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Name-based forwarding plane is a critical but challenging component for Named Data

Networking (NDN), where a hash table is an appealing candidate for data structure utilized

in FIB on the benefit of its fast lookup speed. However, the hash table is flawed that it

does not naturally support the longest-prefix-matching (LPM) algorithm for name-based

forwarding. To support LPM in the hash table, besides the linear lookup, random search

(such as binary search) aims at increasing the lookup speed by reconstructing the FIB

and optimizing the search path. We propose a composite data structure for random

search based on the combination of a hash table and a trie; the latter is introduced

to preserve the logical associations among names, so as to recycle memory and

prevent the so-called backtracking problem, thus enhancing the lookup efficiency. Our

experiment indicates the superiority of our scheme in lookup speed, the impact on

memory consumption has also been evaluated.

Keywords: named data networking (NDN), random search, data structure, longest prefix matching (LPM), trie

(prefix tree)

1. INTRODUCTION

Named data networking (NDN; Zhang et al., 2010) is a networking paradigm concentrating
on the content itself rather than its endpoints. Instead of their destination addresses, packets
are forwarded based on hierarchically structured names like URL to facilitate multicasting and
in-network caching. The transmission mechanism in NDN is consumer-driven and performed by
two types of packets, namely, Interest and Data. An interest packet carries the name of the desired
content and is sent to the network by a consumer for a request if the Interest encounters a producer
node which has the requested content. A Data packet of this content is generated and follows the
reverse path taken by the Interest to travel back to the requesting consumer.

In NDN, the Forwarding Information Base (FIB) stores the forwarding information for
Interest packets, filling the analogous rule as with IP. Since the NDN FIB is keyed by
hierarchically-structured content names, as in IP, the Interest packets are forwarded based on the
longest prefix matching (LPM) results, with the requested names as the lookup keys.

The LPM methods implemented for IP forwarding have achieved a remarkable success.
Benefitted from core concepts such as prefix expansion and bitmap representations (Doeringer
et al., 1996; Degermark et al., 1997; Srinivasan and Varghese, 1998), for fixed length IPs, modern
LPM scheme can handle Internet-scale rulesets efficiently within a few megabytes of memory.
However, as the packet forwarding in NDN is much more complex compared to IP, traditional
LPM approaches do not work well for name-based forwarding; namely, an efficient and scalable
NDN forwarding scheme requires to settle the following challenges:

https://www.frontiersin.org/journals/ICT
https://www.frontiersin.org/journals/ICT#editorial-board
https://www.frontiersin.org/journals/ICT#editorial-board
https://www.frontiersin.org/journals/ICT#editorial-board
https://www.frontiersin.org/journals/ICT#editorial-board
https://doi.org/10.3389/fict.2019.00015
http://crossmark.crossref.org/dialog/?doi=10.3389/fict.2019.00015&domain=pdf&date_stamp=2019-08-02
https://www.frontiersin.org/journals/ICT
https://www.frontiersin.org
https://www.frontiersin.org/journals/ICT#articles
https://creativecommons.org/licenses/by/4.0/
mailto:jiaweihu39@gmail.com
mailto:lih64@pkusz.edu.cn
https://doi.org/10.3389/fict.2019.00015
https://www.frontiersin.org/articles/10.3389/fict.2019.00015/full
http://loop.frontiersin.org/people/684989/overview
http://loop.frontiersin.org/people/666628/overview


Hu and Li Composite Structure for NDN FIB

1. Variable name formats. Most traditional forwarding
solutions are designed for IPs and have the complexity
proportional to the length of prefixes. Unlike a fixed-length IP
address, since an NDN name has unbounded length and more
complex structure (So et al., 2012, 2013; Yuan et al., 2012),
directly applying these schemes yields low performance.

2. Large forwarding table size. Referring to DNS works in
So et al. (2013) estimated the scale of the name-based FIB,
which is orders of magnitude larger than IP routing tables
today. Without the assistance of the compression method,
the NDN forwarding table can far exceed the capacity of the
commodity device.

3. Frequent update. Besides the updates caused by network
topology and routing policy changes, an NDN FIB requires to
handle contents’ publishing, deletion and in-network caching,
making the update rate much higher than that in IP protocol.

