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Interactive optimization methods are particularly suited for letting human decision makers

learn about a problem, while a computer learns about their preferences to generate

relevant solutions. For interactive optimization methods to be adopted in practice,

computational frameworks are required, which can handle and visualize many objectives

simultaneously, provide optimal solutions quickly and representatively, all while remaining

simple and intuitive to use and understand by practitioners. Addressing these issues,

this work introduces SAGESSE (Systematic Analysis, Generation, Exploration, Steering

and Synthesis Experience), a decision support methodology, which relies on interactive

multiobjective optimization. Its innovative aspects reside in the combination of (i) parallel

coordinates as a means to simultaneously explore and steer the underlying alternative

generation process, (ii) a Sobol sequence to efficiently sample the points to explore in the

objective space, and (iii) on-the-fly application of multiattribute decision analysis, cluster

analysis and other data visualization techniques linked to the parallel coordinates. An

illustrative example demonstrates the applicability of themethodology to a large, complex

urban planning problem.

Keywords: interactive optimization, parallel coordinates, MILP, MCDA, urban planning, multiobjective

optimization, data visualization

1. INTRODUCTION

Making a decision involves balancing multiple competing criteria in order to identify a
most-preferred alternative. For simple, day-to-day decisions, this can usually be done by relying
on intuition and common sense alone.

For larger, more complex decisions, common sense may not suffice, and multicriteria decision
analysis (MCDA) can be used to formalize the problem, both improving the decision and making
it more transparent (Keeney, 1982).

To make better decisions requires a clear knowledge of the available alternatives. However,
research has shown that without adequate support, the identification of alternatives is difficult
and often incomplete, even for experts in a field (León, 1999; Bond et al., 2008; Malczewski
and Rinner, 2015). MCDA adopts two distinct perspectives on alternatives, depending on the
considered branch (Cohon, 1978; Hwang and Masud, 1979). Multiattribute decision analysis
(MADA) aims to help select the best alternative from a predetermined subset (Chankong and
Haimes, 2008; Malczewski and Rinner, 2015) . Such alternative-focused methods have the risk of
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omitting important alternatives and leading to suboptimal
solutions (Keeney, 1992; Beach, 1993; Belton et al., 1997; Feng
and Lin, 1999; Belton and Stewart, 2002; Siebert and Keeney,
2015). Multiobjective decision analysis (MODA)methods, on the
other hand, systematically generate the alternatives based on the
decision maker’s (DM) objectives. They can thus be considered
to promote value-focused thinking, because they require the DM
to think about the driving values first, and consider the means to
achieve them only second (Keeney, 1992).

However, solving multiobjective problems implies that,
contrary to single-objective problems, not one well-defined
solution is found, but a set of equally interesting Pareto optimal
solutions. Such solutions cannot be improved in one objective
without depreciating the value of another objective.

When considered collectively as a Pareto front, they inform
about optimal tradeoffs between objectives. In order to make
use of such results, some preferences must be articulated by the
DM in order to identify a most satisfactory solution from the
Pareto front. The articulation of preferences, consisting e.g., in
acceptable ranges, tradeoff information, or relative weights of
objectives, can be done in one of three ways (Hwang and Masud,
1979; Branke et al., 2008):

i. A posteriori, once all the Pareto optimal solutions have been
identified. The advantage is that the decision maker has a
complete overview of the available options. On the other
hand, the calculation can be extremely long if the solution
space is vast, the decision maker may not have the time to
wait, and the process will certainly compute many wasteful
solutions which are of little interest. Even if time were not
an issue, the difficulty to visualize, interpret and understand
the Pareto optimal results can compromise the trust from
the DM, especially when more than three objectives are
considered.

ii. A priori, before starting any calculations. This is the most
efficient approach, as theoretically only one solution is
calculated. However, it is also probably the most difficult
from the decision maker’s point of view, as it assumes that
they are perfectly aware of their preferences and acceptable
tradeoffs, and are able to formulate them precisely. In practice,
when dealing with complex and interdisciplinary problems,
this knowledge is generally unavailable until the solutions are
calculated, and therefore the risk of reaching an infeasible or
unsatisfactory solution is high (Meignan et al., 2015; Piemonti
et al., 2017b).

iii. Interactively, as the optimization progresses. This is a
common response to the limitations of a priori and a
posteriori approaches. By involving the human decision
maker directly in the search process (Kok, 1986), interactive
optimization (IO) allows the user to learn from solutions
as they are produced, refine their preferences, and in turn
restrict the search to the most relevant areas of the solution
space.

The goal of this paper is to highlight the current gaps in literature
which are limiting the application of IO to large problems, and
propose a novel methodology addressing these gaps.

1.1. Background of Interactive
Optimization
Interactive optimization consists of fourmain components which
are combined to form a human-computer interaction system: a
user, a graphical user interface (GUI), a solution generator and
an analyst (Figure 1).

During a preparatory analysis phase, the user describes the
problem and criteria to the best of their knowledge, and the
analyst develops the model accordingly. A feedback loop, which
can overlap with the search phase, ensures the model captures
the user’s requirements as these evolve (Fisher, 1985). During
the search phase, the user steers the generation of solutions
through the GUI. Here, the role of the analyst becomes more
passive (Spronk, 1981). The basicmechanism of IO consists in the
oscillation between a generation phase, an exploration phase, and
a steering phase. Typically, the process begins by generating and
presenting one or several predetermined solutions for the user to
explore. They study and compare their characteristics which are
presented in the GUI, and react to them by communicating their
likes or dislikes, also formalized through the GUI. These inputs
are used to steer the subsequent calculations toward desired
areas of the solution space. The process repeats until the user is
convinced to have found the most satisfactory solution.

The main premise for human-computer interaction is that
complex problems can be better solved by harnessing the
respective strengths of each party (Fisher, 1985; do Nascimento
and Eades, 2005; Hamel et al., 2012). The relatively superior
human capabilities are in the expertise of the problem and
subjective evaluations, as well as skills in strategic thinking,
learning, pattern recognition and breaking rules consciously
(Fisher, 1985; Klau et al., 2010; Shneiderman, 2010; Wierzbicki,
2010; Babbar-Sebens et al., 2015).

The relative strengths of the computer are in counting
or combining physical quantities, storing and displaying
detailed information and performing repetitive tasks rapidly and
simultaneously over long periods of time (Shneiderman, 2010).
In IO, the interface, or graphical user interface (GUI), allows
to dialog with the user, both displaying results visually and
receiving the user’s preferences as inputs via mouse events or
textual entries. The solution generator component consists of
an optimization or simulation model describing the problem
by its decision variables, objective functions and constraints,
and an optimization procedure, which can be either an exact
or a heuristic-based algorithm searching for solutions to the
optimization problem (Collette and Siarry, 2004; Meignan et al.,
2015). Some of the widely used meta-heuristic procedures
include evolutionary algorithms, simulated annealing, and
swarm particle optimization. Such algorithms mimic natural
phenomena to explore a solution space toward optimal solutions.
Unlike exact methods, they rely on stochastic exploration of
solutions, searching for combinations of variables which lead
to the best performance of a fitness function, or objective. This
makes their implementation often simpler, but at the price
of requiring many iterations to reach what is often only an
approximation of the Pareto front. In the case of exact methods,
such as linear (LP) ormixed-integer linear programming (MILP),
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FIGURE 1 | Main components and flows of information in interactive optimization. GUI: graphical user interface. Adapted from Spronk (1981) and Meignan et al.

(2015).

the solution space is explored in a deterministic way, making
the procedure overall more efficient and guaranteeing to find (at
least weakly) Pareto optimal solutions. When dealing with many
objectives, a parametrized scalarization function is commonly
used to convert the multiple objective problem into several single
objective ones, making it possible to use widely available and
rapid single-objective solvers. By varying the parameters in the
scalarization function, a range of Pareto optimal solutions to the
initial multiobjective problem can be generated (Branke et al.,
2008; Chankong andHaimes, 2008). Together, the optimizer and
GUI provide an efficient and systematic framework to generate
and represent a large number of Pareto optimal solutions which
are most relevant to the user.

There are several compelling benefits of involving a
human user in the interactive optimization process. First, the
incorporation of expert knowledge, intuition and experience
can compensate the unavoidable simplifications induced by the
model (Meignan et al., 2015; Piemonti et al., 2017a; Liu et al.,
2018). Second, computational effort is reduced by focusing on
only the most promising regions of the solution space (Balling
et al., 1999; do Nascimento and Eades, 2005; Liu et al., 2018).
Third, the interaction process promotes trust, facilitates learning,
and increases the user’s confidence in the solutions and thus
their likelihood of actually implementing them (Hwang and
Masud, 1979; Spronk, 1981; Shin and Ravindran, 1991; Liu et al.,
2018). Finally, this approach avoids the need to specify any
explicit a priori preference information (Hwang and Masud,
1979; Allmendinger et al., 2016).

On the other hand, the main drawbacks are that IO methods
rely on the assumptions that a human DM is available, that
they are willing to devote time to the solution process, and
that they are able to understand the process, inputs asked
of them, and resulting outcomes (Hwang and Masud, 1979;
Spronk, 1981; Collette and Siarry, 2004; Branke et al., 2008;
Liu et al., 2018). This implies that developed methodologies

should be both easily understandable, and able to quickly
generate representative Pareto optimal solutions for the user to
explore.

1.2. Related Work
1.2.1. Review of Interactive Optimization Procedures
Over the past decades, a variety of interactive optimization
methods have been developed, with efforts both in improving
the underlying search procedures, and interaction mechanisms.
(Kok, 1986; Vanderpooten, 1989) provided an early attempt
at describing and organizing IO methods. They distinguished
between search-based methods, in which the DM’s preference
structure is supposed stable and preexisting, and learning-
based methods, which promotes the discovery of preferences in
problems where these are not known or difficult to express.

Many efforts have been done to review and synthesize the
technical developments in the field of interactive optimization.
The earlier developments of search-based methods are described
by Hwang and Masud (1979), Collette and Siarry (2004),
Branke et al. (2008), and Chankong and Haimes (2008). These
are often classified according to the preference structures
required from the DM (e.g., reference points, weights, bounds,
tradeoff quantification) and the implications these have on
generating Pareto optimal solutions. More recently, Meignan
et al. (2015) provided an extensive review of the technical
aspects of existing methods. They classified interactive methods
based on the following features: the type of optimization
procedure used (exact, heuristic or metaheuristic approaches),
the user’s contribution to the optimization process (affecting
either the model or the procedure), and the characteristics
of the optimization system (direct or indirect user feedback
integration). Regarding optimization procedures, they found that
heuristic- or metaheuristic-based approaches were predominant
(25 out 32 surveyed studies), while exact approaches were
the minority. A possible explanation for the popularity of
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metaheuristics is that in interactive methods, approximations
of global optima may be good enough given the expected
inaccuracies of the model. Another perspective favors however
exact methods, especially for large problems with thousands
of variables. Chircop and Zammit-Mangion (2013) argue that
for unconstrained search spaces, stochastic search procedures
will require a large number of objective function evaluations,
leading to computationally intensive algorithms. Conversely,
exact methods, by relying on scalarization techniques and
efficient deterministic single objective approaches can quickly
find optima of even large scale multiobjective problems [Branke
et al., 2008; Williams, 2013; Schüler et al., 2018b, (p. 61, 64)]. This
efficiency is critical because the number of solutions required
to explore the solution space grows exponentially with the
number of objectives (Cohon, 1978; Copado-Méndez et al.,
2016). Ultimately however, the question of whether exact or
heuristic methods are most efficient is debatable, and depends
on the problem considered. For structured, convex, linear
or quadratic programming problems, metaheuristics may not
be more competitive than exact, gradient-based methods. On
the other hand, because they rely on multiple solutions per
iteration, evolutionary algorithms can easily benefit from parallel
processing to achieve greater search efficiency. For these reasons,
Branke et al. (2008, p. 64) nuance their conclusion by suggesting
further research to understand the respective niches of each
procedure, and to develop hybrid approaches exploiting their
respective strengths.

Beyond the underlying technical aspects of interactive
optimization, growing interest has been devoted to the learning
opportunities which it provides. In this vein, Klau et al.
(2010) argued that promoting effective interaction and learning
mechanisms is more important than efficient algorithms. The
reasoning is that whichever solution is produced, it ultimately
is a simplification of reality which isn’t directly usable. It is
thus crucial that the user is able to correctly interpret and
recontextualize the results. Therefore, the insights gained during
the process, about the tradeoffs, synergies and feasible boundaries
are eventually more useful outcomes than the solution itself.

Allmendinger et al. (2016) employ the term “navigation” to
encompass not only the optimization procedure, but also the
efforts made on real-time exploration of optimization results.
However, among the six so-called navigation methods reviewed
by Allmendinger et al. (2016), four are a posteriori methods
(meaning solutions are precalculated), while only two are
interactive (Korhonen and Wallenius, 1988; Miettinen et al.,
2010). Their review further reveals that most of these methods
tend to handle only five or less objectives, and do not consider
problems with more objectives or highly uncertain conditions.
They call for the development of new methods which can easily
handle complex problems with many objectives, and which
provide more intuitive GUIs and interaction mechanisms.

1.2.2. Interfaces for Multiobjective Interactive

Optimization
The need for intuitive visualization of multiobjective
optimization results and interaction with the optimizer has
been recognized as a central issue (Xiao et al., 2007; Branke

et al., 2008, p. 15). Meignan et al. (2015) conclude that “the
development of more natural and intuitive forms of interaction
with the optimization system is essential for the integration
of advanced optimization methods in decision support tools.”
Branke et al. (2008, p. 52) explicitly mention the importance of
user-friendliness in IO as a topic for future research. This is also
true for the representation of interaction with the problem, e.g.,
how the DM inputs their preferences (Miettinen and Kaario,
2003), and the representation of the preferences themselves
(Branke et al., 2008, p. 201). Liu et al. (2018) note that despite
interactive optimization being “essentially a visual analytics task,”
literature is rather silent on the specifics of visuals and interaction
approaches, focusing rather on optimization procedures and
preference models.

