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The coupling of Electroencephalography (EEG) and functional magnetic resonance

imaging (fMRI) enables the measure of brain activity at high spatial and temporal

resolution. The localization of EEG sources depends on several parameters including

the knowledge of the position of the electrodes on the scalp. An accurate knowledge

about this information is important for source reconstruction. Currently, when acquiring

EEG and fMRI together, the position of the electrodes is generally estimated according to

fiducial points by using a template. In the context of simultaneous EEG/fMRI acquisition,

a natural idea is to use magnetic resonance (MR) images to localize EEG electrodes.

However, most MR compatible electrodes are built to be almost invisible on MR Images.

Taking advantage of a recently proposed Ultra short Echo Time (UTE) sequence, we

introduce a fully automatic method to detect and label those electrodes in MR images.

Our method was tested on 8 subjects wearing a 64-channel EEG cap. This automated

method showed an average detection accuracy of 94% and the average position

error was 3.1 mm. These results suggest that the proposed method has potential for

determining the position of the electrodes during simultaneous EEG/fMRI acquisition with

a very light cost procedure.

Keywords: EEG, fMRI, electrode localization, UTE, simultaneous EEG/fMRI

1. INTRODUCTION

Electroencephalography (EEG) measures the electrical potential generated by the neuronal activity
over the scalp with electrodes placed on the surface of the scalp (Petsche et al., 1984; Murakami
and Okada, 2006; Buzsáki et al., 2012). Usually electrodes are placed thanks to a flexible cap and
positioned according to anatomical points enabling optimal covering of brain regions regardless of
the size and shape of the subject’s head. Currently, when acquiring EEG and functional magnetic
resonance imaging (fMRI) simultaneously, the position of the electrodes is calculated according
to fiducial points (anatomical points of the skull) such as inion, nasion and vertex (Strobel et al.,
2008). The localization of EEG sources in the brain depends on several parameters including the
position of the electrodes on the scalp. A precise knowledge of these positions is important because
inaccurate information on EEG electrodes coordinates may affect EEG inverse solution (Khosla
et al., 1999). This knowledge is even more crucial in the case of simultaneous EEG and fMRI
study, when the sessions are conducted repeatedly over a long period of time. Approximations
in the positioning of the electrodes are then made in each session and will give rise to important
inaccuracies in the measured evoked potential (Wood and Allison, 1981). As a matter of fact,
magnetic resonance (MR) images and EEG need to be registered to be able to compare activations
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given by fMRI and by EEG. This simultaneous acquisition allows
the concordance of two different kind of information, a high
temporal resolution in the order of a millisecond with EEG, and
a high spatial resolution in the order of millimeter with MRI.

In this article an automated and efficient method to determine
EEG electrodes positions based on a specific MR sequence is
presented and evaluated. Compared to other existing approaches,
the proposed method does not need additional hardware (like 3D
electromagnetic digitizer devices Adjamian et al., 2004; Whalen
et al., 2008, artificial electrode markers Sijbers et al., 2000, or
laser scanner Koessler et al., 2011; Bardouille et al., 2012), which
might be uncomfortable for the subject if he must stay still during
acquisition (Le et al., 1998) and add time to the preparation
of the patient. Semi-automated electrodes localization methods
exist (de Munck et al., 2012; Butler et al., 2017), which require a
manual fiducial landmark identification to guide co-registration
without any markers but these approach relies on the efficiency
of the accuracy of the operator. Another automated method was
recently developed and shown great results with an anatomical
MR image (Marino et al., 2016), however, this method is only
working with a high density cap also compatible with MRI: the
GES 300 from Geodesic EEG Systems. Since this kind of cap
includes plastic around electrodes and contain hydrogen protons,
it can be visible on T1-w image. For seek of genericity (i.e., able to
operate on all types of caps when artifacts do not appear on T1-w
images), we propose tomake use of aMRI sequence with radial k-
space sampling named UTE for Ultra-short Echo-Time. It allows
to visualize the tissues with a very short T2 and T2∗, such as
cortical bone, tendons and ligaments (Holmes and Bydder, 2005;

FIGURE 1 | Steps for the extraction of the Volume Of Interest (VOI). An outskin mask is performed from the T1 image (1), then a dilation and a removal of the mask is

performed (2) in order to obtain the layer where the electrodes are located. Finally, the UTE image is masked by the dilated mask (2) which gives us the VOI (3).

