenser microphone alonemay be less well suited for
the task of detecting the location of each hit.

4. PROTOTYPE’S SOFTWARE

A sound engine responsible for microphones processing and
sound production was developed in Pd, running on the Linux
operating systemwhich comes with Bela. The audio buffer was set
to 128 samples for efficiency of block-based processing, which led
to an estimated round-trip latency of 6.7 ms (McPherson et al.,
2016).

Data reception and forwarding over Wi-Fi were achieved
using Open Sound Control (OSC) over the User Datagram
Protocol. Following the recommendations reported in Mitchell
et al. (2014) to optimize the components of a Wi-Fi system
for live performance scenarios, in order to reduce latency and
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increase throughput, the router was configured in access point
mode, security was disabled, and support was limited to theIEEE
802.11ac standard only. The wireless communication with a
laptop allowed for the real-time monitoring and control of the
status of the sound engine (e.g., for tuning the parameters of the
detection algorithms and to start/stop recordings).

Figure 3 shows a block diagram of the overall process of
triggering sound samples on the basis of the input signals,
which was accomplished by the sound engine. Such a process
leveraged digital signal processing, sensor fusion, and machine-
learning techniques to classify the position, dynamics, and timbre
of each hit. These techniques were devised and implemented
to achieve low latency between action and the electronically-
generated sounds, as well as keep as low as possible the overall
computational load.

Specifically, the sound engine comprised eight modules:

1. Onset Detection: For each piezo pickup we detected the
presence of an onset and calculated the corresponding peak
in the signal.

2. Hit Detection: This module detects the presence of a hit by
selecting the first of the onsets detected from the five piezo
pickups within a certain checking period and after a certain
refractory period.

3. Hit Localization: This module is responsible for detecting in
which part of the instrument the hit was produced.

4. Features Extraction: This module computes algorithms to
extract temporal and spectral features from the audio signal
captured by the condenser microphone.

5. Gesture Classification: The spectral features computed in the
Features Extraction module as well as the location of a hit
are used as input for a gesture classifier based on supervised
learning.

6. Hit Classification and Automatic Score Transcription: The
type of hit is classified on the basis of the information about
position and type of gesture, which are received from the hit
localization and gesture classification modules. This module
also implements a score transcription.

7. Sample Selection and Parameters-to-Sound Mapping, and

Triggering: This module selects among a set of possible
choices, one sound sample. The selection process is informed
by the labels assigned to the hit by the Hit Classification
module as well as by the extracted spectral information. The
module is also responsible for assigning a volume to the
sample based on the input signal’s amplitude calculated by the
Features Extraction module. Finally, the module triggers the
playback of the selected sample.

The next subsections provide details about each of the eight
modules.

4.1. Real-Time Onset Detection
We proposed an onset detection algorithm based on a novel
approach combining time- and spectrum-based techniques
(Turchet, 2018). Such onset detector was applied to each of the
signals captured by the five pickups.

Typically to detect efficiently an onset using spectral methods
at least 5.8 ms are needed after the occurrence of the peak of the

FIGURE 3 | Block diagram of the overall process for real-time hit detection, classification, and repurposing. In red the audio signals, in black the control data.
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involved onset detection function (ODF), considering a window
size of 256 samples for the Short Time Fourier Transform and a
sampling rate of 44.1 kHz. For such methods the time between
the actual onset and the reported onset is unpredictable and
may largely vary according to the type of percussive sound.
This is due to the fact that these methods are based on the
identification of the ODF peak, and not on the actual initial
moment of the hit. Specifically, we empirically found that for
some hits the delay could even amount to 20 ms. This aspect
was unacceptable in our application where it was fundamental
to detect the exact moment in which a hit happened in order to
perform the analyses on the first portion of the sound, and use
the results of such analyses to classify different sounds related
to different hits. On the other hand, our initial experimentations
suggested that methods based on temporal features may have a
higher degree of accuracy in detecting the initial moment when a
hit is generated. Nevertheless, onset detection methods based on
the spectral content may be less prone to false positives compared
to methods based on temporal features if their parameters are
appropriately tuned.