As a result, forwarding plane design has become a critical
but challenging work especially in vast scale networks. The
evaluation criteria of FIB design contain operation speed,
memory consumption, as well as the support for an intelligent
and adaptive forwarding strategy in the future. Currently, trie
(prefix tree) and hash table are two data structures which are
widely used as an index for FIB:

Trie is an ordered tree-like structure which is usually used
to handle string matching. Based on the benefits from its
structural characteristics, trie can reduce memory consumption
by aggregating redundant prefixes in names, and the LPM search
can be naturally supported since trie stores the logic relations of
the prefixes. However, trie has a drawback that its has low lookup
efficiency, as the search speed is linearly relative to the expected
value of trie depth which is associated with the unbounded
name length.

Hash table is also an appealing candidate for FIB because
of its advantages of fast lookup and simple implementation.
However, hash table-based FIB schemes have the following
two problems:

1. Hash table consumes more memory than structures like

a trie or a bloom filter, as whole name string needs to be
stored to handle hash collisions and ensure proper forwarding.
Current implementations mainly focus on shortening name
length to resolve this problem, such as replacing the name by
its fingerprint, hash value, or encoded version (Yuan et al.,
2012, 2017).

2. Hash table does not naturally support the LPM search. The
simplest solution for this problem is linear search, in which
HT lookup starts at the longest length of the name prefix
and is iterated decreasingly by component granularity until
the LPM is found. The other way refers to random search
(Waldvogel et al., 1997) aimed at reducing the lookup time by
rearranging the search order, such as 2-stage LPM (So et al.,
2013) or binary search (Yuan and Crowley, 2015). In spite of
the improvement to the search speed, most random search
methods rely on the reconstruction of FIB and may lead to
the so-called backtracking problem, causing a false negative,
as well as the memory waste since many useless entries can
not be timely removed.

This paper concentrates on the optimization for LPM approaches
in NDN, improving the random search method for the hash-
tabled FIB scheme, aiming at solving the so-called backtracking
problem and the memory waste caused by outdated entries.
Our scheme features (1) a reconstructed hash table with entries
that can be classified into 3 types, which determine whether a
backtracking process is required when a random search miss
occurs; thus the false negative error can be prevented. (2) an
auxiliary trie structure storing logic relations between names
to dynamically modify entries’ types upon table change, while
the extra memory consumption of the trie is restricted. (3)
corresponding operation algorithms for the composite structure
above. This paper is organized as follows: section 2 introduces
the background and related works. Our scheme is presented in
section 3. The evaluation result is in section 4.

2. BACKGROUND AND RELATED WORKS

2.1. Requirement of NDN Forwarding Plane
In NDN, Data should be retrieved by a hierarchical tokenized
name with the format like “/c1/c2/c3.” As some parts of
the name cannot be informed or inferred beforehead, the
consumer sends Interests carrying only a prefix of the content
name to the network, and any Data under this prefix
can be returned by NDN protocol. e.g., An Interest with
the name “/com/ndn/document/file01.txt” can be replied by
any Data whose name is covered by this prefix, such as
“/com/ndn/document/file01.txt/segment01.” Thus, same as IP
protocol, the name matching algorithm in NDN’s Forwarding
Information Base (FIB) is the Longest Prefix Matching (LPM),
performed with the Interest name as the search key. Therefore,
the FIB can find the most accurate forwarding information for
the Interest.

In the meanwhile, NDN forwarding is challenging in
scalable applications for several reasons: (1) an NDN name has
unbounded variable length, making a lookup operation time-
consuming; (2) The amount of NDN FIB entries is larger than
that of IP by orders of magnitude; (3) NDN FIB has to be updated
more frequently as a result of content publishing and deletion,
making the forwarding plane design a difficult but essential task.

2.2. Hash Table-Based FIB Schemes
Due to the requirement of the frequent processing operation
in NDN forwarding plane, hash table has become a potential
candidate for FIB because of its advantage of fast lookup. To
support the LPM matching algorithm, in a typical Interest
forwarding scenario, the hash table (HT) lookup starts from the
longest length of name prefix and decreases progressively by
component granularity. The process iterates until it finds the
LPM. However, this linear search method is undesirable not only
for its under performance but also for security. Since a non-
matching interest with the name of n components requires n
times FIB lookup, NDN router is more vulnerable to DoS attacks
where Interests with the long non-matching nonce name are
injected to the network.