Keereman et al., 2010). This sequence is all the more interesting
in our context because it enables the visualization of the MR
compatible electrodes (Springer et al., 2008; Butler et al., 2017)
on the scalp with a capability to be performed rapidly enough to
not overwhelm the whole MRI protocol.

We propose a fully automated method, which provides
reliable and reproducible results for the detection and labeling
of a MR compatible EEG cap into the MR space.

2. METHODS

The retrieval of the electrodes consisted in two parts; firstly,
we provided a mask that includes the volume where the
electrodes are located; secondly, we performed the electrode
detection inside this volume of interest (VOI). Figure 1 presents
a flowchart of the method’s main steps. We hypothesized that
electrodes would appear as spheres inside the UTE volume and it
allows us to perform a Hough transform in a consistent manner
across subjects.

2.1. Scalp Segmentation
Several reliable scalp segmentation methods exist for T1-w
imaging. Because UTE images are noisier, we performed the
scalp segmentation on the T1-w images and co-registered the
UTE images with the T1-w images to apply the mask. The T1-w
is first registered on the UTE and the anatomical T1 image is
then segmented using FSL, an open-library of analysis tools for
MRI and its function BET (Brain Extraction Tool) (Smith, 2002;
Popescu et al., 2012). A mask of the scalp is computed from the
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FIGURE 2 | Example of Hough transform detection (red dots) on the VOI

smoothed image. Hough transform detects also anatomical parts (arrow),

which will be excluded in the filtering steps (cf. section 2.3).

segmentation. Since electrodes are located around the head of
the subject, the scalp mask is dilated toward the periphery in
order to isolate this layer. What is outside the dilated mask is
subtracted in order to isolate only the layer where the electrodes
are located.

2.2. Detection of Electrodes With the
Spherical Hough Transform
A 3DHough transform was used to segment the electrodes inside
the VOI. Hough transform is typically used to detect circles
or lines in 2-dimensional data sets, but was recently extended
to detect spheres in 3-dimensional data sets (Borrmann et al.,
2011; Xie et al., 2012). As the shape of an electrode can be
assimilated to a sphere, the Spherical Hough Transformation
algorithm seemed particularly well adapted to this task. The
VOI image is first smoothed using a Gaussian kernel, with a
FWHM (Full Width at Half Maximum) adapted to the size of
the electrode (10 mm) in order to reduce the noise of the image
while saving electrode information. Then, the Hough algorithm
is performed and provides a list of n potential electrodes, D =

[d1, . . . , dn]. Figure 2 shows an example of such detections on a
2D slice of the VOI. Because the VOI includes also anatomical
structures (nose, ears) and noise (artifacts due to the cap or
gel), the number of potentially detected electrodes is substantially
higher than the number of “true” electrodes N, in our
case 64.

2.3. Selection of Detected Electrodes
The detected electrodes are then filtered to get rid of the potential
false detections given by the Hough transform. A 64 electrodes
spherical EEG template pj (1 ≤ j ≤ 64) ∈ P was given by the cap
manufacturer, indicating theoretical positions of every electrodes
relatively to each other. Due to the non-sphericity of the head
and the elastic deformations of the cap, these positions are not
sufficient enough to give a reliable detection by itself. However,
this template will be used to identify outliers in our detections.

This spherical template is registered onto the detected electrodes
from previous section, through the Iterative Closest Point (ICP)
algorithm, a well-known algorithm for registering two-cloud of
points (Besl and McKay, 1992; Chen and Medioni, 1992). The
algorithm takes a first point cloud which will be kept fixed, while
the other one will be spatially transformed in order to best align
the reference. The goal is to iteratively minimize a metric error,
usually the distance between the two sets of points, by modifying
the transformation applied to the source.