The onset detection method here proposed takes advantage
of the strengths of the two approaches. Specifically, a time-based
technique capable of detecting the initial moment of a hit but
more sensitive to spurious detections, was used in parallel with a
linear combination of two spectrum-based techniques, which are
more robust to spurious detections (when appropriately tuned)
but have higher and variable delay. We used two complementary
spectral methods in parallel in order to improve accuracy in the
case in which one of the two failed in detecting an onset. The idea
beyond this mixed approach was not only to detect exclusively
a single onset per hit and with minimal delay after the initial
moment of contact of the hand with the wood, but also to ensure
perfect tracking and a high temporal resolution in tracking two
subsequent hits. We set such resolution to 30 ms since this is the
temporal resolution of the human hearing system to distinguish
two sequential complex tones (Moore, 2012).

We also investigated the case of applying the proposed
onset detector only on the signal captured by the condenser
microphone, but we found out that directly processing the signals
of the pickups led to slightly better performances in terms of
accuracy and delay. This is due to the fact that the pickups
are capable of providing signals more defined and sharper,
which makes the onsets easier to detect. However, despite its
increased accuracy, this method is also much more expensive
computationally than only analyzing the single signal from the
condenser microphone.

4.1.1. Time-Based Onset Detection Technique
The time-based technique here proposed consisted of a
modification of the approaches to onset detection described in
Brossier et al. (2004) and Bello et al. (2005). It must be specified
that this technique only provides as output an onset timing,
not the associated peak amplitude. A peak-picking algorithm is
instead performed in the Features Extraction module, on the
original signal, not on the computed onset detection function
(ODF) as normally happens for other onset detectors present in
the literature.

We computed an ODF as follows. Firstly, we squared each
sample above zero. This method discarded the negative part of
the signal, which was useful to limit spurious detections after the
attack. Our in-depth analysis on the original waveforms showed
that such a method affected only minimally the accuracy time of
the onset detection. The resulting signal underwent a smoothing
process accomplished by a lowpass filter with cutoff frequency at
15 Hz. This was followed by the calculation of the first derivative
and again the application of a lowpass filter with cutoff frequency
at 15 Hz.

Subsequently, a dynamic threshold (capable of compensating
for pronounced amplitude changes in the signal profile) was
subtracted from the signal. We utilized a threshold consisting of
the weighted median and mean of a section of the signal centered
around the current sample n:

δ(n) = λ ·median(D[nm])+ α ·mean(D[nm]) (1)

with nm ∈ [m − a,m + b] where the section D[nm] contains
a samples before m and b after, and where λ and α are positive
weighting factors. In our implementation we used a section of
64 samples with a = 62 and b = 2, as well as λ = 0.5 and
α = 0.5. For the purpose of correctly calculating the median
and the mean around the current sample, the pre-thresholded
signal was delayed of 2 samples before being subtracted from
the threshold. The real-time implementation of the median was
accomplished by a Pd object performing the technique reported
in Herzog (2013).

The detection of an onset was finally accomplished by
considering the first sample n of the ODF satisfying the
condition:

n > δ(n) & δ(n) > β (2)

where β is a positive constant. The reason for using the fixed
threshold β on the dynamic threshold rather than setting it on
the actual detection function was due to the fact that it provided
better detection performances. A refractory period of 30 ms was
applied after such detection to discard false positives.

4.1.2. Spectrum-Based Onset Detection Techniques
Various algorithms for onset detections available as external
objects for Pd were assessed, all of which implemented
techniques based on the spectral content. Specifically, we
compared the objects (i) bonk∼ (described in Puckette et al.,
1998), which is based on the analysis of the spectral growth
of 11 spectral bands; (ii) bark∼, from the timbreID library,
which consists of a variation of bonk∼ relying on the Bark
scale; (iii) aubioonset∼ from the aubio library, which makes
available different techniques, i.e., broadband energy rise ODF
(Bello et al., 2005), high frequency content ODF (Masri,
1996), complex domain ODF (Duxbury et al., 2003), phase-
based ODF (Bello and Sandler, 2003), spectral difference ODF
(Foote and Uchihashi, 2001), Kulback-Liebler ODF (Hainsworth
and Macleod, 2003), modified Kulback-Liebler ODF (Brossier,
2006), and spectral flux-based ODF (Dixon, 2006). Several
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combinations of parameters were used in order to find the best
performances for each method.