Methods have been proposed to reduce HT lookup times
through the optimization of the searching path. The work in

Frontiers in ICT | www.frontiersin.org 2 August 2019 | Volume 6 | Article 15

https://www.frontiersin.org/journals/ICT
https://www.frontiersin.org
https://www.frontiersin.org/journals/ICT#articles


Hu and Li Composite Structure for NDN FIB

So et al. (2013) introduces a 2-stage LPM scheme enhancing
the DoS resistance. During the name insertion period, not
only the name itself, but also a corresponding prefix with
the certain short length (M component), which forms a
virtual entry, is inserted into FIB. The search process starts
from length M and either continues to proper prefixes (if
not found) or restarts from a longer prefix to perform a
linear search. Besides, works in Wang et al. (2013, 2014)
optimize the 2-stage name lookup process by rearranging
the search order according to the distribution of a prefix
component number.

Besides the schemes mentioned above, works in Yuan and
Crowley (2015) proposed a lookupmethodwith the binary search
of hash tables. With all shorter prefixes of names inserted as
marker entries, the hash tables form a balanced binary search tree,
in which each HT stores prefixes with a certain length. Regarding
each tree node, the shorter prefixes are stored in the left subtree,
while the longer prefixes are stored in the right one.

The works in Wang et al. (2017) applied a dynamic
programming algorithm based on the statistic of prefix
component number distribution, to optimize the binary search
above. For each component number M, with a prior probability
of a length M prefix to be matched, the dynamic programming
can recursively calculate which length to be checked next so as to
optimize the search path.

2.3. The Backtracking Problem
The aforementioned schemes use random search (Waldvogel
et al., 1997) rather than a linear method to support efficient name
lookup. However, the random search also causes the so-called
backtracking problem. Taking the binary search as an example,
if FIB stores 2 names “/c1" and “/c1/c2/c3/c4," prefixes “/c1/c2"
and “/c1/c2/c3" are inserted into the table as marker entries to
support binary search. Then the search route for “/c1/c2/c3/c5"
will be:

/c1/c2
HIT
−−→ /c1/c2/c3/c5

MISS
−−−→ /c1/c2/c3

HIT
−−→ End

If the algorithm terminates just after the binary search, the result
is NO FOUND because all HIT entries in the search route
are markers, leading to a false negative since the longest prefix
matching for it is “/c1.”

To handle this case, IP protocol proceeds to the last
matching entry and introduces a backtracking search find the
LPM Nevertheless, as mentioned above, in NDN, backtracking
for every mismatch is impractical for both efficiency and
security. Works in Yuan and Crowley (2015) considered to let
each virtual entry store the forwarding information inherited
from its non-virtual longest matching prefix, without giving
implementation details, which requires keeping the consistency
between a marker entry and its corresponding LPM especially in
a dynamic environment.

2.4. The Memory Consumption Problem
Another problem of the random search is the memory
consumption, resulting from the insertion of virtual entries
as well as the memory waste caused by outdated entries:

using the example above, if name “/c1/c2/c3/c5” is deleted,
“/c1/c2” and “/c1/c2/c3” become useless and should be removed
for memory saving. However, due to the diversity of name
components, it is extremely hard to determine whether a
virtual entry is useful only if to traverse the entire table; Our
scheme focuses on the cumulation of outdated virtual entries,
and the FIB compression methods are not involved in the
present study.

3. ALGORITHM DESIGN

3.1. Hash Table
According to the evaluation result in So et al. (2013),
among widely-used hash functions, CityHash1 shows the best
performance in terms of both computational cost and hash
collision probability. SipHash (Aumasson and Bernstein, 2012) is
also an appealing candidate which is a bit slower than CityHash
but provides higher resistance to hash flooding DoS attack. In our
scheme for evaluation, CityHash is selected since we concerned
more about the operation speed rather than security in the
current period of study.

std ::unorder_map is selected as the implementation of
hash table, since it is chained-based and required only
one hash function, reducing the computational overhead
compared to open addressing or methods requiring multiple
hash functions.

3.2. Reconstruction of the FIB
As is mentioned above, by component granularity, all shorter
prefixes of a name ought to be stored in the table to make the
binary search feasible, thus requiring the process called the FIB
reconstruction. In a reconstructed FIB, table entries are classified
into the following two types:

• Real Entry. Each real entry stands for a name referring to
a real existing file, and all the entries are real before the
reconstruction.