In our case, the ICP will find the optimal rotation, translation
and scale to fit the data point set D obtained with the Hough
transform and the model point P. The algorithm is divided into
2 steps. The first step consists in estimating correspondences
between the two set of points. During this step, for each point pj,
in the reference set P, the closest point di of the detected points set
D is computed. This point will be noted cj and therefore defined
as follows:

cj = argmind1 ,...,dn dist(di, pj), ∀j ∈ [1, . . . ,N]. (1)

The second step consists in computing the similarity transform
that best aligns every cj to the corresponding pj. The
minimization is expressed by:

(R∗, S∗, t∗) = argminR,S,t
∑

j∈[1,...,N]

‖cj − SR pj − t‖2, (2)

where R is a rotation matrix (3 × 3), t is a translation vector
(3 × 1) and S is a scale matrix (S = s ∗ Id, 3 × 3). The ICP runs
until convergence. The registered template P

′

can then be written
as:

p′j = SR pj + t. (3)

Once the ICP is completed, a two-part filtering phase is
implemented. The first one consists in taking the closest point
of the Hough transform data set; for each of the N electrodes of
the registered model P′, the closest detected point cj is selected.
Unselected points are discarded and, after this first filtering step,
the number of electrodes is therefore equal toN, the total number
of electrodes desired (64 in our case). Figure 3 illustrates the
impact of this step.

For the second and final step, all points cj, which are too

far from the closest point of the template P
′

, are removed. A
threshold equals to four times the Median Absolute Deviation
(MAD) of all distances is applied. For each removed point, a
replacement is determined by a new detection from the local
maxima on the VOI image around the theoretical position given
by the registered template (cf. Figure 4). The new data set D′ is
obtained and theN electrodes are then labeled using the template.

2.4. Validation of the Method
A manual selection of the electrodes positions was done on the
UTE sequence and the quality of our detection was assessed using
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FIGURE 3 | Example of outliers removal in potential electrodes data set D with the ICP algorithm. The dataset D is represented in red on the left along with the

registered template P′ in purple. The data set obtained after the first filtering step is in red on the right. Outliers are mostly due to external anatomical parts or noise

not taken in account during the segmentation. These outliers are discarded by the filtering step because they are too far from P′.

FIGURE 4 | Cross section of the VOI image. Green points are corresponding

to the template data set P′, blue points to the maximum local detection and

the red one are the outliers from D. The second and final filtering step consists

in replacing any point from the Hough data set too far from the registered

template P′. The substituted point comes from a detection by local maxima,

closest to the template P′.

this manual selection as a ground truth. Instead of selecting the
center of each electrode in a 3D image, we choose to use a more
convenient procedure for the manual detection. Following Butler
et al. (2017), the manual detection was performed by picking up
the Cartesian position (xi, yi, zi) of each 64 electrodes for each
subject on a pancake view, which is roughly a 2D projection of
the scalp (de Munck et al., 2012).

The performance indicators of our automated detection will
be the position error (PE) and the positive predictive value (PPV).

The position error is the average Euclidean distance between
each pair of electrodes (the manually selected one, considered
as the ground truth, and the detected one) and the PPV is
the percentage of electrodes that have been well detected. We
considered than a detected electrodes is well localized when the
PE is below 10mm, which corresponds to the diameter of the
electrode (Kavanagk et al., 1978).

We also compared the performance of our method against a
more traditional semi-automatic one: five fiducial points were
selected manually and the spherical template was adjusted to
these points (Towle et al., 1993). This method, although not
recent, is still used bymany studies (e.g., Ge et al., 2017; Thornton
et al., 2017; Jenson et al., 2018).

3. MATERIALS

3.1. Subjects and EEG Equipment
After IRB approval, eight healthy volunteers provided written
informed consent to take part in the study. They all underwent
a simultaneous EEG/fMRI examination (fully described in
Mano et al., 2017). EEG was acquired using two 32-channel
MR compatible amplifiers (actiCHamp, Brainproduct, Gilching,
Germany) and a cap providing 64 Ag/AgCl electrodes positioned
according to the extended 10–20 system and one additional
ground electrode. Electrodes are attached to small cups with
inner diameter of 10 and 4 mm height, inserted in the cap
and filled with gel to minimize the contact impedance. All
subject wore a large (circumference between 56 and 58 cm) MR
compatible cap from Brainproduct (Gilching, Germany) and a
particular attention was given to its positioning according to
standard fiducial points.