All these spectral methods shared in common a variable delay
between the actual onset time and the time at which the onset
was detected. In the end aubioonset∼, was selected because it was
empirically found to be capable of providing the best accuracy
when configured to implement the high-frequency content ODF
and spectral difference ODF. Specifically, the object’s arguments
were: (i) for high-frequency content ODF: threshold= 0.6, buffer
size = 256 samples, hop size = 64 samples; (ii) for spectral
difference ODF: threshold = 3.5, buffer size = 256 samples, hop
size = 64 samples. A refractory period of 30 ms was applied to
both methods after such detection to eliminate false positives.
The linear combination of the two spectral methods used equal
weights and simply consisted in selecting the first detected onset
in the time window of 30ms.

4.1.3. Fusion Strategy
Our strategy of combining the three onset detectors calculated
in parallel consisted in considering an onset if and only if both
the time-based technique and the linear combination of the
spectral techniques produced an onset within a time window
of 20 ms. Therefore, an onset was passed to the subsequent
Hit Localization and Features Extraction modules only after 20
ms from the actual initial moment of the hit. This amount of
time was selected not only to accommodate the (rare) cases in
which spectral methods performed with large latency, but also
because the feature extraction algorithms retroactively computed
their analysis on the previous 1,024 samples. Such window size
corresponds to 23.2ms (at a sampling rate of 44.1 kHz), therefore
little or null pre-onset samples are included in the analysis.

4.2. Hit Detection
This module collected the onset candidates from all the five
Onset Detection modules applied to each pickup, and detected
the presence of a hit based on the first arriving onset. The
information about the occurrence of the hit was then passed to
the Features Extraction modules (applied to the signal from the
condenser microphone and each of the pickups) as a trigger for
their computations.

4.3. Features Extraction
This module retrieved various temporal and spectral features
from the signals of the condenser microphone and pickups as
soon as an onset was detected. These were used to inform the
processes of hit localization, gesture classification, and sound
sample selection, accomplished by the respective modules of the
sound engine.

Several features and various combinations thereof were tested.
Since the complexity of the feature vector increases computation
time (and as a consequence latency), the goal was to choose
a minimal set of features that would provide a good balance
of accuracy and latency. In the following we describe the ones
that proved to be the most reliable and performant features. All
features were computed by using the timbreID library for Pd
(Brent, 2010).

Notably, the features for gesture classification and sample
selection were computed in parallel with the features used for hit
localization in order to reduce latency.

4.3.1. Features for Hit Localization
The Hit Localization module was informed by features extracted
from both the pickup signals and the condenser microphone.

Firstly, we extracted the peak of the energy from the signals
of the five pickups associated to the five zones. The peak was
found by searching the sample with highest energy in the 1,024
samples previous to the reporting of the onset (i.e., 20 ms after
the detection of the onset). Before applying the peak picking
algorithm, a threshold was applied to the energy signal to
eliminate low energy components. This was followed by a linear
scaling function (with clipping) to amplify or reduce the level of
the signal within a range, whose extremes were empirically found.
The goal of this procedure was to find a balance between the
cross talking effects affecting the pickups and the amplification
of the signals of the pickups closest to where the hit was
produced.

From the signal of the condenser microphone we extracted
three features with the goal of distinguishing sounds richer in low
frequencies (BAS zone) from sounds richer in high frequencies
(thus associated to the zones FTL, FTR, L, and R): the absolute
value of the signal peak, the spectral brightness, and the Bark
frequency spectrum. Specifically, here the spectral brightness is
not intended as a perceptual measure, but as the ratio of the sum
of magnitudes above a given boundary frequency to the sum of
all magnitudes in a spectrum. Signals richer in high frequencies
have higher brightness. We set the boundary frequency to 400
Hz as we found that signals resulting from hits on zones FTL,
FTR, L, and R had more power in high frequencies above
that frequency compared to those resulting from hits on BAS
zone.

The Bark frequency spectrum is a warping of the normal
magnitude spectrum to the Bark scale (Traunmüller, 1990).
This analysis has the advantage of attenuating some of the
high-frequency detail while maintaining resolution on the low
end, which makes it an ideal candidate for discriminating
different percussive sounds. Since the hits in the acoustic cajón
contained mostly low-frequency content, only the first 10 bands
were extracted. The algorithm was configured to implement a
triangular filter bank spaced at half-Bark intervals.

All these calculations were performed on the window
containing the 1,024 samples previous to the actual reporting of
hit detection.