• Non-real Entry. In the FIB reconstruction, if a real entry’s
shorter prefix does not exist in the table, a corresponding non-
real entry should be inserted for it. A non-real entry does not
refer to any data of real existence and can not be used to guide
the interest forwarding. The only usage of it is to support the
random search.

The lookup for name n starts at n’s prefix with N0 components,
namely, a prefix of length N0, in which N0 is given by the
algorithm. If there is anymatch, the algorithmwill select n’s prefix
of length N1 > N0 as the next one to search. Otherwise the
lookup proceeds to length N1 < N0.

Taking the binary search as an example: If the FIB stores
forwarding information for name n = “/c1/c2/c3,” then n’s
prefixes “/c1,” “/c1/c2” should be inserted as non-real entries
when they are absent in the table. Let L and H be the lower
and upper bound of the binary search, and M = ⌊(L + H)/2⌋
be the length to look up. The search path for name n′ =

“/c1/c2/c3/c4/c5/c6” is as follows:

1CityHash https://code.google.com/p/cityhash/.
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Set L to 1,H to the length of the name →

(L = 1,H = 6,M = 3) /c1/c2/c3
HIT (L=M+1)
−−−−−−−−→

(L = 4,H = 6,M = 5) /c1/c2/c3/c4/c5
MISS (H=M−1)
−−−−−−−−−→

(L = 4,H = 4,M = 4) /c1/c2/c3/c4
MISS (H=M−1)
−−−−−−−−−→

(L > H) End

The last match nlm (in this case is /c1/c2/c3) is returned as the
search result for n′, thus giving the implementation of the LPM
algorithm.

However, in spite of the improvement to the search efficiency,
the random search also has drawbacks described below:

• The backtracking problem. As shown in section 2.3, if the
random search for n ends with a non-real entry name nlm
as the last match, there may also exist the longest matching
real entry for n. In this case, the backtracking is required. The
algorithm has to visit nlm and perform an LPM search for it,
leading to large computational overhead.

• The outdated non-real entry problem. As shown in
section 2.4, if a non-real entry name n has no real entry
inherited from it, n should be removed for space saving.
However, it is impossible to check whether a non-real
entry is redundant only if to traverse the entire table.
As a result, the cumulation of outdated non-real entries
aggravates the memory consumption problem of the NDN
forwarding plane.

To handle the backtracking problem, when the random search
ends with a non-real entry as the last match, we divide non-real
entries into two types based on whether a backtracking process
is required:

• Virtual Entry. A Non-real entry is virtual if none of its proper
prefixes has a corresponding real entry in the table. When the
last matching entry of the random search is virtual, the search
process terminates.

• Semi-virtual Entry. Otherwise, this non-real entry is semi-
virtual and the backtracking is required.

3.3. Structure Design
In our FIB design, besides the hash table, we introduce a
component granularity trie (prefix tree) structure to record the
logical relationships among names:

Figure 1 illustrates the primary data structure of our design:
The hash table is utilized for fast name lookup, the search key in
each table entry (n, e) is the interest name n, while the value is the
corresponding trie node e.

A trie node stores the entry type (real, virtual, or semi-
virtual), the forwarding information of this name and the
pointers to parent and child nodes. Since name prefixes are
not duplicated stored in the trie, extra memory consumption
of this scheme can be restricted. Each edge in trie refers to
a name component, while node stands for the name which
is the combination of components on the path from the root
to this node; Root is set to virtual, which does not belong to
any name.

FIGURE 1 | Data structure of HT based-FIB combined with trie.

The motivations to introduce the trie structure are
as follows:

• It is possible that non-real entry type varies with table
operations of other names, e.g., virtual entry “/c1/c2/c3”
becomes semi-virtual upon the insertion of real entry “/c1/c2.”
To update the entry type timely in a dynamic table, the
inheritance relationships among names should be recorded.

• Trie gives the solution to the outdated non-real entry problem:
if a leaf node is non-real in the trie, then this entry is redundant
and should be removed.

• Trie can speed up the backtracking in the search algorithm,
since each node has only one parent and no name or
component matching is required in this process.

Here we present the operation algorithms of our method:

3.4. Operation Details
Insertion. There are 2 cases when a new name n is coming:

1) As shown in Figure 2A, if there exists non-virtual entry (n, e)
for this name in table, e is set to real, and all virtual nodes in
e’s subtree are set to semi-virtual.