Much attention has been given to advanced visualization
methods for results of a posteriori multiobjective optimization
methods, although their adoption in interactive methods is
still low. Efforts in this area are mainly motivated by the fact
that while Pareto fronts up to three objectives can be mapped
in traditional planar or three dimensional representations,
problems with many-objectives (i.e., more than three) are more
challenging due to both the complexity of data to display,
and the space required. Among the many available techniques
reviewed by Branke et al. (2008) and Miettinen (2014), parallel
coordinates stand out as an intuitive and scalable alternative.
Introduced by Inselberg (1985) and extensively described by
Inselberg (1997, 2009), parallel coordinates are similar to radar
charts, except the dimensions are displayed as vertical side-by-
side axes instead of radially. This allows the method to scale
well to many dimensions, and facilitates the comparison of
values and identification of tradeoffs, trends and clusters in
the data (Shenfield et al., 2007; Akle et al., 2017). Data points
are depicted as polygonal lines (or polylines), which intersect
the axes at their corresponding values. The main drawbacks
of parallel coordinates include cluttering of the chart when
displaying many alternatives, and the impossibility to visualize
all pairwise relationships between dimensions in a single chart
(Heinrich and Weiskopf, 2013; Johansson and Forsell, 2016).
Studies also emphasize the need for users to receive basic training
to better harness parallel coordinates (Shneiderman, 1996; Wolf
et al., 2009; Johansson and Forsell, 2016; Akle et al., 2017).
The recent developments of interactive data visualizations have
greatly alleviated these limitations by allowing the user to filter
the displayed solutions, reorder axes by dragging them to explore
specific pairwise relationships, or change the visual aspect of lines
such as color or opacity to reveal patterns across all dimensions
(Bostock et al., 2011; Fieldsend, 2016). Heinrich and Weiskopf
(2013) provide an extensive review of parallel coordinates and
recent developments in their interactive features.

Several studies investigated the practical applicability of
parallel coordinates in the context ofmultiobjective optimization.
Akle et al. (2017) studied their effectiveness in comparison to
radar charts and combined tables for the balancing of multiple
criteria and selection of preferred solutions. They found parallel
coordinates to be the most effective and engaging approach for
exploration, requiring less cognitive load and stress than the
other charts. They also remark that parallel coordinates were
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the least known method, and suggest that training users could
further improve the performance and usability of the approach.
Stump et al. (2009) also encountered this need, and undertook
a study comparing the understanding of users who never used
their tool with those who had previous experience (Wolf et al.,
2009). They found that novice users showed less certainty in
which visualizations to use or actions to perform, and concluded
that more training prior to using the tool would be necessary.
They also suggest that a simplified interface with less steering and
visualization features, as well as less densely packed alternatives
might help users focus on relevant information and actions
(Shneiderman, 2010). It has furthermore been suggested that
parallel coordinates cannot display certain kinds of information
and should be complemented (e.g., with spatial representations)
for a more complete representation of alternatives (Xiao et al.,
2007). Kok (1986), Sato et al. (2015) and Bandaru et al. (2017b)
point out that when DMs only have a vague understanding of
their preferences, it may be easier to specify loose ranges of
preferences in the objective space, rather than exact points of
preferences. The action of “brushing” available in interactive
parallel coordinates charts addresses this issue. Brushing is a
common action in interactive data visualization, where the user
selects and highlights a subset of data, typically by dragging the
pointer over the area of interest (Martin and Ward, 1995). One
limitation of parallel coordinates is the visualization of Pareto
fronts. It is however possible to make some interpretations,
though these differ from traditional 2D plots and require
familiarity with the charts. Li et al. (2017) provide some insights
on how to translate Cartesian representations of Pareto fronts
into parallel coordinates.

Given the widespread attention received by parallel
coordinates, their adoption in the context of multiobjective
optimization is not surprising. However, their use remains
predominantly confined to a posteriori exploration of
precalculated solutions (Bagajewicz and Cabrera, 2003; Xiao
et al., 2007; Kipouros et al., 2008; Franken, 2009; Raphael,
2011; Rosenberg, 2012; Miettinen, 2014; Ashour and Kolarevic,
2015; Fieldsend, 2016; Akle et al., 2017; Bandaru et al., 2017a).
Only a few studies suggested using parallel coordinates to
steer the optimization procedures, but all adopt meta-heuristic
approaches, limiting their applicability to smaller problems with
few variables (Fleming et al., 2005; Stump et al., 2009; Sato et al.,
2015; Hernández Gómez et al., 2016).

1.2.3. Overview of Existing Interactive Optimization

Methods
A selected number of methods are described hereafter, outlining
their responses to the issues above as well as the remaining gaps.
For a more extensive overview of existing approaches, we refer
to Branke et al. (2008), Meignan et al. (2015), Allmendinger et al.
(2016).

The Pareto Race tool developed by Korhonen and Wallenius
(1988) is considered a multiobjective linear programming
navigation method (Allmendinger et al., 2016; Greco et al., 2016),
and uses a visual interactive method to steer the search freely,
in real-time. Much effort was dedicated to make the use of the
software simple and intuitive to lay users, for example simplifying

the preference input to “faster,” or “more/less of this objective,”
and letting the program translate this into corresponding
parameters (increments, aspiration levels, choice of goals). A
later adaptation of the tool allowed handling also non-linear
(i.e., quadratic-linear) problems, improving the efficiency of
generating a continuous and representative portion of the Pareto
front (Korhonen and Yu, 2000). The display in Pareto Race
consists in bar charts reflecting the last computed solution, from
which the user can request more or less of any of the objectives
in the next iteration. The main limitation of this simple and
intuitivemethod lies in the underlying iterative nature: displaying
only one solution at a time prevents gaining a clear overview of
all solutions and relationships between objectives. Therefore, for
large problems with many objectives, the user may not be able to
explore all potentially interesting solutions in a realistic amount
of time. The larger the problem, the less freedom the user has to
change their mind frequently (Korhonen, 1996), which limits the
applicability of this method for large problems.

Another navigation method is Pareto Navigation (Monz et al.,
2008), however to achieve quick and responsive interaction
between the user and the tool, solutions are precalculated, while
the user can then explore them, or request recombinations of
existing plans which require less time to compute.

The approach developed by Miettinen and Mäkelä (2000) was
allegedly the first interactive optimizationmethodmade available
online. WWW-NIMBUS is a classification-based interactive
multiobjective optimization method, which asks the user to
classify the objectives whether they should be improved,
remain identical or be relaxed. The principle is that in each
iteration, the current solution should be improved according to
the user’s specifications. Because the process produces Pareto
optimal solutions, it is necessary that at least one objective is
allowed to diminish. While the original implementation was
technically limited to relatively small problems, subsequent
versions improved both the optimization procedures and the
GUI. Hakanen et al. (2007) developed IND-NIMBUS, which
included a new nonlinear solver to tackle large-scale problems
such as simulated moving beds, and provided new visualizations
to compare results, including 3D histograms and parallel
coordinates. In A-GAMS-NIMBUS, Laukkanen et al. (2012)
combined linear and nonlinear solvers, as well as a bi-level
decomposition for a heat exchanger network synthesis problem
in industrial processes. The ambition was to provide quick
resolution of solutions, which ranged between 1 and 43 minutes
per iteration.

In a separate work, Miettinen et al. (2010) proposed a
reference-point interactive method, NAUTILUS, addressing two
behavioral biases, namely loss aversion and anchoring effects, by
encouraging the user to not interrupt the search before finding
a most preferred solution. To do so, the very first solution
presented to the user is a dominated one, so that each iteration
does not necessarily imply sacrificing one objective in favor
of another, as happens in most IO methods, where tradeoffs
necessarily occur when moving from one non-dominated
solution to another.

Babbar-Sebens et al. (2015) developed WRESTORE, an
interactive evolutionary algorithm tool to search for preferred
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watershed conservation measures. The process follows a
predetermined sequence of interactive “sessions” during which
the user is presented with maps and quantitative indicators for
different alternatives. During a session, the user either explores
and learns from previously generated alternatives, is asked to
rate the new alternatives with a psychometric scale (e.g., “good,”
“bad,” etc.), or is supported by an automated search procedure
which relieves the user from providing inputs by relying on
deep learning models which mimic the user’s preference model.
In addition, the tool is web-based and aims to enable multiple
users to explore alternatives and steer the search jointly. The
visualization of the alternatives is done essentially by displaying
decision variables on maps with colored layers and icons, and
providing quantitative performance indicators via histogram
charts. The authors concluded on the relevance of surrogate
models to reduce latencies due to computational time. In their
study, they report durations of around 10 min per solution using
the current watershed model, and total experiment durations
spanning over several hours or days. A follow-up work from
Piemonti et al. (2017b), the authors studied the usability of the
tool, and identified three main improvement points: (i) time
dedicated to preference elicitation should be minimized to avoid
user fatigue, (ii) the interface should facilitate the access and
comparison of detailed information in areas of interest, and (iii)
that the accumulated findings of the user should be recapitulated
at the end of the process.

Stump et al. (2009) present a trade-space visualization
(ATSV) tool, which aims to help designers explore the design
space in search of preferred solution. This is an adaptation
of the a posteriori exploration of a precalculated trade-space
which (Balling et al., 2000) first coined “design by shopping.”
This feature-rich tool proposes various multidimensional
visualizations (scatterplots, parallel coordinates, 3D glyph plots)
to explore the trade space and steer the search for new solutions.
The visualization tool is coupled to a simulation model by means
of an evolutionary algorithm, and the search is influenced by
user inputs consisting in reference points or preference ranges.
The tool provides a very flexible exploration of the design space,
including infeasible and dominated solutions. While this allows
a more exhaustive exploration, this necessarily is done at the
expense of additional computation time, and therefore the
approach is limited to computationally inexpensive simulation
models, or dependent on intermediate calculation phases which
rely on low-fidelity surrogate models to narrow the design space
before initiating more intensive calculations.

1.3. Research Gaps and Objectives
A wide variety of preference types, procedures and interfaces
for interactive methods emerge from the existing literature.
However, in spite of the early efforts in developing effective
search-based procedures, and the more recent efforts in
making tools which enable user learning, there remains a slow
progression of “application-oriented” methods, which succeed
in being adopted outside of academia and for addressing
real, large-scale problems (Gardiner and Vanderpooten, 1997;
Allmendinger et al., 2016). Four interconnected requirements,

which remain only partially achieved in existing methods, can
explain this gap (Figure 2):

• First and foremost, methods must have the ability to handle
many objectives, and produce many efficient alternatives
reflecting the complexity of real-world problems. Xiao et al.
(2007, p. 235) noted that most interactive methods still rely on
a relatively limited number of solutions, possibly overlooking
important Pareto optimal ones, while Allmendinger et al.
(2016) found that they typically involve a limited number of
objectives, rarely exceeding five. The notion of efficient, or
Pareto optimal is also essential, because the goal is to focus
the attention of decision makers on the most competitive
solutions, and avoid wasting time on less interesting ones
(Balling et al., 2000).

• The previous requirement leads to the need for methods
which are capable of overcoming the associated computational
burden. It is crucial that results are delivered promptly to
reduce latency time for users, whose willingness to participate
might otherwise be compromised (Collette and Siarry, 2004;
Branke et al., 2008; Miettinen et al., 2010). This entails not only
that individual solutions are rapidly calculated, but also that
they efficiently provide a representative overview of the Pareto
optimal front. So far, it appears the underlying trade-off with
computational speed has been between either addressing only
computationally inexpensive problems (or relying on low-
fidelity approximations) (Stump et al., 2009), or facing longer
calculation times, possibly disrupting the search and learning
experience (Babbar-Sebens et al., 2015).

• Visualization approaches for multiobjective optimization

results are equally important, and have been extensively

reviewed by Packham et al. (2005), Miettinen (2014), and

Fieldsend (2016), clarifying the advantages and limits of

the available options (scatterplot matrices, spider charts,

Chernoff faces, glyphs...). Among these, parallel coordinates
increasingly stand out among the most efficient approaches.

They are known for their intuitive representations (Packham

et al., 2005; Akle et al., 2017), as well as for occupying
the least amount of space per criterion, making them

highly scalable to many criteria (Fleming et al., 2005).
Despite these strengths, like other visualizations, parallel

coordinates also suffer from a lack of readability when
displaying many solutions, and the difficulty to view all
pairwise relationships in a single chart. The development
of interactive visualization methods such as the data-driven
documents (D3) library has allowed to partly overcome
these issues by filtering solutions and rearranging axes
(Bostock et al., 2011; Heinrich and Weiskopf, 2013). While
Inselberg (1997) provided valuable guidelines in how to
effectively interpret relationships in parallel coordinates,
recent studies considered more closely the interpretation of
Pareto optimal solutions (Li et al., 2017; Unal et al., 2017).
Furthermore, the display of quantitative criteria may not
always suffice to take informed decision, and augmenting
the traditional display of results with, for example, maps
(Xiao et al., 2007), depictions of physical geometries (Stump
et al., 2009), values of decision variables (Gardiner and
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FIGURE 2 | Summary of requirements for “application-oriented” interactive optimization methodologies. The key features from the methodology proposed in this

paper (SAGESSE) and their relationship to the requirements are indicated on the right.

Vanderpooten, 1997) or qualitative criteria (Cohon, 1978) is
advised.

• Finally, a simple and intuitive interface is necessary to
top the aforementioned requirements. The user must
be able to not only easily understand the results, but
also steer the process with minimal effort. However,
the use of complex jargon, and difficult inputs are
still considered barriers against a wider adoption of
interactive methods in practice (Cohon, 1978; Wolf
et al., 2009; Akle et al., 2017). Meignan et al. (2015),
Allmendinger et al. (2016), and Branke et al. (2008, p. 52)
all conclude their reviews with a call for improvements
in the development of user-friendly interfaces and
methods.

While the methods reviewed above address one or several of
these requirements, none addresses them all simultaneously. The
objectives of this paper are thus (i) to introduce a new interactive
optimization methodology addressing the requirements in
Figure 2, and (ii) to demonstrate its applicability to a large
problem. The case-study used for the second objective relies on
themultiparametric mixed integer linear programming approach
described by Schüler et al. (2018b), applied to the context of
urban planning.