4.3.2. Features for Gesture Classification
Typically, the two hits classified, slap hit and tap hit, have
different temporal and spectral features (e.g., attack time,
peak, spectral brightness). We empirically found that the best
descriptors for distinguishing such hits were the absolute value of
the peak of the signal and the first 10 bands of its Bark frequency
spectrum. Therefore, it was enough to reutilize the results of the
same calculations performed for the Hit Localization module.
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4.3.3. Features for Sample Selection and

Parameters-to-Sound Mapping
Regarding the features to be passed as input for the Sample
Selection and Parameters-to-SoundMappingmodule, we utilized
the absolute value of the peak of the signal of the condenser
microphone previously computed, as well as the spectral centroid
(over the previous 1,024 samples). During the training phase
of the machine learning algorithm, we computed for each zone
and for each gesture the minimum and maximum value of the
spectral centroid. We then divided such range into four intervals
to capture and render the timbral nuances associated to the
hits.

4.4. Hit Localization
To localize the hit we adopted a mixed approach that involved
machine learning techniques and a simple comparison of the
extracted features. The process is illustrated in Figure 4. Firstly,
we created a vector of 16 coefficients consisting of themagnitudes
of the first 10 bands of the Bark frequency spectrum, the
absolute value of the signal peak, the spectral brightness, 2
indices related to the two pickups with greatest peaks and
their respective peak values. Secondly, we fed the classifier with
such a vector and, after a training stage, we determined if
the vector corresponded or not to a hit on the BAS zone. If
it corresponded then the localization process ended, otherwise
one of the remaining four zones was selected on the basis of
the highest peak among the corresponding four pickups FTL,
FTR, L, and R. Finally, the information about the localized
hit was passed to the Gesture Classification module. Notably,
any method based only on the comparison of the peaks of
the pickup signals was found to be not sufficient to detect all
zones perfectly. This was due in part to cross-talking effects and
in part to the fact that a hit producing low frequencies could
have as highest peak the pickups located on the FTL or FTR
zones.

For the classifier we adopted the k-nearest neighbor algorithm
(k-NN) and involved Euclidean distance measurements between
feature vectors. This method was selected not only for its
availability in Pd as an efficient real-time implementation, but
also on the basis of the results reported in Jathal (2017), which
showed that the k-NN method yielded the highest accuracy in
a similar classification task (real-time timbre classification for
tabletop hand drumming) compared to other methods such
as support vector machine, k-means clustering, and neural
networks. Specifically, we utilized the timbreID object from
the timbreID library, which is capable of performing both the
machine-learning function during training and the classification
algorithm during testing. We set k (the number of neighbors
to consider) to 1, as we found that it led to the best accuracy.
We clustered the instances into two clusters, one for hits
on zone BAS and the second for hits on zones FTL, FTR,
L, and R. In particular, to boost reliability and accuracy of
classification we implemented a supervised learning system by
adopting a user-defined input to force manual clustering of the
training data. All points composing the input vector were equally
weighted.

FIGURE 4 | Flow diagram of the localization process performed by the Hit

Localization module.

4.5. Gesture Classification
We utilized a different classifier of the two gestures for
each of the five detected zones. The five classifiers took
as input an 11-point vector composed by the features
described in section 4.3.2 and were configured in the same
way than the classifier utilized for localization. Notably,
we empirically found that extracting and classifying the
features from each of the five pickups signals did not
yield to better performances compared to the extraction and
classification performed only on the condenser microphone’s
signal.

4.6. Hit Classification and Automatic Score
Transcription
This module simply labeled a hit on the basis of the results of
the Hit Localization and Gesture Classification modules, and
passed this information to the Sample Selection and Parameters-
to-Sound Mapping module. A total of 10 labels was produced
(5 zones × 2 gestures): BAS_slap, BAS_tap, FTL_slap, FTL_tap,
FTR_slap, FTR_tap, L_slap, L_tap, R_slap, R_tap. This module
also performed an automatic transcription of the played hits
in the form of a MIDI score. Each of the 10 labels were
converted into a MIDI note, whose velocity was generated by
mapping the absolute value of the microphone’s signal peak
to the range [0, 127]. Each excerpt could be saved to a MIDI
file by means of record/stop commands wirelessly sent from
an app for smartphone previously built (Turchet et al., 2018).
The same app could be also utilized for transferring the MIDI
file on a computer and to upload the file to the cloud (via
FTP), thanks to a Python script running on the embedded
platform.
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4.7. Sample Selection,
Parameters-to-Sound Mapping, and
Triggering
This module took as input the 10 labels produced by the
Hit Classification module, as well as the spectral centroid and
absolute value of the peak as described in section 4.3.3. This
information was utilized to select a sound sample among a library
of 40 .wav files (5 zones × 2 gestures ×4 timbral nuances within
each gesture) and to regulate its volume. The .wav files were
created ad-hoc by leveraging freely available sound libraries.
Specifically, we utilized sounds of a drum kit, adopting the
following mapping: BAS to bass drum; FTL to snare; FTR
to closed hi-hat; L to high-tom; R to crash cymbal. Finally,
the selected sample was played back through the embedded
loudspeaker.