2) As presented in Figure 2B, if an entry for n is not found, a
real entry is created for n. To ensure that all n’s proper prefixes
have corresponding entry in the table, the algorithm performs
a backward search for its proper prefixes, and create non-
real entries for prefixes non-existing in the table. The process
continues until the found of n’s LPM entry in the table or the
arrival of the root. All non-real entries created in insertion
are set to semi-virtual if the LPM entry is real or semi-virtual.
Otherwise, they are set to virtual.

Deletion. There are 3 cases when deleting name n:

1) For (n, e), if e is not a leaf and e’s parent is real or semi-virtual,
then e is set to semi-virtual.

2) As Figure 3A indicates, if e is not a leaf and e’s parent is virtual,
then set e to virtual instead of removing it. Furthermore, for
each semi-virtual node e∗ in e’s subtree, when there are no real
nodes on the path from e∗ to e, e∗ is also set to virtual.
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Algorithm 1: Key Insertion Algorithm

Input:

H: HT and trie-based FIB.
n: n = “/c1/c2/.../cN” is the name to insert.
f : The corresponding forwarding information of n.

Output:

H: HT and trie-based FIB, with n inserted.
1: lookup n in HT
2: if n is the name of a real entry (n, e) then
3: update e’s forwarding information with f
4: else if n is the name of a non-real entry (n, e) then
5: /* as Figure 2A */
6: set e’s type to real, e’s forwarding information to f
7: for each virtual entry (∼, e∗) in e’s subtree do
8: set e∗’s type to semi-virtual
9: end for

10: else

11: /* as Figure 2B */ create entry (n, eN) and insert it to HT
12: set eN ’s type to real, eN ’s forwarding information to f
13: for i = N − 1 to 1 do
14: lookup ni =“/c1/c2/.../ci" in HT
15: if ni is the name of an entry (ni, e) then
16: add ei+1 to e’s child list, set ei+1’s parent to e
17: if e is virtual then
18: set ej(i < j < N)’s type to virtual
19: else

20: set ej(i < j < N)’s type to semi-virtual
21: end if

22: return

23: else

24: create entry (ni, ei) and insert it to HT
25: add ei+1 to ei’s child list, set ei+1’s parent to ei
26: end if

27: end for

28: add e1 to root’s child list, set e1’s parent to root
29: set ej(0 < j < N)’s type to virtual
30: end if

3) As Figure 3B depicts, if e is a leaf, delete (n, e), then iteratively
check n’s non-real proper prefixes, and remove it when it is a
leaf.
Thus, correctness of entry type can be kept upon table
modifications, giving adaption to the dynamic environment.

3.5. Support to Random Search
Insert and delete operations may be a bit costly since our scheme
concentrates on the optimization for the search process, for FIB
requires frequent read operations and fewer write operations.We
take a binary search, which is the simplest method of random
search, as the example. Besides, advanced schemes in Wang et al.
(2013, 2014, 2017) can also be supported.

Figure 4 presents search process for “/c1/c2/c3/c6/c7,” where
the search route is:

/c1/c2
HIT
−−→ /c1/c2/c3/c6

MISS
−−−→ /c1/c2/c3

HIT
−−→ End

FIGURE 2 | Cases in Key Insertion. (A) Case when there exists non-virtual

entry for this name in table. (B) Otherwise.

FIGURE 3 | Cases in Key Deletion. (A) Case when name to delete is not leaf

and has virtual parent. (B) Case when name to delete is leaf.

At the termination, the last match “/c1/c2/c3” is semi-virtual,
indicating the existence of a real proper prefix of “/c1/c2/c3”
in the table. Subsequently, entering the backtracking process,
which starts at the last match and iteratively visits the parent
until encountering a real entry, whose forwarding information
is returned as the search result.

The backtracking process can be timesaving since each node
has only one parent and no name or component matching is
required. In another case, if the binary search ends with a virtual
entry as the last match, NO_FOUND can be ensured and the
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Algorithm 2: Key Deletion Algorithm

Input:

H: HT and trie-based FIB.
n: n = “/c1/c2/.../cN" is the name to delete.