2. DESCRIPTION OF THE SAGESSE
METHODOLOGY

SAGESSE – for Systematic Analysis, Generation, Exploration,
Steering and Synthesis Experience – is an interactive optimization
methodology designed to address the requirements summarized
in Figure 2. It differs from most traditional sequential or
alternating paradigms found in interactive optimization, as the
steps of generation, exploration and steering blend together to
form a single, continuous, interactive search process capable

of tackling large problems (Figure 3). This is made possible
by combining in particular three main features (Figure 2): (i)
web-based parallel coordinates, as a means to simultaneously
explore multiple dimensions and steer the underlying alternative
generation process, (ii) deterministic optimization methods
coupled with a quasi-random “Sobol” sampling method to
efficiently capture large solution spaces, and (iii) on-the-fly
application of Post-Pareto analysis techniques (i.e., multiattribute
decision analysis and cluster analysis) as well as linked
views to various representations of the solutions to support
decisions. Preceding the interactive search, an analysis phase
is performed by the user and the analyst to translate the
constituents of the real-world problem into an optimization
model (decision variables, objectives, constraints). Following
the interactive search, the methodology provides a way to
synthesize the gained knowledge by extracting the subset of
most preferred solutions and key criteria. Overall, SAGESSE
consists in an experience: a practical contact with facts,
which leaves an impression on its user (Oxford, 2018).
This means the user doesn’t merely obtain a final solution
suggested by the model, but rather acquires the knowledge
and confidence of why certain solutions are preferable to
them. As noted by French (1984), “a good decision aid
should help the decision maker explore not just the problem,
but also himself.” Finally, the confidence is reinforced by
the systematic nature of the methodology, exploring the
solution space with an optimization model and rigorous
sampling technique, reducing the chances of missing a better
alternative.

2.1. Overview of Workflow
Figure 4 describes the general workflow of the methodology,
which consists of six main steps. While in principle steps 1 to 5 all
occur simultaneously (i.e., generation, exploration and steering
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FIGURE 3 | Novel paradigm for interactive multiobjective optimization, where generation, exploration and steering are performed continuously instead of sequentially.

FIGURE 4 | Overview of components, workflow and main software involved in the interactive optimization methodology and case-study. Gray text indicates optional

tasks.

tasks happen at the same time), their methodological aspects are
explained hereafter sequentially.

2.2. Starting a Project
When accessing the interface, the user can either start a new
project, or reload an existing one. For a new project, by
default an empty parallel coordinates chart with preselected

criteria is displayed. An advantage of starting from an
empty chart is that it attenuates the risk of anchoring bias,
which may cause the user to fixate too soon on possibly
irrelevant starting solutions, at the expense of exploring a
wider variety of solutions (Miettinen et al., 2010; Meignan
et al., 2015). Figure 5 shows the main components of the
GUI, namely the parallel coordinates chart, and the tabs from
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FIGURE 5 | Snapshot of the graphical user interface demonstrating several features of the SAGESSE methodology, including axis and polyline styling, multiattribute

and cluster analysis results, and the axis selection menu. The line color indicates the belonging of a line to one of the three clusters (bold axis label), while the line

thickness is proportional to total costs (italic axis label).

which the user can perform and control the main SAGESSE
actions.

2.3. Steering the Search
The user can influence the search in two ways: by providing
inputs which influence either the optimization model, or the
optimization procedure (Figure 4, Step 1). All user inputs are
stored in the database, where the generator components can
access them for further processing. These inputs, as well as
various visual aids, constitute the available steering features,
described hereafter and summarized in Table 1.

2.3.1. Optimization Model Inputs
The user specifies their preferences directly on the parallel
coordinates chart which is used to display the solutions. This is
done by brushing the axes to be optimized or constrained (Martin
and Ward, 1995).

There are three associated steering actions performed in Step
1, which will characterize the axes and the role they play in the
the optimization procedure in Steps 3 and 4 (Figure 4).

• The first action consists in defining the main objective in
the ǫ-constraint (epsilon-constraint) formulation described in
section 2.5. Exactly one objective is specified for any new

problem to be formulated. This is done by brushing the axis
with the “objective” brush (colored in purple). For this action,
the numeric values of the brush boundaries do not matter.

• The second action consists in marking one or several axes
as single constraint so that they achieve at least (or at most,
respectively) a specified value. A red brush is used for this
action, and either the upper or lower bound of the brush
defines the value to achieve, depending on the preferred
direction of the criterion (see below).

• The third action allows to systematically vary the value of a
parametrized constraint within the boundaries of a brushed
range (in blue). The numeric values for these parametrized
constraints are automatically determined by the chosen
sampling method (cf. section 2.5), based on the requested
number of solutions. While specifying single constraints
denotes a “satisficing” (satisfy + suffice) behavior, which might
arise if the user is certain that there is no tangible gain in
achieving a value better then the specified one (Branke et al.,
2008, p. 8), specifying ranges allows instead the optimization
of multiple objectives (see section 2.5).

Finally, for any criterion marked as either of the above actions,
its preferred direction can be specified. For example, a cost
criterion’s preference will be “less,” indicating that less of that
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criterion is preferred to more. A benefit criterion will be
“more,” as more is preferred to less. Practically, “less” results
in minimization for criteria brushed as objectives, and in
upper constraints for criteria brushed as ranges or constraints.
Conversely, “more” results in maximization for objectives, and
lower constraints for ranges or constraints. Typically, default
preferences are known and already included during the analysis
phase for each criterion, however they can be edited by the user
during the search phase, e.g., to test extreme cases.

2.3.2. Optimization Procedure Inputs
The first type of input regarding the optimization procedure is
the stopping criteria for the solver, i.e., a solving time limit, and
an optimality gap limit. The optimality gap is a useful feature
specific to deterministic global optimization, which allows to
produce solutions “that differ from the optimum by no more
than a prescribed amount” (Lawler and Wood, 1966). Thus, a
user can decide a priori if they would be willing to accept a
solution differing by no more than e.g., 5% from the theoretical
optimum, in exchange for reduced computational time. Setting
looser limits, i.e., lower time or larger optimality gap limits,
leads to solutions being returned earlier by the solver, but being
potentially further away from the global optimum.While the first
is always desirable, the latter might be acceptable in case a close
approximation of the optimum solution may suffice. However it
is very important to not set these limits too loosely, as solutions
too far from the optimum can lead to false interpretations.
It is worth emphasizing also that because the calculations
are continuously performed while the user explores existing
solutions, a “waiting time” of up to twominutes seems acceptable.
Indeed, given the user is likely occupied interpreting the already
calculated alternatives across the many criteria available, they are
therefore most likely not completely idle.

A second input is the sampling method to be employed within
the specified ranges, and an associated number of solutions to be
sampled (see section 2.5). A third input consists in the desired
scope or boundary of the problem. For example, in the case of
urban planning, the perimeter to be considered in the problem
can be increased or reduced.

While in principle these inputs could also be made directly
via the parallel coordinates, they are specified here with buttons,
forms and drop down menus. Except for the problem boundary,
it should be noted that these inputs are typically predefined by
the analyst, and do not require particular understanding from the
user. They are rather intended for more experienced users and
modelers.

2.3.3. Steering Assistance
Given the different types of content that can be displayed
on the axes of the parallel coordinates chart, their typology
and permitted steering actions must be clearly and intuitively
conveyed to the user. The use of colored brushes, different axis
styles and textual tooltips are used for this purpose. The axes can
display two main types of information:

i. Methodology-specific information is displayed on axes with a
dashed line style (Figure 5). They contain metadata related to

the optimization procedure (e.g., iteration number, achieved
optimality gap by the solver), or requested by the user in the
exploration step (e.g., clustering results or aggregated score,
see section 2.7).

ii. Context-specific information generated by the optimization
model is displayed on axes with a continuous line style
(Figure 5). As such, they can represent an objective function,
a constraint, a decision variable, a model parameter or a post-
computed criterion (i.e., which is calculated after all decision
variables have been determined). Functions expressed as a
non-linear combination of decision variables can generally
not be optimized with linear solvers, and, depending on the
respective formulation, can also not be constrained. They are
thus restricted to being post-computed. Axes containing linear
functions, model parameters or decision variables can also
be brushed as single equality constraints to fix their values,
as ranges in which the constraints are systematically varied,
or as objectives. To guide the user in the steering process,
adapted mouse pointers inform them whether or not an
action is allowed on any hovered axis. Furthermore, tooltips
briefly explain any forbidden action, and, if possible, how
to proceed to achieve an equivalent outcome (for example
by specifying a range for a criterion, whose underlying
objective function implies a non-linear combination of
decision variables, but which can be transformed into a linear
constraint).

Another feature to assist the user in steering consists in
highlighting the axes which played an active role in the
optimization problem (Figure 5). This information is specific
to each solution, as the role of an axis is not unique and can
change as the search progresses. Thus, when hovering over a
polyline, the axes which acted as objective, range or constraint
in the generation of that solution are temporarily colored with
the respective colors (purple, blue, and red). For example,
this helps the user identify criteria which can potentially be
further improved because they were so far only post-computed,
and those which could be relaxed for the improvement of
others.

2.4. Storing Data
A relational database is used to store both the data provided
by the user in the interface (e.g., project details, raw steering
preferences), and the data produced by the solution generator
engine (e.g., problem formulations, solution results and related
metadata). The data model for interactive optimization which
was developed for the present methodology is described by
Schüler et al. (2018a).

2.5. Formulating Problems
Once the user has specified the desired criteria to optimize (i.e.,
using objective and range brushes in Step 1), the goal is to
solve the following generic multiobjective optimization problem,
assuming without loss of generality all minimizing objectives
(Collette and Siarry, 2004):
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TABLE 1 | Steering features.

Feature Variant Purpose

Model

inputs

- Objective

- Sampling range

- Single constraint

- Preferred direction

Steer the search toward

relevant areas of the

solution space

Procedure

inputs

- Sampling method

- Number of solutions

- Optimality gap limit

- Solver time limit

- Problem boundary

Control quality, scope and

duration of calculations

Steering

aids

- Authorized actions for model inputs

(pointer shapes, axis style)

- Recommendations for procedure

inputs (tooltips)

- Color-coded axes by former actions

applied

Guide the user toward

feasible and meaningful

actions

min
x

f (x)

subject to g(x) ≤ 0

h(x) = 0

(1)

where the vector f (x) ∈ R
k contains the k objective functions to

minimize, g(x) ∈ R
q are the inequality constraints, h(x) ∈ R

r are
the equality constraints, and x ∈ R

d are the d decision variables
in the feasible region S ⊂ R

d, whose values are to be determined
by the optimization procedure.

In principle, this problem could be solved with either a
deterministic or a heuristic method (cf. section 1.1). However, in
order to benefit from widely available and efficient optimization
algorithms such as the simplex or branch-and-bound algorithms
(Lawler and Wood, 1966), a deterministic approach is chosen
here. To solve the problem deterministically, a scalarization
function is applied to transform the multiobjective optimization
problem in Equation (1) into N parametrized single-objective
optimization problems which will each return a Pareto optimal
solution to the original multiobjective problem (Branke et al.,
2008). By varying the parameters of the scalarized function,
different solutions from the Pareto front can be produced. In
summary, to generate the points on a Pareto front what is
needed is (i) an appropriate scalarization function, and (ii) a
systematic approach to vary the parameters (Laumanns et al.,
2006). The requirements for both of these aspects in the context
of interactive optimization are discussed next.

2.5.1. Adopted Scalarization Function
Scalarization functions have three key requirements in the
context of interactive methods (Branke et al., 2008): (i) they must
have the capability of generating the entire Pareto front, while (ii)
relying on intuitive input information which accurately reflect
the user’s preferences, and (iii) being able to quickly provide
an overview of different areas on the Pareto front. Two of the
most common and intuitive scalarization techniques are the
weighted sum (WSM) and the ǫ-constraint methods (Mavrotas,

2009; Oberdieck and Pistikopoulos, 2016). While both are able to
generate Pareto optimal solutions, the WSM only partially meets
the above requirements. In the WSM, a new unique objective
function is created, which consists of the weighted sum of all
original k objective functions (Collette and Siarry, 2004, p. 45):

min
x

k
∑

i=1

wn,i · fi(x), wn,i ≥ 0,

subject to g(x) ≤ 0

h(x) = 0

(2)

where
k

∑

i=1
wn,i = 1; n = 1, ...,N, and N is the number of

combinations of the weight parameters wn,i leading to Pareto
optimal solutions. A first limitation of the WSM is that if the
Pareto front is non-convex, the scalar function is not capable to
generate solutions in that area (Branke et al., 2008; Mavrotas,
2009; Wierzbicki, 2010). Second, the WSM is biased toward
extreme solutions, instead ofmore balance between the objectives
(Branke et al., 2008; Wierzbicki, 2010). The specification of
weights as inputs can have other counterintuitive and error-
prone consequences on objectives, and thus be more frustrating
to use for controlling the search (Cohon, 1978; Larichev et al.,
1987; Tanner, 1991; Laumanns et al., 2006; Branke et al.,
2008; Wierzbicki, 2010). For example, Wierzbicki (2010, p. 45)
illustrates how in a three objective problem where each objective
has an equal weight of 0.33, the attempt to strongly increase the
first objective, slightly increase the second, and allow to reduce
the third, will not be reflected accordingly in the change of
weights. Indeed, in the proposed example, modifying the weights
to 0.55, 0.35, and 0.1 respectively for each objective in fact only
leads to an increase of the first objective, while both others
are decreased. The larger the number of objectives, the greater
such issues are expected to occur, and thus the more difficult
it becomes for the user to determine weights which accurately
reflect their preferences. Finally, the weighted sum also requires
some form of normalization of incommensurable criteria toward
comparable magnitudes, which can also influence the results and
might require the user to specify upper and lower bounds a priori
(Mavrotas, 2009).