3.2. UTE Sequences Parameters
All MR data were collected on a 3T Siemens Verio MR
scanner (VB17, Siemens Healthineers, Erlangen, Germany).
Specifically, the UTE sequence using 3D radial k-space sampling
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FIGURE 5 | Example of UTE images with different sampling. The image quality as well as the acquisition time decrease linearly according to the sampling. Acquisition

time for (1) 5min 35 s, (2) 2min 47 s, (3) 1min 23 s.

TABLE 1 | Position error (PE) and positive predictive value (PPV) for each subject

(S1-S8) for UTE-MR electrodes detection.

Subjects Mean

PE (mm)

Std PE

(mm)

Max PE

(mm)

PPV

(%)

UTE S1 2.73 2.83 17.32 95.38

S2 2.41 2.38 12.43 96.92

S3 2.66 2.43 13.62 95.38

S4 4.10 3.97 21.3 89.23

S5 3.32 3.38 14.45 90.7

S6 2.85 3.24 17.57 95.38

S7 2.76 2.51 15.90 96.92

S8 3.69 5.13 26.24 93.84

The PPV is the percentage of electrodes that have been detected. We consider that an

electrode is well localized when the PE is below 10mm, which represents the diameter

of an electrode. The mean PE on all subject is equal to 3.1mm and the mean PPV to

94.22%.

was performed with the following parameters: repetition time
(TR) = 3.45 ms, echo time (TE) = 0.07 ms, flip angle (FA)
= 14◦ and voxel size 1.33 × 1.33 × 1.33mm3. A 3D T1
MPRAGE was also performed: TR = 1900 ms, TI = 900 ms,
TE = 2.26 ms, FA = 9◦ and voxel size 1 × 1 × 1mm3 .
Two additional UTE sequences with lower sampling resolution
were acquired in order to decrease the acquisition time and
to investigate the impact on electrodes detection. To reduce
the acquisition time, the number of spokes has to decrease;
from 60,000 spokes (60 K) for the original, to 30,000 (30 K)
and 15,000 (15 K) spokes for the additional ones. The UTE
acquisition time goes down from 5min 35 s to 2min 47 s and
1min 23 s. A comparison between these acquisitions is shown in
Figure 5.

4. RESULTS

The creation of an image (VOI) containing only the information
related to the electrode allows to remove external noise while
protecting the information related to the electrode. This image
enables robust detection of the position of the electrodes for

TABLE 2 | Positive predictive value (PPV) and position error (PE) for each subject

(S1-S8) for semi-automated electrodes detection based on manual delineation of

fiducial landmark (FID).

Subjects Mean

PE (mm)

Std PE

(mm)

Max PE

(mm)

PPV

(%)

FID S1 7.60 3.09 15.31 76.92

S2 7.79 2.85 14.63 72.30

S3 6.15 2.71 13.45 90.76

S4 7.70 3.41 17.78 73.84

S5 6.08 2.78 16.36 90.76

S6 6.54 3.40 17.47 87.69

S7 6.88 3.39 17.10 87.69

S8 12.55 6.36 30.6 55.38

The PPV is the percentage of electrodes that have been detected. We consider that an

electrode is well localized when the PE is below 10mm, which represents the diameter

of an electrode. The mean PE on all subject is equal to 7.7mm and the mean PPV to

79.41%.

all subjects. Furthermore, since our method always detects
exactly N (64 in our case) electrodes, the number of false
negatives (missed electrodes) will automatically be equal to
the number of false positives (wrongly detected electrodes).
Table 1 presents the mean position error (PE), the standard
deviation of the PE and the maximum PE of our detections
for each of the eight subjects. The max PE reflected a
high difficulty to detect the electrodes near anatomical parts
or in posterior regions where the head apply a pressure
on the EEG cap inside the MRI. Our UTE-based electrode
detection showed an average PE of 3.1mm for all subjects. The
detection accuracy, represented by the positive predictive value
(PPV), is also shown and corresponds to the percentage of
electrodes correctly found. The average PPV for all subjects was
94.22%.