Output:

H: HT and trie-based FIB, with n deleted.
1: lookup n in HT,
2: if n is not the name of a real entry then
3: return

4: end if

5: if for n’s entry (n, e), if e is not a leaf then
6: set e’s forwarding information to N/A
7: if e’s parent is semi-virtual or real then
8: set e’s type to semi-virtual
9: else

10: /* As Figure 3A, here uses BFS */
11: create a empty queue q and insert e into it
12: while q is not empty do
13: e∗ = q.pop()
14: set e∗’s type to virtual
15: insert all e∗’s semi-virtual child nodes into q
16: end while

17: end if

18: else

19: /* As Figure 3B */
20: remove e from its parent’s child list
21: delete entry (n, e) in HT
22: for i = N − 1 to 1 do

23: for ni =“/c1/c2/.../ci" and its entry (ni, ei)
24: if ei is non-real and ei’ is a leaf then
25: remove ei from its parent’s child list
26: delete entry (ni, ei) in HT
27: else

28: return

29: end if

30: end for

31: end if

search process terminates. Thus, DoS resistance and the efficiency
improvement are provided.

4. EVALUATION

4.1. Discuss About False Negative
Since NDN is a future Internet architecture and not deployed
at a large scale yet, it is hard to gain an abundant supply
of data from real NDN traffic traces. Therefore, we can
not obtain a realistic NDN FIB with sufficient size and
logical relationships among names, based on which we could
numerically analyze the influence of false negative error. As
the substitute, we demonstrate a typical case and discuss its
causing reason.

A false negative error occurs if:

• There exist two real names n1 and n2 in the table, where n1 is
a proper prefix of n2.

FIGURE 4 | Search Process for Name “/c1/c2/c3/c6/c7”.

Algorithm 3: Search Algorithm (Binary)

Input:

H: HT and trie-based FIB.
n: n = “/c1/c2/.../cN” is the search key.

Output:

f : the forwarding information of n’s LPM entry.
1: /* Binary Search */
2: L = 1,H = N
3: eLPM = root
4: while L 6 H do

5: M = (L+H)/2
6: lookup nM =“/c1/c2/.../cM” in HT
7: if nM is the name of a entry (nM , e) in table then
8: L = M + 1, eLPM = e
9: else

10: H = M − 1
11: end if

12: end while

13: if eLPM is virtual then
14: return NO_FOUND
15: else

16: /* As Figure 4 */
17: while eLPM is not real do
18: eLPM = eLPM ’s parent
19: end while

20: return eLPM ’s forwarding information
21: end if

• The interest has name n3, and n1 is a proper prefix of
longestCommonPrefix(n2, n3).

Namely, if the FIB stores the forwarding information
about a file as well as its proper prefix n. e.g.,
“/cn/edu/pku/document/file01/segment01” and “/cn/edu/pku.”
Subsequently, the request for other data under n may cause
a false negative error. For example, Upon interest name
“/cn/edu/pku/document/file02/segment01,” the binary search
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FIGURE 5 | Component number distribution of HTTP URLs.

ends at a non-real entry “/cn/edu/pku/document/.” If the
algorithm ends with no backtracking, an error occurs since the
LPM is “/cn/edu/pku" and not found.

4.2. Experimental Setup
Then, we evaluate the experimental performance of our scheme,
based on the statistical analysis of HTTP URL length.

Test set. Due to the following reasons, we selected
HTTP URLs to generate artificial dataset of NDN names for
our evaluation:

1. As is mentioned above, building a large and realistic NDN
routing table is a difficult task since NDN has not been
deployed at Internet scale. Therefore, previous work usually
translate existing Internet traces to generate NDN dataset
(Yuan et al., 2012; So et al., 2013; Yuan and Crowley, 2015).

2. Most current works in NDN assumes URL-like hierarchical
names whose components are delimited by slashes, based
on NDN names’ similarities to URLs, we presumed that
NDN forwarding table has a similar long-tailed component
distribution. The domain name was not considered since their
component amounts are mostly 2 or 3 and follow a heavily
skewed distribution (So et al., 2013; Wang et al., 2013).

3. Since the performance of the lookup algorithm is sensitive to
the length of query names, for the convenience of numerically
evaluating our scheme, we generated artificial NDN names
with the variable expected component number.

An HTTP URL is converted into an NDN name in the following
way: (1) The file name extensions and query part after the
character “?” are excluded; (2) The domain name is reversed by
component granularity; (3) Both character “/” and“.” are treated
as component delimiters. e.g., “doc.pku.edu.cn/file/01.txt”
becomes “cn/edu/pku/doc/file/01.”

In our test, we obtain HTTP URLs from web traffic traces in2

and analyze their statistical properties, base on which we generate
test sets of interest name for our evaluation.