5. TECHNICAL EVALUATION

We evaluated our spatio-timbral hit detection system at technical
level by means of two experiments, which involved two
professional cajón players (1 female, 1 male, average age =

29, average years of musical experience = 15.5). In the first
experiment we aimed to assess the performance of the system
using, for the involved classifiers, both training and testing data
originated from the same musician. In the second experiment we
tested the system performance by using a dataset of a musician
against the classifiers trained with the data coming from the other
musician. The goal of this second experiment was to investigate
how the system is affected by the player’s style and scalability.

To conduct both experiments we collected data in form of
recordings, which were divided in two sessions. Recordings were
performed in an acoustically isolated studio, on the same day,
and using identical tuning of the instrument. In the first session,
participants were instructed to play for each zone and for each
gesture two sets of 50 hits. Specifically, they were asked to
play such hits using different dynamics. In the second session,
participants were asked to play a series of complex patterns
of their choice using the five zones and the two gestures ad
libitum, and involving different dynamics. These sessions were
video recorded in order to annotate the hits against the zones and
gestures, and assess the system performance during the testing
conditions.

Recordings were analyzed offline on a Mac using the same
code running on the embedded system and configuring Pd with
identical settings. To assess the presence of false positives and
false negatives in the detection, data were analyzed by inspecting
the sound produced by the algorithms against the input signals of
the microphone and of the five pickups. To assess the localization
and gesture recognition performances, we analyzed the sequence
of labels produced by the classification algorithms, which were
saved in a log file.

5.1. Evaluation of the Onset Detector
Firstly we assessed the performance of the developed onset
detector. A total of 2,348 hits was collected and annotated. Results
showed that all the 2,348 hits were perfectly detected by the onset

detector without any false positives. The assessment of the timing
accuracy of the onset detector was conducted by calculating, over
a set of 100 hits, the temporal difference between the reported hit
and the actual hit. This was achieved by visually inspecting the
waveform of the condenser microphone against a short burst of
a square wave signal corresponding to the onset reported by the
time-based technique. Results showed that an onset was detected
by the time-based technique with an average accuracy of 1.72 ms
and a standard error of 0.71 ms. In particular, we found that the
vast majority of the times the onset was detected by means of the
time-based technique before than the spectral techniques.

5.2. Results of Experiment 1
In the first experiment, the first 50 of the two collected sets of
individual hits were utilized to train the classifiers. All remaining
hits were utilized for testing. Results showed that all the hits were
correctly localized in each of the five zones both for isolated hits
and complex patterns. Success rates for the classification of the
two gestures in the five zones are presented in Table 1 for both
musicians. The average success rate considering all the gestures
was 96.16%. Results in terms of precision, recall, and F-measure
statistics are reported in Table 2.

5.3. Results of Experiment 2
In the second experiment, we utilized the database created with
the training data of the first musician to test the performance
of the system when using all the hits collected from the second
musician, and vice versa. The utilized training data were the same
ones involved in the first experiment. The set of testing data from
the first performer amounted to 1,213 hits, that of the second
performer to 1,135 hits. Results showed that all hits of the first
performer were localized correctly using the dataset of the second
performer. Two erroneous identifications were reported for the
hits of the second performer, where the FTL zone was identified
as BAS zone. Gesture identification performances in terms of
precision, recall, and F-measure statistics are reported in Table 3

for each zone and for both musicians.

6. DISCUSSION AND CONCLUSIONS

The results of the first experiment showed that hit detection
and localization could be always classified correctly, and gesture
identification had generally high success rates for the two gestures
in all the five zones when data from a single player were
considered. Gesture identification was at comparable level with
that of the study reported in Jathal (2017) for a tabletop drum,
which involved a similar timbre-recognition system.