In the ǫ-constraint method, introduced by Haimes et al.
(1971), instead of optimizing all k objectives simultaneously, only
one is optimized, while the other objectives are converted to
parametrized inequality constraints:

min
x

fl(x)

subject to fj(x) ≤ ǫn,j, j = 1, ..., k, j 6= l,

g(x) ≤ 0,

h(x) = 0

(3)

where l ∈ 1, ..., k; n = 1, ...N, and N is the total number
of points calculated in the Pareto front, and where ǫn,j are
parameters representing the upper bounds for the auxiliary
objectives j 6= l. In the original method, Nj unique upper
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bounds for each objective are determined within a range of
interest [ǫmin

j , ǫmax
j ], by incrementing ǫmin

j by a fixed value1ǫj =

ǫmax
j −ǫmin

j

Nj−1 . The minimum and maximum bounds can either be

based on the expertise of the DM, or be computed by minimizing
and maximizing each objective individually. The problem is
solved for each unique combination of ǫn,j, i.e., for a total of

N combinations, where N =
∏k−1

j=1 Nj (Chankong and Haimes,

2008, p. 285) (Figure 6A).
Conceptually, the ǫ-constraint method can be understood as

the specification of a virtual grid in the objective space, and
solving the single-objective optimization problem for each of the
N grid points (Laumanns et al., 2006). The main advantages
of the ǫ-constraint method over the weighted-sum method are
that: (i) it can handle both convex and non-convex Pareto fronts
(avoiding the need to evaluate the convexity of the solution
space), (ii) the specification of bounds is a more intuitive and
less misleading concept than setting weights (Cohon, 1978; Kok,
1986; Wierzbicki, 2010), and (iii) the variation of constraints
leads to a richer and less redundant set of solutions (Branke
et al., 2008; Mavrotas, 2009). For these reasons, the ǫ-constraint
is adopted in the present interactive optimization methodology.

In addition to that, the original ǫ-constraint method
in Equation (3) can be reformulated as a multiparametric
optimization problem (Pistikopoulos et al., 2007), in which not
only the upper bounds ǫn,j of the auxiliary objectives are varied,
but also any other model parameter θt in the vector θ ∈

R
m. Thus, assuming without loss of generality all minimizing

functions, the nth problem being solved can be written as:

min
x

fl(x, θ)

subject to fj(x, θ) ≤ ǫn,j, j = 1, ..., k, j 6= l,

θt = ǫn,t , t = 1, ..., u, u ≤ m,

g(x, θ) ≤ 0,

h(x, θ) = 0,

(4)

where n = 1, ...N, and N is the total number of points calculated
in the Pareto front. For simplicity, all parameters to be varied by
a sampling scheme (regardless of whether they refer to a function
fj or to a model parameter θt) are referred to as ǫn,p, where
p = 1, ..., P, and where, by definition, P = k − 1 + u is the
total number of varied parameters. Thus, let E be the matrix of
all sampled parameters in Equation (4), which contains in each
row the sampled parameters of the nth problem being sent from
the client to the optimization procedure:

EN×P =
(

ǫn,p
)

=











ǫ1,1 ǫ1,2 . . . ǫ1,P
ǫ2,1 ǫ2,2 ǫ2,P
...

. . .
...

ǫN,1 ǫN,2 . . . ǫN,P











, ǫmin
p ≤ ǫn,p ≤ ǫmax

p

(5)
Referring to the steering actions performed by the user and
defined in section 2.3.1, the brushed objective here corresponds to
fl in Equation (4), while the lower and upper bounds of brushed

ranges correspond to the lower and upper bounds of the range
of interest [ǫmin

p , ǫmax
p ] in Equation (5). It is worth noting here

that for the particular case where fj(x, θ) = xd, the user can also
control and vary individual decision variables directly. Finally,
single constraints do not require sampling, and are thus handled
separately: when brushed on an axis representing a function, a
single parameter is fixed as equal to the upper value of the brush
(or to the lower value of the brush for a maximizing function).
Furthermore, as, from a modeling perspective, parameters do
not possess any “preferred direction”, in case a single constraint
brush is employed to fix their value, the lower bound of the brush
is considered by default.

Despite the advantages of the ǫ-constraint method, Chankong
and Haimes (2008, p. 285) noted that it can be inefficient when
perturbating the values of the ǫn,p bounds in the incremental
fashion described above. As such, and especially when many
dimensions are involved, the generation of solutions using the
ǫ-constraint method can be time-consuming and uneven across
the objective space when interrupted prematurely, leading to
a poor representation of the Pareto front (Collette and Siarry,
2004; Chankong andHaimes, 2008; Copado-Méndez et al., 2016).
This lack of efficiency is particularly problematic in interactive
methods, as the user should be presented with an overview of
the Pareto optimal solutions as fast as possible in order to know
which areas lead to preferred alternatives. The use of sampling
techniques to facilitate and improve the determination of ǫn,p in
Equation (4) is discussed next.

2.5.2. Adopted Sampling Method
Several studies have investigated ways to improve the
determination of parameters in the ǫ-constraint method.
For example, Chircop and Zammit-Mangion (2013) proposed an
original algorithm to explore two dimensional problems more
efficiently and evenly with the ǫ-constraint method, avoiding
sparse Pareto fronts. However, their procedure is restricted to bi-
objective problems. The use of various sampling techniques has
also been studied as a means to efficiently explore a space with
a minimum amount of points. Burhenne et al. (2011) compared
various sampling techniques and found that the Sobol sequence
(Sobol, 1967) leads to a more efficient and robust exploration of
parameter spaces, and is thus recommended when sample sizes
must be limited due to time or computational limitations. A
Sobol sequence is a quasi-random sampling technique designed
to progressively generate points as uniformly as possible in a unit
hypercube (Figure 6B) (Burhenne et al., 2011). Closely related
to the present approach, Copado-Méndez et al. (2016) tested
the use of pseudo- and quasi-random sequences to allow the
ǫ-constraint method to handle many objectives more efficiently.
They obtained better quality and faster representations of Pareto
optimal solutions using a combination of Sobol sequences
and objective reduction techniques, compared to the standard
ǫ-constraint method and other random sequences. Franken
(2009) also uses a Sobol sequence approach for the exploration
of promising input parameters for particle swarm optimization
in parallel coordinates. However, the adoption of quasi-random
sequences for real-time benefits in interactive optimization has
not been tried. This approach – rather than a regular systematic
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sampling typically adopted in the ǫ-constraint method – is
particularly relevant when dealing with interactive methods,
as the order with which the solutions are explored is critical
when the user’s time is limited. Furthermore, the Sobol sequence
greatly removes a burden from the user, who must only specify
loose ranges of approximate preference or interest, and the
sequence automatically takes care of determining the constraints
in the next most efficient location of the solution space.

In SAGESSE, the quasi-random Sobol sampling method
(Sobol, 1967) is therefore adopted and can be selected to vary
the parameters in Equation (5), ensuring a quick and efficient
exploration of the entire space with a minimum amount of
solutions (Figure 6B).

With the Sobol sampling approach, the user specifies a
number of solutions N, and the corresponding parameters in E
are computed as:

ǫn,p = ǫmin
p + sn,p · (ǫ

max
p − ǫmin

p ), n = 1, ...,N, p = 1, ..., P,
(6)

where sn,p is an element in the matrix SN×P, whose rows contain
the Sobol sequence of N coordinates in a P-dimensional unit
hypercube. Various computer-based Sobol sequence generators
have been developed and implemented to compute the elements
of SN×P. Here, a Python implementation based on Bratley and
Fox (1988) was used, allowing the generation of sequences
including up to 40 dimensions (Naught101, 2018). Other
generators could increase this number, e.g., allowing sequences
for up to 1111 dimensions (Joe and Kuo, 2003). As illustration,
the numeric values sampled with the Sobol approach for N = 5
points and P = 3 parameters in ranges [0, 1] are provided in Esob,
Equation (7). This choice of range further implies that in this
example, the coordinates of the parameters are in fact identical
to those of the Sobol sequence in a unit hypercube:

Esob5×3 = S5×3 =













0.5 0.5 0.5
0.75 0.25 0.75
0.75 0.25 0.25
0.375 0.375 0.625
0.875 0.875 0.125













(7)

Alternatively, a standard systematic sampling method can also
be used (Gilbert, 1987), which can in some cases be preferred
to the Sobol sampling method. With systematic sampling,
the space is systematically explored by dividing the sampled
dimensions into regular intervals. An important drawback from
this sampling method is that it can lead to misleading or biased
insights if the sampled solution space contains “unsuspected
periodicities” (Gilbert, 1987). In addition, it is less convenient
for real time optimization because of its slower progression
throughout the solution space (Figure 6A). Nevertheless, this
sampling technique can provide more control to the user than
the Sobol approach. For example, it can be used to perform a
systematic sensitivity analysis on the parameters in Equation (4),
by systematically combining specific values on different axes.
Unlike for the Sobol sequence, in this approach, the total number
of sampled points is given implicitly by N =

∏P
p=1 Np, where

Np is the number of requested points in the range of interest
[ǫmin

p , ǫmax
p ] of each dimension.

Therefore, each dimension thus contains Np unique values to
sample, computed as:

ǫn′,p = ǫmin
p + (n′ − 1) · 1ǫp, n′ = 1, ...,Np (8)

where 1ǫp =
ǫmax
p −ǫmin

p

Np−1 is the increment between each ǫn′,p. The

corresponding matrix Esys resulting from systematic sampling
is then populated by combining all parameter values in the
following order:

E
sys
N×P =

























ǫ1,1 ǫ1,2 . . . ǫ1,P
ǫ1,1 ǫ1,2 ǫ2,P
...

. . .
...

ǫ1,1 ǫ1,2 . . . ǫNP ,P

ǫ1,1 ǫ2,2 ǫ1,P
...

. . .
...

ǫN1 ,1 ǫN2 ,2 . . . ǫNP ,P

























(9)

As an example, for three dimensions sampled with systematic
sampling between [0, 1] and for N1 = 3, N2 = 2, N3 = 2, the
resulting matrix of varied parameters is:

E
sys
12×3 =









































0 0 0
0 0 1
0 1 0
0 1 1
0.5 0 0
0.5 0 1
0.5 1 0
0.5 1 1
1 0 0
1 0 1
1 1 0
1 1 1









































(10)

2.6. Generating Solutions
In this step, the single-objective optimization problems
formulated based on Equation (4) are solved. In particular, the
solver receives from the client the main objective to optimize,
as well as the values for all specified parameters contained in
EN×P. As long as the user has not specified new objectives on the
parallel coordinates chart, the generation process continues to
add solutions in the current ranges, taking as inputs the rows of
EN×P one after another. As soon as a change in objectives occurs,
the solver interrupts the current sampling sequence and starts
again with the newly provided objective and EN×P.

2.7. Exploring Solutions
The purpose of exploration is for the user to learn about
tradeoffs and synergies between the solutions, and develop their
confidence in what qualifies a good solution. The interface
should offer a positive and intuitive experience, respecting the
information-seekingmantra “overview, filter, details on demand”
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FIGURE 6 | Schematic comparison of (A) systematic and (B) Sobol sampling for specifying constraints in an ǫ-constraint problem minimizing two objectives: state

after 7 computed samples of a total of 25 requested points. Purple: main ǫ-constraint objective fl . Blue: arbitrary range of interest in the auxiliary objective fj , in which

the upper bounds ǫr,j are automatically allocated by the sampling method (note: the ticks indicate the relative position of the constraints for a normalized range, and

the subscripts r indicate the order in which each upper bound is used by the solver).

(Shneiderman, 1996). Parallel coordinates provide a basis for
this mantra (Heinrich and Weiskopf, 2013), allowing the user to
develop a feeling for achievable values in competing objectives,
and understand the reasons preventing the achievement of
goals. The available functionalities supporting exploration are
summarized inTable 2 and described below, organized according
to their main purpose (i.e., overview, filter or details).

2.7.1. Overview of Relationships Between Criteria
The parallel coordinates reveal tradeoffs (or negative
correlations) between two axes as crossing lines, and synergies
(or positive correlations) non-crossing lines (Inselberg, 1997; Li
et al., 2017). Because the chart can only show such patterns for
pairs of adjacent axes, two approaches are available to explore
more relationships. First, the implementation of the chart (which
relies on the data driven documents (D3) library Bostock et al.,
2011; Chang, 2012) allows to dynamically drag-and-drop axes
in various positions, making it possible to quickly investigate
specific pairs on demand. Second, different visual encodings for
the polylines can be used to emphasize various aspects of the
data (Cleveland and McGill, 1985). In addition to their vertical
position along each axis, properties such as color, width, line
style, transparency, animation etc. can be mapped to polylines
to reflect the values of a criterion. Here, color and width are
used to reveal the relationships between the criterion being
mapped with respect to all other axes. This allows for example
to highlight high (respectively low) performing solutions, as well
as clusters of solutions on any given axis. The available coloring
options include linear bi- or multi-color gradients (each color
shade indicates increasing values), Z-score gradient (indicating
the deviation from the mean value) and categorical (assigning
a unique color to each value). The line width property can
be assigned to an other criterion, so that high polylines with

high values are thicker than those with low values. Another
way to improve readability and identify patterns and clusters
is by using curves instead of lines . The user can adjust the
intensity of the curvature of polylines in order to balance the
readability of correlations (most readable with straight lines),
and of overlapping lines and clusters (most readable with curves)
(Heinrich and Weiskopf, 2013).

2.7.2. Filtering Solutions and Criteria
The user can filter the polylines to display only those of interest
by “brushing” the desired axes (Heinrich and Weiskopf, 2013;
Bandaru et al., 2017b). The ability to display only the solutions
which satisfy desired values on the different axes is a common
response to the problem of cluttering, which causes parallel
coordinates to become unreadable when too many lines are
present (Johansson and Forsell, 2016; Li et al., 2017). Various
brushing options are available (Heinrich and Weiskopf, 2013),
including a normal one-dimensional brush (defining upper and
lower bounds on an axis), multiple one-dimensional brushes (to
select several distinct portions on an axis), an angular brush
to filter solutions according to their slope (i.e., correlation)
between two axes, or two-dimensional brushes which allows the
selection of solutions based on their path between two axes.
Additional information can be computed for the brushed subset
of polylines, such as clustering ormultiattribute decision analysis.
Related to brushing is the action of hovering a polyline with
the pointer, which highlights it across the chart, and displays
additional information (e.g., its exact numeric values for the
different visible axes, information not currently displayed on the
axes, or information regarding how the polyline was generated,
cf. section 2.3.3). Hovering is also a way to access information in
linked views, such as a graphical representation of the solution.
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TABLE 2 | Adopted exploration features related to the parallel coordinates interface, classified by type (O: overview, F: filter, D: details on demand).