We then compared the performance of our method with the
semi-automatic one presented in section 2.4 (FID). The PE and
PPV were calculated in the same way. The results are shown
in Table 2 and Figure 6 shows, for each subject, a comparison
of the PEs obtained by the two methods. The mean PE on

Frontiers in ICT | www.frontiersin.org 5 January 2019 | Volume 5 | Article 31

https://www.frontiersin.org/journals/ICT
https://www.frontiersin.org
https://www.frontiersin.org/journals/ICT#articles


Fleury et al. Automated Electrodes Detection During EEG/fMRI

FIGURE 6 | Position Error (PE) for UTE-based electrodes detection method (UTE) and the semi-automatic method based on fiducial points (FID). Box-plots for the

eight subjects are shown.

TABLE 3 | Mean of position error (PE) and mean positive predictive value (PPV) for

three different sampling resolutions of the UTE sequence.

UTE 60 K UTE 30 K UTE 15 K

Acquisition time 5min 35 s 2min 47 s 1min 23 s

PE (mm) 3.12 4.02 6.56

PPV (%) 94.22 88.13 80.43

Shorter acquisition time implied lower SNR and lower detection accuracy. Results are still

better than the semi-automatic method.

all subject is equal to 7.7mm and the mean PPV to 79.41%.
Moreover, for every subjects, our method produced smaller PE
and better PPV. A paired t-test was computed between the
two PEs sets and a significant difference was obtained (p <
0.0001).

Finally, we investigated the impact of lower sample UTE
sequences, which allow reducing the acquisition time, on
electrode detection. We tested two others UTE sequence (cf.
section 3.2). We applied our detection method on the three
different UTE images and compared the quality of the detections.
Table 3 reports the mean PE and mean PPV obtained for
the three UTE sequences on seven subjects (the first subject
did not receive the additional sequences). As expected, the
mislocalisation, as well as the position error, increase according to
the decrease of the sampling. However, our results are still clearly
better than the semi-automatic one for the 30 k sequence (half the
acquisition time than the original one) and are slightly better for
the fastest sequence.

5. DISCUSSION

We have proposed an automated method for detecting and
labeling EEG electrodes based on UTE MR images without using
any external sensors. Previous results indicate that a localization
technique using electromagnetic digitization technology is time-
consuming (Dalal et al., 2014) and others techniques such as
3D digitization can be affected by errors of registration and

projection of EEG electrodes on the head model. We have shown
that ourmethod offers constant and precise results.Moreover, the
proposed method provides the position of the electrodes directly
into the MR-space, which is crucial in case of simultaneous
EEG/fMRI acquisitions.

Furthermore, for seek of genericity, the proposed method is
able to operate on all types of caps and does not need specific
electrodes, unlike a recent work from Marino et al. (2016) for
example. To the best of our knowledge, this is first automated
electrodes detection method implying non-visible electrodes on
anatomical MR sequence.

The method presented here requires only an additional
sequence (the UTE acquisition sequence) in the experimental
protocol. This acquisition takes from 1 to 5 min. From our
experiments, a good compromise between acquisition time and
detection quality can be achieved with a 2 or 3 min sequences.
Further optimization of the sequence parameters could enable
an improvement of the images without increasing the acquisition
time.

6. CONCLUSION

We presented a method to automatically detect and label EEG
electrodes during an EEG/fMRI acquisition. We used a UTE
MR sequence to obtain electrodes positions on a MR-volume.
This method only has for additional cost the acquisition time of
the UTE sequence in the MR protocol. We have demonstrated
that our method achieves a significantly more accurate electrode
detection compared to a semi-automatic detection one that is
more commonly used during EEG/fMRI protocols. For future
research, since the proposed method can be totally automated
and does not require complex processing, this technique may be
used to extract the position and the label of the electrodes in
real time. Indeed, this technique is interesting for applications
requiring immediate knowledge of the position of the electrodes.
We believe this method will be useful to improve the fusion of
EEG and fMRI signals.
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