These results were achieved thanks to a dedicated hardware
architecture composed by a system of pickups and a condenser
microphone, as well as a sound engine. On the one hand, the
engine leveraged a novel onset detector that was based on the
combination of a time-based method (with minimal latency but
more prone to false positives) and two spectral methods (more
robust to false positives). On the other hand, the engine utilized
a robust features extraction system capturing the temporally
evolving timbral and temporal characteristics in the first 20 ms
of a hit sound, as well as a feature-based K-nearest neighbor
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TABLE 1 | Success rates in Experiment 1 for the identification of the slap and tap gestures for each zone.

Hit Performer 1 Performer 2 % correct

No. hits No. correct No. hits No. correct

BAS_Slap 69 69 63 63 100

BAS_Tap 51 45 73 72 94.35

FTL_Slap 86 84 80 78 97.59

FTL_Tap 94 92 52 52 98.63

FTR_Slap 84 80 69 69 97.38

FTR_Tap 84 84 64 64 100

L_Slap 54 53 59 49 90.26

L_Tap 56 54 51 45 92.52

R_Slap 59 58 68 60 92.91

R_Tap 51 51 52 50 98.05

TABLE 2 | System performances during Experiment 1 for the classification of both gestures in each zone according to precision (p), recall (r), and F-measure (F) statistics.

Hit Performer 1 Performer 2 Total (mean ± standard error)

p r F p r F p r F

BAS_Slap 0.92 1 0.95 0.98 1 0.99 0.95 ± 0.03 1 ± 0 0.97 ± 0.01

BAS_Tap 1 0.88 0.93 1 0.98 0.99 1 ± 0 0.93 ± 0.05 0.96 ± 0.02

FTL_Slap 0.97 0.97 0.97 1 0.97 0.98 0.98 ± 0.01 0.97 ± 0 0.98 ± 0

FTL_Tap 0.97 0.97 0.97 0.96 1 0.98 0.97 ± 0 0.98 ± 0.01 0.97 ± 0

FTR_Slap 1 0.95 0.97 1 1 1 1 ± 0 0.97 ± 0.02 0.98 ± 0.01

FTR_Tap 0.95 1 0.97 1 1 1 0.97 ± 0.02 1 ± 0 0.98 ± 0.01

L_Slap 0.96 0.98 0.97 0.89 0.83 0.85 0.92 ± 0.03 0.9 ± 0.07 0.91 ± 0.05

L_Tap 0.98 0.96 0.97 0.81 0.88 0.84 0.9 ± 0.08 0.92 ± 0.04 0.91 ± 0.06

R_Slap 1 0.98 0.99 0.96 0.88 0.92 0.98 ± 0.01 0.93 ± 0.05 0.95 ± 0.03

R_Tap 0.98 1 0.99 0.86 0.96 0.9 0.92 ± 0.05 0.98 ± 0.01 0.94 ± 0.04

TABLE 3 | System performances during Experiment 2 for the classification of both gestures in each zone according to precision (p), recall (r), and F-measure (F) statistics.

Performer1 Performer2 Total (mean ± standard error)