Feature Variant Type Purpose References

Polyline color Single color,

Linear gradient,

Z-score,

Categorical colors

O Identify patterns and clusters across

axes

Shneiderman, 1996; Heinrich and

Weiskopf, 2013

Polyline width Customizable scale O Identify patterns and clusters across

axes

-

Polyline curve Customizable curve intensity O Identify patterns and clusters across

axes

Avoid ambiguities

Franken, 2009; Heinrich and

Weiskopf, 2013; Palmas et al., 2014

Axis choice

and ordering

Drag-and-drop,

Drop-down menu

O, F Identify patterns and clusters across

axes,

Avoid redundancy

Jaszkiewicz and Słowiński, 1999;

Zhen et al., 2017

Clustering k-medoids O, F Focus attention on few distinct and

representative solutions, group similar

solutions together

Kaufman and Rousseeuw, 2009;

Aguirre and Taboada, 2011; Mokhtar

et al., 2017; Xiao et al., 2007

Brushing 1D,

2D,

angular, etc.

F Avoid cluttering,

Provide additional information related

to brushed polylines

Shneiderman, 1996; Packham et al.,

2005; Heinrich and Weiskopf, 2013;

Mokhtar et al., 2017

Hovering - F/D Avoid cluttering,

Provide additional information related

to hovered polyline

-

Multiattribute

decision

analysis

TOPSIS F/D Provide aggregated score and

ranking to facilitate interpretation of

MODA results

Hwang and Yoon, 1981;

García-Cascales and Lamata, 2012

Linked views 3D scatter plots, 2D scatter

plot matrices

Maps

D Overcome and complement visual

limitations of parallel coordinates,

Avoid visual overload

Buja et al., 1991; Xiao et al., 2007

Another way to filter the displayed information concerns the
visible axes representing the criteria. While parallel coordinates
scale well to large numbers of criteria (Inselberg, 2009), in
practice, working simultaneously with up to “seven plus or
minus two” axes is advised to account for the user’s cognitive
ability (Miller, 1956). French (1984) argue that in the case
of multicriteria decision analysis, this number may already be
too large for simultaneous consideration. Because the relative
importance of criteria in the decision process is not necessarily
known in advance, and might change as new knowledge is
discovered, the user must be able to access and dismiss axes in
real-time. For this purpose, a drop-down menu allows to type
or scroll for other criteria, and easily dismiss currently visible
ones. This allows to compose new charts on-the-fly which reflect
the most relevant information to the user at a given point.
In the experience of the authors, the act of including criteria
incrementally facilitates the consideration of even over seven
axes, because the complexity gradually builds up in a structured
way.

2.7.3. Filtering Representative Solutions With

Clustering
The use of clustering techniques is a common approach to help
make the selection of solution from a large Pareto optimal set
more manageable (Aguirre and Taboada, 2011; Zio and Bazzo,

2012; Chaudhari et al., 2013). Clustering aims to group objects
with similar characteristics into distinct partitions, or clusters.
Practically, an algorithm seeks configurations for which “objects
of the same cluster should be close or related to each other,
whereas objects of different clusters should be far apart or
very different” (Kaufman and Rousseeuw, 2009). A popular k-
medoids technique called partitioning around medoids (PAM)
is adopted here (Kaufman and Rousseeuw, 2009, p. 68). Unlike
the related k-means technique which computes k virtual cluster

centroids, k-medoids directly determines the most representative

solutions from the existing data set (Park and Jun, 2009). While
this increases computational effort, it reduces its sensitivity to
outliers. Furthermore, the additional computational effort is
justified in the case of interactive optimization for decision
support, as it allows to focus the attention of the user on
existing representative solutions, instead of virtual points which
may not actually be feasible. Another main limitation of both
k-means and k-medoids is the need to input a number of
clusters a priori (Aguirre and Taboada, 2011). While various
quality indices could be applied to assess the quality of the
clusters (Goy et al., 2017), the direct feedback from the graphical
display in parallel coordinates and 3D scatter plots lets the user
easily explore the effect of various inputs on the final clusters
(Kaufman and Rousseeuw, 2009, p. 37). The inputs consist in
both the number of clusters k (specified by the user in the
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GUI) as well as the initial seed medoids which are chosen
randomly by the algorithm from the solution set each time it is
executed.

2.7.4. Filtering Solutions With Multiattribute Decision

Analysis Score
When many solutions are compared across many dimensions, it
can become overwhelming to distinguish which stand out overall.
Psychological studies have emphasized the limited ability of
human decisionmakers in balancingmultiple conflicting criteria,
even between a limited number of alternatives (French, 1984;
Larichev et al., 1987; Jaszkiewicz and Słowiński, 1999). Here an
aggregative multiattribute decision analysis (MADA) method is
proposed to facilitate this task, by revealing the best rank or score
of each alternative relative to the others (Cajot et al., 2017a). Each
solution is attributed a score that is displayed as an additional axis
in the parallel coordinates, and that is used as additional decision
criterion.

As pointed out in the introduction (Hwang and Masud,
1979), multiobjective decision analysis (MODA) methods are
designed for the generation of alternatives, while the strength of
MADA lies in the evaluation and comparison of predetermined
alternatives. Many methods could be adopted, and there is a wide
body of literature comparing the similarities, pros and cons of
these methods (Zanakis et al., 1998; Cajot et al., 2017a). The
often implicit assumption with most MADA methods is that
the criteria can compensate each other. While the combined
strength of interactive multiobjective optimization and parallel
coordinates precisely is to avoid the need to aggregate the
different incommensurable criteria, providing the user with a
simplified aggregated metric can nevertheless provide useful and
reassuring support to make sense of the data. The resulting score
is not intended to replace the DM’s decision , but rather to focus
their attention on a limited number of alternatives, and stimulate
questions and learning (e.g., discovering what characterizes a top-
or low-ranked alternative). As reviewed in Cajot et al. (2017a),
the application of MADA as a way to support decisions on
precalculated non-dominated sets generated withMODA is fairly
common (e.g., Aydin et al., 2014; Ribau et al., 2015; Fonseca et al.,
2016; Carli et al., 2017). However, these applications are typically
performed a posteriori. Here, the feedback from theMADA score
provides direct insights which the user can use to steer the search
with MODA.

To avoid burdening the user with further methodological
aspects, the Technique for Order of Preference by Similarity to
Ideal Solution (TOPSIS) method is adopted for its most intuitive
and understandable principle, limited need for inputs and ability
to handle many criteria and solutions (Zanakis et al., 1998; Cajot
et al., 2017a). The method ranks each alternative according to
its proximity to an ideal solution—which would present the
best value in every criterion—and respectively according to its
distance from a negative ideal solution—which would present all
worst values (Hwang and Yoon, 1981). The final score provided
by TOPSIS is a relative closeness metric between 0 and 1,
where higher scores reflect higher proximity to the positive ideal
solution.

Two methodological aspects must be in particular considered
in the TOPSISmethod, namely the normalization of data, and the
choice of ideal solutions.

First, to account for different scales in the criteria, values
must be normalized for comparability (Kaufman and Rousseeuw,
2009). Two linear scale normalization methods are implemented
here to handle various cases: the “max” and the “max-min”
variants (Chakraborty and Yeh, 2009). The normalized values
obtained with the “max” variant are nij = zij/maxi(zij). This
method is advocated by García-Cascales and Lamata (2012),
as it reduces the consequences of rank reversal. However,
in situations where the spread of values is not consistent across
criteria, this normalization tends to neglect the importance
of criteria with more compact values. In case the criterion
is sensitive to such small changes, these should be accounted
for in the TOPSIS score. Thus, to avoid this bias, the “max-
min” variant distributes all values between 0 and 1, providing
not only comparable magnitudes between criteria, but also
comparable spread (Chakraborty and Yeh, 2009). With this
variant, the normalized values are calculated as nij = (zij −
mini(zij))/(maxi(zij) − mini(zij)). At the expense of being more
sensitive to rank reversal, this method more accurately accounts
for criteria with small spreads.

Regarding the choice of ideal solutions, while the original
TOPSIS methods computes them relatively to the studied data,
García-Cascales and Lamata (2012) propose the adoption of
absolute positive and negative ideal points, either defined by the
user or by context-specific rules. Here, the relative approach
is preferred, in order to avoid asking the user for additional
information, especially because of the possibly large number
of criteria. They may however choose to apply the method
on all computed solutions, or just a subset, for example for
comparing only solutions selected in the comparer dashboard
(cf. section 2.8). If the user wishes to benefit from more reliable
and consistent MADA results not subject to rank-reversal, they
can manually provide reasonable upper and lower bounds for
each criterion, and use those absolute values instead. As noted
by Wierzbicki (2010, p. 51), there are no fundamental reasons
to restrict such analyses to the ranked alternatives, and using
more information (e.g., absolute values if known, or historical
data), or less (e.g., limiting the definition of ideals only through
non-dominated solutions) can affect the strictness of the ratings.
They can also give higher weights to criteria to better reflect
their subjective preferences, though again to reduce the need
for inputs, equal weights are assumed by default. As illustrated
in Figure 9, the scores provided by the TOPSIS method easily
reveal the solutions which perform best, i.e., which have both
high values in criteria to maximize, and low values in the criteria
to minimize.

2.7.5. Details on Demand: Linking Views to Parallel

Coordinates
In some cases, the content and format of parallel coordinates is
not sufficient or adapted to convey certain types of information.
Xiao et al. (2007) highlight in particular the need to complement
parallel coordinates visualizations with maps, while (Stump
et al., 2009) suggest displaying physical geometries of generated
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designs - not just the design variables and performance metrics.
Furthermore, Cohon (1978) noted that the communication of
qualitative concepts such as aestheticsmay be difficult for analysts
to handle, although desirable for decisionmakers. Closely related
is the importance to also communicate the decision variables,
when requested, because in some cases the objectives and criteria
alone may not provide all the necessary information to decide
(Gardiner and Vanderpooten, 1997, p. 296, shenfield2007).

To address these gaps, two features are implemented. The first
allows to visualize all (or subsets of) solutions in interactive 2D
scatter plot matrices and 3D scatter plots (Plotly-Technologies-
Inc., 2015). While these are restricted to a limited number of
dimensions, they offer a more direct and familiar interpretation
of distances then in parallel coordinates. The second allows to
access additional information regarding individual solutions. For
this purpose, polylines are made clickable to allow the user
to access other types of information associated to a solution.
When clicked, a visual dashboard opens below the chart, which
could display any additional information such as images, charts,
maps, exact numerical values, etc. Both views are linked, so that
when the cursor hovers over the information in the dashboard,
the corresponding polyline is highlighted. Like the axes, the
dashboard offers reorderable containers to allow side-by-side
comparisons between graphical representations.

In the urban planning case-study presented in section 3,
clicking a polyline triggers the generation of geographic maps,
which complement the parallel coordinates chart with spatial
and morphological information, providing also a more detailed
insight into the decision variables of a solution (location, size, and
type of buildings, energy technologies, etc.).

2.8. Synthesizing the Search
The ability to effectively convey key analytical information
from the methodology to complement the decision maker’s
intuitive and emotional thought process is essential to influence
the decision process. Studies performed by Trutnevyte et al.
(2011) showed for example that combining analytical and
intuitive approaches in elaborating municipal energy visions led
stakeholders to revise their initial preferences and values and
take better quality decisions. However, the choice of parallel
coordinates may not be the most effective way to communicate
the analytical insights obtained from the search, in particular
to stakeholders or decision makers which did not actively
take part in the search. Indeed, Wolf et al. (2009) noted
how novice users might feel overwhelmed or less likely to
exploit a dense amount of solutions in parallel coordinates.
Piemonti et al. (2017b) further emphasized the added-value of
summarizing the most preferred alternatives found in interactive
optimization methods to make the selection process easier, while
Gardiner and Vanderpooten (1997) suggested the importance of
synthesizing the characteristics of obtained solutions to facilitate
the communication to others.

A “comparer dashboard” is thus developed to address this
need, synthesizing with key information the main insights gained
during the search process (Figure 11). Three types of information
are displayed in the dashboard. First, the total number of
explored solutions is displayed on top of the comparer as a

reminder of the extent of the search performed so far. Thismainly
serves the purpose of increasing the confidence and conviction of
the user in the relevance of the final alternatives , or to encourage
them to pursue the search. The interpretation from the user
remains purely subjective, because often even a large number of
explored solutions (e.g., thousands) will anyway remain marginal
compared to the immensity of the solution space. Nevertheless,
studies have revealed that users of IO typically perform few
iterations, and methods should be designed to encourage them
to explore more, rather than converge too soon (Buchanan,
1994; Gardiner and Vanderpooten, 1997; Miettinen et al., 2010).
Second, in addition to the numerical identifier of the alternative,
a graphical thumbnail is displayed, if available, to symbolize
the alternative and easily identify it. the numerical identifier
of the alternative. Third, the values of the selected criteria are
displayed in a tabular format. Depending on the target audience
and decision maker, the values can be displayed in full numerical
values, colorized to emphasize best and worst values (e.g., green
and red font color), or they can be aggregated into more
qualitative scales, using injunctive symbols such as emoticons,
red-amber-green dots or star-based ratings (Ayres et al., 2013).

3. APPLICATION

3.1. Case-Study Description
The SAGESSE methodology is targeted at supporting decisions
in large problems with many decision variables, and for which
preferences are difficult to specify a priori. Urban planning
typically embodies such intractable characteristics, and is used
hereafter as case-study to illustrate the applicability of the
methodology. Indeed, one of the main roles of urban planners
is to synthesize and arbitrate the conflicting needs of all urban
stakeholders, proposing and justifying an urban plan which
shall be used as a guideline for the implementation of in
particular buildings, infrastructure, open space and vegetation
over decades. The process of identifying satisfactory plans
which achieve predetermined targets is generally lengthy, and
iterative. The difficulty of this process is accentuated by three key
challenges (Cajot et al., 2017b):

• It is unlikely that a single stakeholder possesses a clear vision
of the needs of all actors, and even less so a precise and
quantifiable understanding of the tradeoffs and synergies
among them.