2Internet Traffic Archive. ftp://ircache.net/Traces/DITL-2007-01-09/.

TABLE 1 | Lookup performance (always MISS).

N

Linear search Binary search

Average Throughput Average Throughput Throughput

lookup times lookup times (No backtrack) (Algorithm 3)

6 6 100% 2.34 236% 235%

7 7 100% 2.54 250% 247%

8 8 100% 2.70 267% 266%

9 9 100% 2.85 280% 279%

10 10 100% 2.96 301% 299%

Figure 5 illustrates the component number N’s distribution
of 4 million access logs from web proxy caches, while the
average component number is λ̄0 = 6.58. The red line
is the following distribution ρ(N; λ̄0) utilized to fit the
statistical result:

2ρ(N; λ̄0) =



















0 (0 6 N 6 1)

Poisson(N − 2; λ̄0 − 2) (2 6 N 6 4)

Poisson(N − 2; λ̄0 − 2)

+Poisson(N − 5; λ̄0 − 5) (5 6 N)

In which Poisson(N; λ) is the Poisson distribution with the
expectation value λ:

Poisson(N; λ) =
λN

N!
e−λ (0 6 N)

To generate an interest name whose component number has
the expectation value of λ̄ > 5. (1) Its component number
N is derived from ρ(N; λ̄), which is a stretched version of the
distribution above by substituting λ̄ for λ̄0, with its expectation
value changed to λ̄. (2) Its first component is selected randomly
from 10 common domain name suffixes (e.g., com, org) in a
uniform way, while other components are selected uniformly
from a set of 10 thousand unique components collected from
URLs and averagely have 8.62 characters.

Methodology. To make the case simple, std :: unorder_map

is selected with hash function CityHash1, and the forwarding
information is set to be empty. The table for test contains 2
million random-generated names, and each kind of operation is
executed for 0.5 million times. The experiment is repeated for 10
times with different seed, and the average value is taken as the
result of performance evaluation.

4.3. Efficiency Test
Lookup Test. For the lookup operation, we concern about: (1)
The effectiveness of the random search; (2) The impact of the
backtracking on the lookup speed. Therefore, we compare linear
search, binary search without backtracking (which may cause a
false negative) and Algorithm 3 in our evaluation.

Firstly, we use names that do not exist in the table
as the lookup keys, with the expectation value N of the
component number. The performance metrics selected are
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TABLE 2 | Lookup performance (always HIT).

M N

Linear search Binary Search

Average
Throughput

Average Throughput Throughput

lookup times lookup times (No backtrack) (Algorithm 3)

3

6 3.98 100% 2.84 126% 123%

7 4.99 100% 3.02 131% 130%

8 6.02 100% 3.17 151% 150%

9 7.00 100% 3.31 168% 167%

10 8.01 100% 3.45 185% 183%

4

6 3.03 100% 2.90 85% 85%

7 4.00 100% 3.06 104% 101%

8 5.02 100% 3.21 123% 124%

9 6.02 100% 3.35 141% 139%

10 7.03 100% 3.47 159% 159%

TABLE 3 | Insertion and Deletion performance.

M
Insert throughput Delete throughput

HT Algorithm 1 HT Algorithm 2

3 100% 63% 100% 74%

4 100% 59% 100% 75%

5 100% 59% 100% 74%

6 100% 61% 100% 71%

7 100% 58% 100% 74%

the average lookup times and the operation throughput,
using the linear search as the baseline. Table 1 present the
lookup performance with different parameters N, indicating the
considerable improvement of binary search for no-matching
interest since it does not need to traverse the entire name.

We test the case of search hit, with the following hypothesis:
(1) Since the distribution of domain names is skewed and hard
to fit (over 70 percent of domain names have 3 components), we
assume that the component number of names in FIB obeys the
similar distribution with HTTP URLs. Here we use Poisson(N −

1; λ − 1); (2) the expected component number M of FIB names
is smaller than that of interest names, namelyM < N.

Considering thatmost domain names have 2 or 3 components,
and NDN interest names are possibly to be longer than HTTP
URLs, we select M = 3, 4 for evaluation. Table 2 reveals that
the superiority of binary search increases with N − M, and
the backtracking process has little time overhead compared to
HT lookups.

Insertion and Deletion Test.