Hit p r F p r F p r F

BAS_Slap 1 0.34 0.51 0.49 1 0.66 0.74 ± 0.25 0.67 ± 0.32 0.58 ± 0.07

BAS_Tap 0.56 1 0.72 1 0.07 0.13 0.78 ± 0.21 0.53 ± 0.46 0.42 ± 0.29

FTL_Slap 0.41 0.61 0.49 0.56 1 0.72 0.48 ± 0.07 0.8 ± 0.19 0.6 ± 0.11

FTL_Tap 0.1 0.04 0.06 1 0 0.01 0.55 ± 0.44 0.02 ± 0.01 0.04 ± 0.02

FTR_Slap 0.89 0.5 0.64 0.47 0.87 0.61 0.68 ± 0.2 0.69 ± 0.18 0.63 ± 0.01

FTR_Tap 0.65 0.94 0.77 0.06 0 0.01 0.35 ± 0.29 0.47 ± 0.46 0.39 ± 0.37

L_Slap 0.44 0.77 0.56 0.52 1 0.68 0.48 ± 0.03 0.88 ± 0.11 0.62 ± 0.05

L_Tap 0.17 0.04 0.07 1 0 0.01 0.58 ± 0.41 0.02 ± 0.01 0.04 ± 0.02

R_Slap 0.63 0.65 0.64 0.54 0.97 0.69 0.59 ± 0.04 0.81 ± 0.16 0.67 ± 0.02

R_Tap 0.61 0.6 0.61 0.66 0.05 0.1 0.64 ± 0.02 0.33 ± 0.27 0.35 ± 0.25

classifier. Therefore, our approach adopted a combination of
both sensor augmentation and indirect acquisition, which are
the two main techniques currently utilized to sense gestures
performed on musical instruments (Driessen and Tzanetakis,
2018). Specifically, such a sensor fusion was conceived to cope
with the limitations of systems based on the sole information
coming from the pickups, since this was found to be not enough
to detect in a satisfactory way the variety of techniques that can
be used by different musicians. Indeed, the participants in our

study exhibited rather different playing styles and the system was
capable of adapting to both of them.

Such differences between players were investigated in the
second experiment to assess the performances of the system using
the classifiers trained with the data of one performer and tested
with the data of the other performer (and vice versa). On the one
hand, results showed that the binary classifier used to distinguish
the BAS zone from the other zones performed almost perfectly.
On the other hand, the precision, recall, and F-measure scores for
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gestures identification drastically decreased compared to the first
experiment. This finding suggests that hit localization might be
scaled relatively safely acrossmusicians, but gesture identification
seems requiring a training specific for each musician.

There are a few areas of technical optimization that could
be further explored. Firstly, a sequential k-means clustering
technique (Hartigan and Wong, 1979) could be used in place
of the k-NN technique, following a similar approach than that
reported in Miron et al. (2013a).

Secondly, the involved classification algorithm could be
informed by a larger dataset during the training process to
improve accuracy. However, this might increase not only
the computational load, but also latency since the real-time
performance of a k-NN-based classifier depends on the number
of trained points. Therefore, the challenge will be to find, via
empirical experimentation, a tradeoff between improvements in
reliability of classification due to a large dataset and the resulting
increase in latency to the extent that can be perceptually tolerated
by cajón players, at the same time considering the available
computational efficiency provided by the utilized hardware
architecture.

Thirdly, the feature set was chosen through empirical
experimentation and from spectral analyses among a larger set
of features, where not all possible combinations where explored.
Further enhancement to our system might be provided by
statistical procedures involving heuristics and genetic algorithms
to achieve a deeper timbral analysis (Witten et al., 2016).

In order to recreate ecologically-valid conditions, the system
was tested in presence of various concurrent music pieces
provided by two loudspeakers at relatively loud volumes. This
proved that typical external musical sounds do not interfere
with the system. As a matter of fact, the utilized condenser
microphone and the miking technique consisting of placing
it inside the instrument are the same utilized for amplifying
conventional acoustic cajones during professional performances.
On the other hand, thresholds on the contact microphones
signals were tuned to respond exclusively to actual hits of the
player, discarding any other type of vibration.

It has to be noticed that this study suffers from the limitation
that only one exemplar of acoustic cajón was involved. The
timbre of acoustic cajones may vary drastically, and therefore the
proposed technique may need to be revised or their parameters
tuned differently. Effective unsupervised learning method should
be devised and implemented for this purpose.

Another limitation of the proposed approach is its inability
of tracking compound hits, which might happen. We plan to
face this challenge in future works. Techniques such as instance

filtering proposed in Miron et al. (2013a) seem promising for this
purpose. This technique is based on a stage where overlapping
events, such as simultaneous hits on different components of a
drum kit, are filtered before being passed to the onset detection,
feature extraction, and classification processes (using k-NN or
k-means). We also plan to track more gestures such as those
involving nails or knuckles, which are typically less common.

Real-time hit detection of percussive sounds opens new
possibilities for research, such as the detection of patterns
involving the different locations. This would require the use
of pattern recognition methods adapted for real-time contexts
(Goto, 2001). The resulting information could be exploited or
expressive purposes, such as real-time control of digital audio
effects (Holfelt et al., 2017) or of external equipment by exploiting
the wireless communication capabilities of the smart caón (see
e.g., Turchet and Barthet, 2017).

More importantly, in future work we plan to perform a
perceptual validation involving professional musicians as a
further iteration in our user-centered design approach (Turchet
et al., 2018).
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