• Political targets and trends evolve more rapidly than the
realization of urban projects.

• There is a gap between the strategic planning phase, and the
more concrete design phase, making it difficult to anticipate
consequences of early decisions (deVries et al., 2005).

Supporting decisions in the early stages of an urban
redevelopment project can therefore particularly benefit from
interactive optimization, given the large solution space (choice of
type, size and location of buildings and energy equipment), and
elusive preferences and values involved (Cohon, 1978; Balling
et al., 1999).

A case is demonstrated hereafter for searching a preferred
alternative in the redevelopment of an urban neighborhood,
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illustrating the various exploratory and steering features
described above.

3.2. Analysis
The case-study presented here consists of a redevelopment
project for a Swiss neighborhood of roughly 300 buildings. The
main conflicting objectives, which the planners must achieve,
include: (i) increasing the residential built density, (ii) reducing
the overall greenhouse gas emissions, and (iii) promoting quality
of life. The analysis phase leading to the optimization model
consisted in multiple workshops with the urban and energy
planning team, as well as a review of available master plans
and legal documents. During this phase, the perimeter of the
project was determined, as well as the main issues, objectives
and constraints faced by the local experts. In the search phase
of SAGESSE, the user does not repeat this entire process, but
nevertheless begins by selecting the project boundaries, and key
criteria they wish to explore. Cajot et al. (2016) describe in more
detail the planning documents analyzed in this phase for a related
urban development project, and Schüler et al. (2018b) details the
components of the resulting mixed integer linear programming
(MILP) model. The application of this MILP model with the
SAGESSE methodology constitutes the planning support system
URBio introduced in Cajot et al. (2017c).

3.3. Generation, Exploration and Steering
After creating a new project, the user faces an empty chart. This
blank chart forces them to think of the most valued aspects in
the project, in other words, what they are trying to achieve. For
example, they might start exploring the tradeoffs between three
important and often conflicting criteria in urban planning: the
floor area ratio (FAR) or built density (to be maximized), the
renewable energy sources (RES) share (also to be maximized) and
the total costs associated to the corresponding decisions (to be
minimized). If they know a priori the desired or feasible densities
of the project, they can directly specify a range of densities
to explore. If not, they can easily compute the minimum and
maximum achievable densities of the neighborhood by specifying
an objective on the FAR axis (Figure 7A). A first time, they rely
on the default preference for “more” FAR, and the solver returns
the maximum density of 1.27, corresponding to a neighborhood
in which additional floors are constructed on all buildings that
can legally be heightened. A second time, they set the preference
of FAR to “less,” and the solver returns a density of 1.17, which
corresponds to the neighborhood’s current density.

A first question here is: can high shares of RES be achieved
in a high density neighborhood? Having learned the bounds of
achievable densities, they can dismiss them and continue to
explore tradeoffs between solutions with densities between 1.17
and 1.27, RES shares between 0 and 100%, and minimal costs.
This is performed by brushing an objective on the total costs axis,
and specifying a range with Sobol sequence on the two other axes
(Figure 7B).

As the solutions requested in Figure 7B appear, the user
realizes after only 5 solutions that a satisfying RES share (0.88)
is compatible with a high density (1.25), although at higher
costs (5.97 MCHF/y). The question thus becomes: how much

can the costs be reduced while maintaining an acceptable share
of renewable energy and density? To answer this question, they
brush new ranges on the upper parts of the floor area ration and
renewable energy sources axes, to narrow the search only to those
interesting areas, with the expectation to find a configuration
which has a lower total cost than the currently most expensive
solution (Figure 7C). A series of cheaper solutions appear, which
the user can filter to reveal the tradeoffs with either FAR or
RES that allowed the cost reduction. As visible in the right chart
of Figure 7C, the Sobol sequence used to specify constraints
guarantees a homogeneous and quick exploration of the areas
of interest. As requested by the user, the sampling was first
performed on the entire axes, then focuses on the upper areas,
as denoted by more compact lines in the upper part of the FAR
and RES axes.

Continuing this process, the user can answer further
questions, such as:Which additional aspects explain the costs? Or:
What energy technologies lead to these shares of renewable energy
sources? For example, they might be interested in the remaining
number of oil boilers in the proposed solutions, as a political
target aims at decreasing their amount for environmental
reasons.

By including the decentralized oil boiler axis via the drop-
down menu (Figure 8A), they realize that still around 60
undesirable oil boilers are present in the neighborhood (red
polylines in Figure 8A), which were initially present in the status
quo. To assess the consequences of a drastic reduction in their
number, they specify a constraint to prevent oil boilers in all
upcoming solutions, while maintaining the exploration of cost-
optimal solutions with both high density (> 1.24) and high
renewable energy share (> 0.8). This generates ten new solutions
with no oil boilers (blue polylines in Figure 8A).

The reduction in number of oil boilers has little effect on
the total costs and performance of RES share compared to the
solutions which included them. To explain this lack of effect,
the user could further explore different criteria concerning the
oil boilers and other technologies to find out their respective
contributions to the neighborhoods energy supply. In this case
however, a cartographic representation of the annual energy
supply per building and per energy technology is more adapted
to provide an overview of all technologies. The maps of solutions
containing the oil boilers (not shown) are in fact similar to those
without oil boilers (e.g., Figure 8C), with a predominance of
district heating and wood boilers supplying the buildings. This
indicates that oil boilers are only marginally used to satisfy peak
loads, and can be substituted by the other installed technologies
for only a limited cost increase.

Repeating this process for wood boilers, which are also to be
avoided in urban centers because of health-related issues, the
user adds a new constraint on the wood boiler axis, and requests
five new solutions (Figure 8B). Note that in Figures 8A,B, the
axes which influenced the generation of the highlighted polylines
are colored accordingly, cf. section 2.3.3. The new constraint on
wood boilers leads to a system dominated by solar PV panels
and both ground and air source heat pumps. Furthermore, three
of the five solutions were infeasible, indicating that shares of
RES exceeding 0.88 become difficult to achieve without relying
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FIGURE 7 | Parallel coordinates charts showing different steering inputs (left) and resulting solutions computed with Sobol sampling (right). (A) Set min and max

objective on FAR to learn boundaries. (B) Request Pareto optimal solutions for all three axes. (C) Narrow the search for solutions in the upper parts of floor area ratio

(FAR) and renewable energy sources (RES). Purple brushes indicates the primary objective in the ǫ-constraint formulation, and blue brushes indicate the range within

which auxiliary constraints are varied.

on wood boilers. Overall, the solutions without wood boilers
are also more costly than the former solutions which relied
on wood boilers and district heating (Figure 8B). The reason
district heating is no longer chosen after adding the constraint
on wood boilers (Figure 8D) is that the available centralized
technologies used for the district heating do not allow to achieve
the higher RES constraints. The inclusion in the model of

e.g., deep geothermal or the nearby lake as heat sources could
make district heating again a feasible solution for the current
problem.

At this point, the user could continue by inquiring e.g.,
social or economic questions, such as the distribution of costs
between building owners and energy provider, the impact of
increased density on the view of aesthetic landmarks, etc. As
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FIGURE 8 | (A) Shows a highlighted polyline and the role each axis played in its problem formulation (purple–objective, blue–range, red–constraint), as well as the

drop-down menu used to add axes. (B) Shows a different highlighted polyline, which is constrained on both fourth and fifth axes. Bold labels indicate the axes based

on which a linear gradient coloring is performed. (C,D) Show the annual energy supply shares by technology per building for the solutions highlighted in (A,B)

respectively.

the solution generation process evolves, however, the number of
solutions and criteria rapidly grows. This is where MADA and
cluster analysis can further support the exploration. To develop
a general understanding of which solutions perform best, the
TOPSIS method is applied on-the-fly to the current solutions,

and colored accordingly (Figure 9A). Because the FAR axis is
concentrated on a relatively tight range (1.19–1.26), the “max-
min” normalization is adopted to ensure this criterion affects the
final score equally to the other criteria (section 2.7.4). This “score”
axis provides support to examine the best performing solutions,
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i.e., the solutions which are the most balanced, with respect to the
TOPSIS indicator. For example, by displaying only the solutions
with top scores, the user can assess whether (i) the solution
reflects their preferences, and (ii) which tradeoffs are required for
the improvement of any criterion. For illustration purposes, the
score is computed here for only the first three axes, to allow also
displaying it also in 3D scatter plots. These plots help to interpret
the underlying concept of the TOPSIS approach (Figures 9B,C).
Indeed, the geometrical distance between ideal solutions and
actual solutions can more intuitively be grasped in the 3D charts
than in parallel coordinates, although this visualization is limited
to three axes.

Another way to cope with the many solutions is to perform
cluster analysis to identify the few most representative solutions.
In Figure 10, the user performed three cluster analyses for
respectively k = 2, 3, 4 clusters. Depending on the number of
solutions for which they are willing to spend time investigating in
more detail, or depending on the quality of the clustering (either
evaluated visually in the scatter plots or parallel coordinates
or by relying on quality indices such as the silhouette index),
a number of clusters—and their corresponding representative
solutions (i.e., medoids)—are adopted. Figure 10D shows the
clustering results for k = 3 clusters in parallel coordinates. The
color reflects solutions which are part of a same cluster, and the
thicker lines indicate the medoids for each cluster.

3.4. Synthesis
After generating and exploring several alternatives, the user can
narrow down the number of solutions to only a subselection
of the most promising ones and add them to the comparer
dashboard (Figure 11). They select seven axes, including a new
criterion (“Share of performance certificates”) which indicates the
share of buildings which were refurbished according to various
energy performance standards. The cartographic thumbnails
reflect this criterion, where lighter shades of red indicate
buildings refurbished to stricter energy standards. From the 27
solutions generated so far, the three solutions which were added
correspond to the three medoids of a cluster analysis performed
on the chosen criteria. The first solution (ID 11) is the most cost
effective (highlighted in green), but performs the least well in the
five last indicators (highlighted in red). In the second solution (ID
10), the neighborhood is almost entirely supplied from renewable
energy sources, but still relies on oil and wood boilers to satisfy
part of the demand. Finally, the third solution (ID 27) is able to
achieve 85% of renewable energy, in part by refurbishing 83% of
the building stock, but nearly doubling the costs from the first
solution.

3.5. Systematic Experience
By personally going through the systematic search process, the
user has gained a better understanding of the problem and of
their own preferences. New questions were raised along the way,
which could be answered on-the-fly. The main learning points
from this demonstration can be summarized as: knowledge of the
maximum achievable density, required costs to achieve a highly
renewable energy neighborhood, and the corresponding density
threshold, as well as the maximum RES share achievable in the

absence of wood boilers. Overall, this knowledge of extreme
cases, but also the finer understanding of tradeoffs and tipping
points between conflicting objectives gained during the search
phase, give the user more confidence in justifying the chosen
solutions, or the reasons why others were discarded. In addition,
by laying down side-by-side the main criteria for a subselection
of solutions in the synthesis phase, the user is equipped to take
an informed decision, and justify and communicate it to other
stakeholders.

4. DISCUSSION

4.1. Strengths of the Approach
A novel interactive optimization methodology was presented,
which enables users to simultaneously generate and explore
solution spaces of large problems in real-time. It aimed
at addressing the four main gaps in current interactive
optimization methods, namely the ability to handle many
objectives and alternatives, to explore the latter in an efficient
way, to communicate the results effectively, and remain overall
simple and accessible to users unfamiliar with optimization.
Furthermore, it was demonstrated and applied in an urban
system design problem. The contributions are summarized
hereafter.

• Accessible: Parallel coordinates offer an effective framework
for interactive optimization, as they provide a single entry
point both for exploring a wide range of criteria and
alternatives, while also offering an intuitive and natural way to
specify preferences. By reducing the cognitive effort required
from the user, the approach allows interactive optimization
to benefit a wider audience. Indeed, the learning curve is
essentially limited to understanding parallel coordinates, and
not the technical aspects and jargon of optimization.

• Quick and efficient: The combined use of exact mathematical
programming and quasi-random sampling offers an efficient
approach to quickly explore large, multi-dimensional spaces.
The real-time process allows the user to adapt the explored
areas at any time, while building on the so-far acquired
solutions.

• Improved parallel coordinates: While the main limitations
of parallel coordinates such as cluttering and restriction to
pairwise comparison of axes are well known and commonly
addressed by means of brushing, line coloring and manual
axes reordering, the present work extends traditional parallel
coordinates in four ways. First, the traditional paradigm of
parallel coordinates for exploring existing data is enhanced
by the ability to dynamically populate the chart with
desirable solutions. Second, a searchable axis-selection menu
is appended to the chart to dynamically customize the visible
axes. This allows to work with hundreds of criteria, by
dynamically toggling the visibility of axes as initial questions
are answered and new ones emerge. Third, cluster analysis
can be performed interactively in order to focus the attention
of the user on the most distinct solutions. Fourth, linked
views allow to explore the entire data set as 3D scatter plots,
while individual solutions can be explored beyond the purely
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FIGURE 9 | (A) Depiction of TOPSIS score results in parallel coordinates. (B) Lateral view of the Pareto surface in a 3D scatter plot. (C) Frontal view of the Pareto

surface. Dark red solutions indicates solutions closest to the positive ideal.

quantitative nature of data in parallel coordinates. In this
paper, cartographic maps were used, but the generation of
other types of visualization (images, flowcharts, time-series...)
could be linked to polylines in a similar way.

• Multiattribute and multiobjective decision analysis: The
complementary strengths ofMODA andMADA are harnessed
to provide the user with a value-focused approach in
generating good alternatives, while also providing them with
assistance in ranking and selecting the best performing ones.

4.2. Limitations and Outlooks
• Different scalarization functions: While the ǫ-constraint

method was favored for the reasons discussed above, it
could nevertheless be interesting to explore other methods.
For example, Cohon (1978, p. 157) noted that a potentially
useful by-product of the weighted sum method is the weights
themselves. It could be interesting and insightful to inform the

user of the implicit objective weightings which lead to their
preference for a solution.