Table 3 compares the time consumption of Algorithm 1 from
the basic HT insertion, as well as that between Algorithm 2 and
the basic HT deletion. If Algorithm 1 or 2 inserts or deletes k
entries during the execution phrase, its cost time is divided by k
for comparison. As is shown writing operations is slower as the
sacrifice to speed up reading.

4.4. Scalability Test
Compared to other data structures, HT induces higher memory
consumption since the entire key has to be stored to handle hash

TABLE 4 | Upbound of non-real entries’ extra memory cost.

M = 3 M = 4 M = 5 M = 6

Extra memory cost 116% 166% 216% 265%

collision, aggravating the challenge in NDN application at large
scale. Below we test the impact of our scheme on the memory
cost. The FIB name still follows the distribution Poisson(N −

1; λ − 1) with expected component number M. The FIB has a
size of 2 million entries, with all forwarding information set to
be empty.

Extra memory cost of non-real entries. To obtain an
upbound of extra memory cost, we make each real entry name
not be a prefix of any other real names in the table. Table 4
presents the test result and indicates the major disadvantage of
random search application in NDN: Even for relatively small
expected component numberM, the non-real entries double the
FIB size in the worst case, emphasizing the necessity of FIB
compressing approach like a footprint-based hash table, or the
combination with the bloom filter.

Extra memory cost of trie structure. With M kept the same,
compared to the hash table (forwarding info as the table value),
our structure averagely consumes 15.7 Bytes per entry, mainly
resulting from three 32-bit pointers for trie (parent, next sibling,
first child) and 1 Byte for entry type.

5. DISCUSS AND FUTURE WORK

As is evaluated, the main shortcoming of the binary search
implemented for Hash table is the extra memory cost of non-real
entries, in the worst case, the FIB size is expanded for four times,
much aggravating the storage problem of NDN forwarding plane.

The amount of non-real entries required can be reduced
by the improvement of the lookup algorithm. Taking the
following method, which is a refined version of binary search, as
an example:

1. For a real name, all shorter prefixes with even numbered
length should be stored in the FIB. e.g., if the table stores name
“/c1/c2.../cN”, then “/c1/c2”, “/c1.../c4”, “/c1.../c6”... are also to
be stored. Like the binary way, if there exists no corresponding
entry for a prefix, then a non-real entry should be inserted for
it in the FIB reconstruction.

2. In the search process, L and H (the lower and upper bound)
are always even. If the query name has length N, at the
beginning, L = 2, H = 2⌊N/2⌋.

3. The length to lookup in each iteration cycle is:

M = 4⌊
L+H

4
⌋

Which is also an even number. On the lookup hit, L = M+ 2,
otherwise, H = M − 2. The iteration ends if L > H.

4. After the iteration, if there exist no last matching prefixes, then
we lookup “/c1.” On the lookup hit, “/c1” is returned as the
LPM. Otherwise, NO_FOUND is returned.
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5. In the other case, if the last matching prefix is “/c1.../clm”,
then we lookup “/c1.../c(lm + 1)”. On the lookup hit,
“/c1.../c(lm+ 1)” is returned as the LPM. Otherwise,
“/c1.../clm” is returned.

As is shown, with the computational complexity logarithmical
to the length of the query name, the algorithm above
reduces the non-real entry amount by a half. Extending
to more general case, we can choose integer sequence
{N1,N2...} as the lengths of non-real prefixes to be inserted.
e.g., In the binary case, N1 = 1,N2 = 2...; In the
method above, N1 = 2,N2 = 4...; Our future work
includes selecting Ni to optimizing the computational and
storage cost.

The statistic of name length can also contribute to the

improvement of search algorithm. In the binary way,
the middle of the search range is selected as the next

target M to lookup; With the assistance of name lengths’
prior probability, we are able to select M minimizing

system’s information entropy, thus shortening the
search path.

6. CONCLUSION

Wepropose a composite data structure based on the combination
of trie and hash table, to solve the problems of backtracking and
outdated non-real entries in the random search.

The experiment indicates that the introduction of trie
structure exerts restricted influence on the search speed and
memory consumption, and the performance of random search
increases with longer names in interest and shorter names in FIB.
However, the random search sacrifices write speed and memory
efficiency for fast lookups, aggravating the memory cost problem
in NDN forwarding plane. Further optimization to memory
cost and the search algorithm is required, as well as larger-scale
experiments of NDN implementation.
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