• Multi-user usage: The assumption that there is only one user
involved is often unrealistic, given that decision makers are
typically either proxies influenced by and representing the
interests of a larger group, or actually are a group (Zionts,
1994). While multi-user applications of the methodology
have not been tested, the web interface and underlying
data model have been designed with the intent of handling
multiple users per project. Future research should thus
investigate how the tool could be used either by multiple users
in a same room (e.g., during interdisciplinary workshops)
for consensus building, or by multiple users from remote
locations. Some research has already been done in this
area and provide useful starting points. Babbar-Sebens et al.
(2015) studied multi-user applications of their interactive
optimization tool. They proposed a “democratic” approach,
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FIGURE 10 | Depiction of the k-medoids cluster analysis results in 3D scatter plots for increasing number of clusters k. Colors indicate similar solutions belonging to a

same cluster, and black diamonds indicate the representative solution (medoid) in each cluster. (A) Number of clusters is k = 2. (B) Number of clusters is k = 3.

(C) Number of clusters is k = 4. (D) Alternate visualization of (B) with parallel coordinates chart (k = 3), where medoids are denoted by thicker lines.

in which the ratings of multiple users are aggregated into
a common preference model, used to steer the search.
Ferreira et al. (2006) also proposed a multi-user framework
for the User Hints interactive optimization tool developed
by do Nascimento and Eades (2005). They studied the
effect of competition and cooperation in identifying new
solutions, and proposed several mechanisms to share the best
performing solutions from individual searches among a group
of users. Various approaches could be envisaged for the use
of parallel coordinates, such as highlighting lines which are
most frequently requested by a group of users, recommending
axes based on those which other users deemed important or
allowing multiple users to interact with a same chart, jointly
specifying ranges of interest.

• Improving parallel coordinate features: The presented
methodology only exploited a few of the many possible

functionalities for parallel coordinates. Future work could
involve and test:

i. smart ordering of axes, e.g., by exhaustive pairwise

depiction (Heinrich and Weiskopf, 2013), by conflicting
objectives, prioritizing those withmost convex Pareto fronts

(Unal et al., 2017), by similarity-based reordering (Lu

et al., 2016), by use of 3D parallel coordinates (Johansson

and Forsell, 2016), or by visual (Keeney, 1992, p. 57) or
automatic dimensionality reduction techniques (Copado-
Méndez et al., 2016),

ii. improved visualization of polylines and patterns, e.g.,

visually bundling clusters into compact polygons (Palmas
et al., 2014), or using polynomial curves and other line
styles to emphasize various data properties (Franken, 2009;
Heinrich and Weiskopf, 2013),
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FIGURE 11 | Comparer dashboard containing three representative solutions from a cluster analysis on the chosen criteria. The thumbnails depict the buildings in each

solutions, colored by share of energy performance certificates (“Share perf. cert.”) adopted. Green fonts indicate the best performing values, red the worst.

iii. handling of time series, e.g., using the third dimension
to display temporal evolutions (Gruendl et al., 2016), by
plotting several time steps on adjacent axes (Franken,
2009) or by animating a series of charts for each time-step
(Heinrich and Weiskopf, 2013),

iv. dynamic rescaling of axes, to allow brushing beyond the
visible values (currently brushing beyond the visible axis
requires manually editing the numerical brush bound in an
ad hoc table).

• Criteria selection:While this work was essentially focused on
the proper generation of alternatives in the decision process,
the identification of appropriate decision criteria is equally
important (Keeney and Raiffa, 1976; León, 1999; Bond et al.,
2008; Malczewski and Rinner, 2015). Keeney and Raiffa (1976)
note in particular that two main properties of a decision
criteria set are completeness and non-redundancy. Regarding
completeness, the first applications of the methodology
with urban planning practitioners revealed its potential
in stimulating discussions and identifying missing criteria.
Regarding non-redundancy, Keeney (1992, p. 57) points out
that when objectives are explicitly listed and visualized, it
becomes fairly easy to recognize redundancy, and parallel
coordinates certainly help in this regard. The adoption of
dimension reduction techniques as in Copado-Méndez et al.

(2016) could furthermore also be applied in the future to
provide the DM with a minimal set of non-redundant axes.
However, it can be argued that redundancy is not necessarily
to be avoided in the exploratory part of the methodology, as
in some cases, the knowledge of how two redundant criteria
correlate can be of interest.

• Expanding MADA: For demonstration purposes, only the
TOPSISmethod was implemented. Including variousmethods
would let the user choose the method they are most
comfortable with, or which is most relevant for their situation
(Cajot et al., 2017a). For example, the weighted sum method
might be preferable as more popular, while the outranking
ELECTRE method or analytical hierarchy process might lead
to more reliable results, at the expense of taking more time to
elicit pairwise preference information from the user (Zanakis
et al., 1998).

• Simplifying the steering process: Currently, the user still
has specific control over the steering actions influencing the
search. This makes sense in particular for an experienced
user who aims to achieve specific outcomes. It is questionable
whether a novice user actually requires such detailed control,
and whether the distinction between objectives, ranges and
constraints could be abolished (Wolf et al., 2009). Future work
could explore a more complete automation of the steering
process, in which regular “filter” brushes drawn by the user
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are automatically interpreted as steering actions, i.e., objectives
and ranges. In this context, the Sobol sampling could be
applied by default to all visible criteria to the largest known
bounds, and the explored space is reduced as soon as the user
applies a brush. The main limitations in this approach is that
the user loses touch with the underlying mechanisms, and has
less control over specific actions (e.g., set a constraint), which
could potentially lead to wasted computational effort on less
relevant solutions. Liu et al. (2018) argues that the interaction
with the solver is key in building trust both in the model and
the outcomes, and that the more opaque the approach, the
greater the risk of non-acceptance andmisunderstanding from
the user.

• Machine learning: The fact that this methodology produces
large amounts of data makes it well suited to exploit
machine learning. Merkert et al. (2015) highlight three main
contributions, which machine learning can bring to decision
support systems: (i) higher effectiveness, (ii) efficiency and (iii)
degree of automation. By learning from actions performed
by the user (selected objectives, upper and lower bounds
of brushes, axes toggled on or off, solutions added to the
comparer dashboard, etc.), these could be at least partly
automatized to support the user. Shneiderman (2010, p. 78)
notes that “automation increases over time as procedures
become more standardized and the pressure for productivity
grows.” Arguably this can accelerate the process, avoid errors
and reduce the user’s cognitive effort. On the other hand,
the benefits should be weighed against the risk of alienating
the user from the process, hindering the trust they may have
in the resulting solutions (Liu et al., 2018). Ultimately, the
purpose of human-machine interaction is to best allocate tasks
to each party according to their respective abilities. The fact
that computers are increasingly outperforming humans in a
growing number of tasks (e.g., image and pattern recognition)
requires to rethink the role of the human in interactive
methods, and how such methods are designed. A question is
whether or not let the user perform some tasks for the sake of
learning, even though the computer might do it better or faster
than them.

5. CONCLUSION

5.1. Human-Machine Thinking
Whereas traditional interactive methods tend to clearly
distinguish the learning phase, the preference articulation phase,
and the generation of solutions, the proposed methodology
blends these three phases into an integrated, more immersive

experience. Indeed, the exploration of solutions need not be

interrupted while the optimization is running: as soon as a
solution is found, it is directly included into the chart—and
into the user’s mind—for the user to interpret. Through
various exploratory features, the user becomes mindful of the
relationships between criteria, and how much they are willing
to sacrifice in one, in order to gain value in others. Each new
solution makes more clear the critical contradictions to be
resolved, allowing to refine the search toward areas which are
found most relevant.

Because both the phases concerning the human and those
concerning the computer occur at the same time, the whole
can be considered an “optimization-based thought process.”
The computer optimization becomes an extension of the user’s
mind, while at the same time, the user’s mind becomes an
extension of the optimization. Vinge (1993) anticipated the
need for less “oracular” and more symmetrical decision support
systems, where the program provides the user with as much
information as the user provides the program guidance. He wrote
that “computer/human interfaces may become so intimate that
users may reasonably be considered superhumanly intelligent.”
The direct and symmetrical link between human and computer
offered by SAGESSE is a step in that direction.

5.2. A Source of Wisdom
Finally, the acronym of SAGESSE (French for wisdom) was
chosen deliberately, as wisdom concerns “the ability to discern
inner qualities and relationships” (Merriam-Webster dictionary,
1976), which is precisely what the methodology provides. It is
our hope that the appealing nature of parallel coordinates and
the powerful insights made possible by optimization, combined
in the proposed methodology, will promote learning from even
themost wicked problems. As the Greek philosopher Plato hinted
(Republic, 2.376b), “is not the love of learning the love of wisdom,
which is philosophy?”
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Jaszkiewicz, A., and Słowiński, R. (1999). The ‘Light Beam Search’ approach – an

overview of methodology applications. Eur. J. Operat. Res. 113, 300–314.

Joe, S., and Kuo, F. Y. (2003). Remark on Algorithm 659: Implementing Sobol’s

Quasirandom Sequence Generator. ACM Trans. Math. Softw. 29, 49–57.

doi: 10.1145/641876.641879

Johansson, J., and Forsell, C. (2016). Evaluation of parallel coordinates: overview,

categorization and guidelines for future research. IEEE Trans. Visual. Comput.

Graph. 22, 579–588. doi: 10.1109/TVCG.2015.2466992

Kaufman, L., and Rousseeuw, P. J. (2009). Finding Groups in Data: An Introduction

to Cluster Analysis, Vol. 344. Hoboken, NJ: John Wiley & Sons.

Keeney, R. L. (1982). Decision analysis: an overview. Operat. Res. 30, 803–838.

Keeney, R. L. (1992). Value-Focused Thinking: A Path to Creative Decision Making.

Cambridge: Harvard University Press.

Keeney, R. L. and Raiffa, H. (1976). Decisions With Multiple Objectives: Preferences

and Value Trade-Offs. Cambridge: Cambridge University Press.

Kipouros, T., Mleczko, M., and Savill, M. (2008). “Use of parallel coordinates

for post-analyses of multi-objective aerodynamic design optimisation in

Turbomachinery,” in 4th AIAA Multidisciplinary Design Optimization

Specialists Conference (Schaumburg, IL: American Institute of Aeronautics and

Astronautics).

Klau, G. W., Lesh, N., Marks, J., and Mitzenmacher, M. (2010). Human-guided

search. J. Heurist. 16, 289–310. doi: 10.1007/s10732-009-9107-5

Kok, M. (1986). The interface with decision makers and some experimental results

in interactive multiple objective programming methods. Euro. J. Operat. Res.

26, 96–107.

Korhonen, P. (1996). “Reference direction approach to multiple objective linear

programming: historical overview,” in Essays in Decision Making: A Volume in

Honour of Stanley Zionts, eds M. Karwan, J. Spronk, and J. Wallenius (Berlin:

Springer Verlag), 74–92.

Korhonen, P., and Wallenius, J. (1988). A pareto race. Naval Research Logistics

(NRL) 35, 615–623.

Korhonen, P., and Yu, G. Y. (2000). “Quadratic pareto race,” in New Frontiers of

Decision Making for the Information Technology Era, (World Scientific).

Larichev, O. I., Polyakov, O. A., and Nikiforov, A. D. (1987). Multicriterion linear

programming problems: (analytical survey). J. Econ. Psychol. 8, 389–407.

Laukkanen, T., Tveit, T.-M., Ojalehto, V., Miettinen, K., and Fogelholm, C.-

J. (2012). Bilevel heat exchanger network synthesis with an interactive

multi-objective optimization method. Appl. Thermal Eng. 48, 301–316.

doi: 10.1016/j.applthermaleng.2012.04.058

Laumanns, M., Thiele, L., and Zitzler, E. (2006). An efficient, adaptive parameter

variation scheme for metaheuristics based on the epsilon-constraint method.

Eur. J. Operat. Res. 169, 932–942. doi: 10.1016/j.ejor.2004.08.029

Lawler, E. L., and Wood, D. E. (1966). Branch-and-bound methods: a survey.

Operat. Res. 14, 699–719.

León, O. G. (1999). Value-focused thinking versus alternative-focused thinking:

effects on generation of objectives. Organ. Behav. Hum. Decis. Process. 80,

213–227.

Li, M., Zhen, L., and Yao, X. (2017). How to read many-objective solution

sets in parallel coordinates. IEEE Comput. Intell. Mag. 12, 88–100.

doi: 10.1109/MCI.2017.2742869

Liu, J., Dwyer, T., Marriott, K., Millar, J., and Haworth, A. (2018). Understanding

the relationship between interactive optimisation and visual analytics in the

context of prostate brachytherapy. IEEE Trans. Visual. Comput. Graph. 24,

319–329. doi: 10.1109/TVCG.2017.2744418

Lu, L. F., Huang, M. L., and Zhang, J. (2016). Two axes re-ordering

methods in parallel coordinates plots. J. Vis. Lang. Comput. 33, 3–12.

doi: 10.1016/j.jvlc.2015.12.001

Malczewski, J., and Rinner, C. (eds.). (2015). Multicriteria Decision Analysis in

Geographic Information Science. New York, NY: Springer.

Martin, A. R., andWard, M. O. (1995). “High dimensional brushing for interactive

exploration of multivariate data,” in Proceedings of the 6th Conference on

Visualization’95 (Atlanta, GA: IEEE Computer Society).

Mavrotas, G. (2009). Effective implementation of the ǫ-constraint method in

multi-Objective Mathematical Programming problems. Appl. Math. Comput.

213, 455–465. doi: 10.1016/j.amc.2009.03.037

Meignan, D., Knust, S., Frayret, J.-M., Pesant, G., and Gaud, N. (2015). A review

and taxonomy of interactive optimization methods in operations research.

ACM Trans. Interact. Intell. Syst. 5:17. doi: 10.1145/2808234

Merkert, J., Mueller, M., and Hubl, M. (2015). “A survey of the application

of machine learning in decision support systems,” in ECIS 2015 Completed

Research Papers (Münster).

Merriam-Webster Dictionary (1976). Merriam-Webster’s New Collegiate

Dictionary. Colchester: The Book Service Ltd.

Miettinen, K. (2014). Survey of methods to visualize alternatives in

multiple criteria decision making problems. OR Spectrum 36, 3–37.

doi: 10.1007/s00291-012-0297-0

Miettinen, K., Eskelinen, P., Ruiz, F., and Luque, M. (2010). NAUTILUS method:

an interactive technique in multiobjective optimization based on the nadir

point. Euro. J. Operat. Res. 206, 426–434. doi: 10.1016/j.ejor.2010.02.041

Miettinen, K., and Kaario, K. (2003). Comparing graphic and symbolic

classification in interactive multiobjective optimization. J. Multi Criter. Decis.

Anal. 12, 321–335. doi: 10.1002/mcda.368

Miettinen, K., and Mäkelä, M. M. (2000). Interactive multiobjective optimization

system WWW-NIMBUS on the Internet. Comput. Operat. Res. 27, 709–723.

doi: 10.1016/S0305-0548(99)00115-X

Miller, G. A. (1956). The magical number seven, plus or minus two: some limits on

our capacity for processing information. Psychol. Rev. 63:81.

Mokhtar, M., Burns, S., Ross, D., and Hunt, I. (2017). Exploring multi-objective

trade-offs in the design space of a waste heat recovery system. Appl. Ener.

195(Suppl. C), 114–124. doi: 10.1016/j.apenergy.2017.03.030

Monz, M., Küfer, K. H., Bortfeld, T. R., and Thieke, C. (2008). Pareto

navigation—algorithmic foundation of interactive multi-criteria IMRT

planning. Phys. Med. Biol. 53:985. doi: 10.1088/0031-9155/53/4/0

Naught101 (2018). Sobol_seq: Python Implementation of Sobol’ Sequence

Generator.

Oberdieck, R., and Pistikopoulos, E. N. (2016). Multi-objective optimization with

convex quadratic cost functions: a multi-parametric programming approach.

Comput. Chem. Eng. 85, 36–39. doi: 10.1016/j.compchemeng.2015.10.011

Oxford (2018). Oxford Dictionaries. Oxford.

Packham, I. S. J., Rafiq, M. Y., Borthwick, M. F., and Denham, S. L.

(2005). Interactive visualisation for decision support and evaluation of

Frontiers in ICT | www.frontiersin.org 27 January 2019 | Volume 5 | Article 32

https://doi.org/10.1111/cgf.12908
http://control.ibspan.waw.pl:3000/contents/show/4?year=2007
http://control.ibspan.waw.pl:3000/contents/show/4?year=2007
https://doi.org/10.1007/BF01898350
https://doi.org/10.1145/641876.641879
https://doi.org/10.1109/TVCG.2015.2466992
https://doi.org/10.1007/s10732-009-9107-5
https://doi.org/10.1016/j.applthermaleng.2012.04.058
https://doi.org/10.1016/j.ejor.2004.08.029
https://doi.org/10.1109/MCI.2017.2742869
https://doi.org/10.1109/TVCG.2017.2744418
https://doi.org/10.1016/j.jvlc.2015.12.001
https://doi.org/10.1016/j.amc.2009.03.037
https://doi.org/10.1145/2808234
https://doi.org/10.1007/s00291-012-0297-0
https://doi.org/10.1016/j.ejor.2010.02.041
https://doi.org/10.1002/mcda.368
https://doi.org/10.1016/S0305-0548(99)00115-X
https://doi.org/10.1016/j.apenergy.2017.03.030
https://doi.org/10.1088/0031-9155/53/4/0
https://doi.org/10.1016/j.compchemeng.2015.10.011
https://www.frontiersin.org/journals/ICT
https://www.frontiersin.org
https://www.frontiersin.org/journals/ICT#articles


Cajot et al. Interactive Optimization With Parallel Coordinates

robustness—in theory and in practice. Advan. Eng. Informat. 19, 263–280.

doi: 10.1016/j.aei.2005.07.006

Palmas, G., Bachynskyi, M., Oulasvirta, A., Seidel, H. P., and Weinkauf, T. (2014).

“An edge-bundling layout for interactive parallel coordinates,” in 2014 IEEE

Pacific Visualization Symposium (Yokohama), 57–64.

Park, H.-S., and Jun, C.-H. (2009). A simple and fast algorithm for

K-medoids clustering. Expert Syst. Appl. 36(2, Pt 2), 3336–3341.

doi: 10.1016/j.eswa.2008.01.039

Piemonti, A. D., Babbar-Sebens, M., Mukhopadhyay, S., and Kleinberg, A.

(2017a). Interactive genetic algorithm for user-centered design of distributed

conservation practices in a watershed: an examination of user preferences

in objective space and user behavior. Water Resour. Res. 53, 4303–4326.

doi: 10.1002/2016WR019987

Piemonti, A. D., Macuga, K. L., and Babbar-Sebens, M. (2017b). Usability

evaluation of an interactive decision support system for user-guided design of

scenarios of watershed conservation practices. J. Hydroinformat. 19, 701–718.

doi: 10.2166/hydro.2017.017

Pistikopoulos, E. N., Georgiadis, M. C., and Dua, V. (eds.). (2007). Multi-

Parametric Programming, Vol. 1 of Process Systems Engineering. Weinheim:

Wiley-VCH.

Plotly-Technologies-Inc. (2015). Collaborative Data Science. Available online at:

https://plot.ly

Raphael, B. (2011). Multi-criteria decision making for collaborative design

optimization of buildings. Built Environ. Proj. Asset Manag. 1, 122–136.

doi: 10.1108/20441241111180398

Ribau, J., Sousa, J., and Silva, C. (2015). Reducing the carbon footprint of

urban bus fleets using multi-objective optimization. Energy 93, 1089–1104.

doi: 10.1016/j.energy.2015.09.112

Rosenberg, D. (2012). “Near-optimal water management to improve multi-

objective decision making,” in 2012 Proceedings of iEMSs (Leipzig), 104–111.

Sato, H., Tomita, K., and Miyakawa, M. (2015). “Preferred region based

evolutionary multi-objective optimization using parallel coordinates interface,”

in 2015 3rd International Symposium on Computational and Business

Intelligence (ISCBI) (Bali), 33–38.

Schüler, N., Agugiaro, G., Cajot, S., and Maréchal, F. (2018a). “Linking interactive

optimization for urban planning with a semantic 3D city model,” in ISPRS

Technical Commission IV Symposium 2018 (Delft).

Schüler, N., Cajot, S., Peter, M., Page, J., and Maréchal, F. (2018b). The optimum

is not the goal: capturing the decision space for the planning of new

neighborhoods. Front. Built. Environ. 3:76. doi: 10.3389/fbuil.2017.00076

Shenfield, A., Fleming, P. J., and Alkarouri, M. (2007). Computational steering of a

multi-objective evolutionary algorithm for engineering design. Eng. Appl. Artif.

Intell. 20, 1047–1057. doi: 10.1016/j.engappai.2007.01.005

Shin, W. S., and Ravindran, A. (1991). Interactive multiple objective optimization:

survey I—continuous case. Comput. Operat. Res. 18, 97–114.

Shneiderman, B. (1996). “The eyes have it: a task by data type taxonomy

for information visualizations,” in In Ieee Symposium on Visual Languages

(Boulder, CO), 336–343.

Shneiderman, B. (2010). Designing the User Interface: Strategies for Effective

Human-Computer Interaction. Boston, MA: Pearson Education India.

Siebert, J., and Keeney, R. L. (2015). Creating more and better

alternatives for decisions using objectives. Operat. Res. 63, 1144–1158.

doi: 10.1287/opre.2015.1411

Sobol, I. M. (1967). On the distribution of points in a cube and the approximate

evaluation of integrals. USSR Comput. Math. Math. Phys. 7, 86–112.

Spronk, J. (1981). Interactive Multiple Goal Programming: Applications to Financial

Planning. Springer, International Series in Management Science Operations

Research.

Stump, G., Lego, S., Yukish, M., Simpson, T. W., and Donndelinger, J. A.

(2009). Visual steering commands for trade space exploration: user-guided

sampling with example. J. Comput. Inform. Sci. Eng. 9, 044501–044501–10.

doi: 10.1115/1.3243633

Tanner, L. (1991). Selecting a text-processing system as a qualitative multiple

criteria problem. Eur. J. Operat. Res. 50, 179–187.

Trutnevyte, E., Stauffacher, M., and Scholz, R. W. (2011). Supporting

energy initiatives in small communities by linking visions with energy

scenarios and multi-criteria assessment. Ener. Policy 39, 7884–7895.

doi: 10.1016/j.enpol.2011.09.038

Unal, M., Warn, G. P., and Simpson, T. W. (2017). Quantifying the shape of

pareto fronts during multi-objective trade space exploration. J. Mech. Desig.

140:021402-13. doi: 10.1115/1.4038005

Vanderpooten, D. (1989). The interactive approach in MCDA: a technical

framework and some basic conceptions.Math. Comput. Model. 12, 1213–1220.

Vinge, V. (1993). “Technological singularity,” in VISION-21 Symposium

Sponsored by NASA Lewis Research Center and the Ohio Aerospace Institute

(Cleveland: OH), 30–31.

Wierzbicki, A. P. (2010). “The need for and possible methods of objective

ranking,” in Trends in Multiple Criteria Decision Analysis, number 142

in International Series in Operations Research & Management Science

eds M. Ehrgott, J. R. Figueira, and S. Greco (Boston, MA: Springer),

37–56.

Williams, H. P. (2013).Model Building in Mathematical Programming. Chichester:

John Wiley & Sons.

Wolf, D., Simpson, T. W., and Zhang, X. L. (2009). “A preliminary

study of novice and expert users’ decision-making procedures during

visual trade space exploration,” in International 35th Design Automation

Conference on Design Engineering Technical Conferences and Computers and

Information in Engineering Conference, Vol. 5 (San Diego, CA: ASME),

1361–1371.

Xiao, N., Bennett, D. A., and Armstrong, M. P. (2007). Interactive

evolutionary approaches to multiobjective spatial decision making:

a synthetic review. Comput. Environ. Urban Syst. 31, 232–252.

doi: 10.1016/j.compenvurbsys.2006.08.001

Zanakis, S. H., Solomon, A., Wishart, N., and Dublish, S. (1998). Multi-attribute

decision making: a simulation comparison of select methods. Eur. J. Operat.

Res. 107, 507–529.

Zhen, L., Li, M., Cheng, R., Peng, D., and Yao, X. (2017). “Adjusting parallel

coordinates for investigating multi-objective search,” in Simulated Evolution

and Learning, Lecture Notes in Computer Science, eds Y. Shi, K. C. Tan, M.

Zhang, K. Tang, X. Li, Q. Zhang, Y. Tan, M. Middendorf, and Jin, Y (Cham:

Springer), 224–235.

Zio, E., and Bazzo, R. (2012). “A comparison of methods for selecting preferred

solutions in multiobjective decision making,” in Computational Intelligence

Systems in Industrial Engineering, Number 6 in Atlantis Computational

Intelligence Systems, ed C. Kahraman (Paris: Atlantis Press), 23–43.

Zionts, S. (1994). “Multiple criteria decision making: the challenge that lies ahead,”

inMultiple Criteria Decision Making, eds G. H. Tzeng, H. F. Wang, U. P. Wen,

and P. L. Yu (Taipei: Springer), 17–26.

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Cajot, Schüler, Peter, Koch and Maréchal. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in ICT | www.frontiersin.org 28 January 2019 | Volume 5 | Article 32

https://doi.org/10.1016/j.aei.2005.07.006
https://doi.org/10.1016/j.eswa.2008.01.039
https://doi.org/10.1002/2016WR019987
https://doi.org/10.2166/hydro.2017.017
https://plot.ly
https://doi.org/10.1108/20441241111180398
https://doi.org/10.1016/j.energy.2015.09.112
https://doi.org/10.3389/fbuil.2017.00076
https://doi.org/10.1016/j.engappai.2007.01.005
https://doi.org/10.1287/opre.2015.1411
https://doi.org/10.1115/1.3243633
https://doi.org/10.1016/j.enpol.2011.09.038
https://doi.org/10.1115/1.4038005
https://doi.org/10.1016/j.compenvurbsys.2006.08.001
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/ICT
https://www.frontiersin.org
https://www.frontiersin.org/journals/ICT#articles

	Interactive Optimization With Parallel Coordinates: Exploring Multidimensional Spaces for Decision Support
	1. Introduction
	1.1. Background of Interactive Optimization
	1.2. Related Work
	1.2.1. Review of Interactive Optimization Procedures
	1.2.2. Interfaces for Multiobjective Interactive Optimization
	1.2.3. Overview of Existing Interactive Optimization Methods

	1.3. Research Gaps and Objectives

	2. Description of the SAGESSE methodology
	2.1. Overview of Workflow
	2.2. Starting a Project
	2.3. Steering the Search
	2.3.1. Optimization Model Inputs
	2.3.2. Optimization Procedure Inputs
	2.3.3. Steering Assistance

	2.4. Storing Data
	2.5. Formulating Problems
	2.5.1. Adopted Scalarization Function
	2.5.2. Adopted Sampling Method

	2.6. Generating Solutions
	2.7. Exploring Solutions
	2.7.1. Overview of Relationships Between Criteria
	2.7.2. Filtering Solutions and Criteria
	2.7.3. Filtering Representative Solutions With Clustering
	2.7.4. Filtering Solutions With Multiattribute Decision Analysis Score
	2.7.5. Details on Demand: Linking Views to Parallel Coordinates

	2.8. Synthesizing the Search

	3. Application
	3.1. Case-Study Description
	3.2. Analysis
	3.3. Generation, Exploration and Steering
	3.4. Synthesis
	3.5. Systematic Experience

	4. Discussion
	4.1. Strengths of the Approach
	4.2. Limitations and Outlooks

	5. Conclusion
	5.1. Human-Machine Thinking
	5.2. A Source of Wisdom

	Author Contributions
	Funding
	References


