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Recombinant Adenovirus (Ad) based vectors have been utilized extensively as a gene
transfer platform in multiple pre-clinical and clinical applications. These applications are
numerous, and inclusive of both gene therapy and vaccine based approaches to human or
animal diseases.The widespread utilization of these vectors in both animal models, as well
as numerous human clinical trials (Ad-based vectors surpass all other gene transfer vectors
relative to numbers of patients treated, as well as number of clinical trials overall), has shed
light on how this virus vector interacts with both the innate and adaptive immune systems.
The ability to generate and administer large amounts of this vector likely contributes not
only to their ability to allow for highly efficient gene transfer, but also their elicitation of
host immune responses to the vector and/or the transgene the vector expresses in vivo.
These facts, coupled with utilization of several models that allow for full detection of these
responses has predicted several observations made in human trials, an important point as
lack of similar capabilities by other vector systems may prevent detection of such responses
until only after human trials are initiated. Finally, induction of innate or adaptive immune
responses by Ad vectors may be detrimental in one setting (i.e., gene therapy) and be
entirely beneficial in another (i.e., prophylactic or therapeutic vaccine based applications).
Herein, we review the current understanding of innate and adaptive immune responses to
Ad vectors, as well some recent advances that attempt to capitalize on this understanding
so as to further broaden the safe and efficient use of Ad-based gene transfer therapies in
general.
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INTRODUCTION
Viruses are obligate intracellular,metabolically inert particles com-
posed of DNA or RNA and a protein coat. They are very efficient in
transferring (transducing) their simple “genomes” into vulnerable
cells of multicellular organisms.

Replication-deficient adenovirus based vectors (Ads) have been
the focus of considerable interest in the last few years for their
potential applications in both gene therapy and vaccine appli-
cations (Amalfitano and Parks, 2002; St George, 2003; Amalfi-
tano, 2004; Waehler et al., 2007; Lasaro and Ertl, 2009; Russell,
2009; Barouch, 2010). Adenoviruses are a family of non-enveloped
viruses containing an icosahedral protein capsid with a 30- to 40-
kb linear double-stranded DNA (dsDNA) genome. In general, of
the immunologically distinct human Ad serotypes, none are asso-
ciated with any neoplastic disease, with most causing relatively
mild, self-limiting respiratory illnesses in immunocompetent indi-
viduals (Lichtenstein and Wold, 2004; Russell, 2009). At least 51
serotypes of human Ad have been identified, and Ad serotypes 5
(Ad5) and Ad2, both belonging to subclass C, are the most exten-
sively studied and characterized both relative to general Ad biology,
as well in regard to utilization as a gene transfer vector.

Ad vectors continue to be the most widely utilized gene transfer
vector in human clinical trials worldwide. More to the point, as of
2010, over 387 human clinical trials have administered Ad-based

vectors by any number of routes to both normal human volun-
teers, as well as patients affected by a number of diseases potentially
treatable by an Ad-based gene transfer approach1 (Seregin and
Amalfitano, 2009; Liu, 2010). In China, Ad vectors are routinely
administered for the treatment of some forms of cancer (Huang
et al., 2009). These facts may be surprising to some, as it is in
sharp contrast to the erroneous views widely held by many basic
researchers within, as well as outside the field of gene therapy, that
Ad vectors are not recommended for human usage. Much of this
confusion stems from an incident in 1999 (the “ornithine tran-
scarbamylase, OTC clinical trial”), in which the tragic death of a
clinical trial subject occurred after intravascular administration of
a large dose of an Ad-based vector (Raper et al., 2002, 2003). The
OTC trial was further compromised by problems in the design
and conduct of the trial, as acknowledged and fully detailed by
the trial’s Principal Investigator (Wilson, 2009). To be clear, there
have been subsequent human trials to the OTC trial, that have
also intravascularly administered (in a similar fashion to the OTC
trial) equivalent, or even higher doses of Ad-based vectors to large
numbers of trial subjects, and not had the unfortunate outcome
reported in the 1999 OTC trial (Atencio et al., 2006). The reasons

1http://www.wiley.com/legacy/wileychi/genmed/clinical/
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for this dichotomy in responses are numerous, and likely may
never be resolved (Wilson, 2009).

Why do Ad vectors continue to be so widely utilized? Ad vec-
tors posses several important advantages, the most important of
which is that they can be easily, and routinely produced to high
titers in a good manufacturing practice (GMP) compliant fashion
(up to 1 × 1013 vp/ml). Non-dependence upon transfection based
packaging systems for vector production is a major reason for this
efficiency, a feature that has likely limited the clinical use of other
vector systems that have been available for as long a period of time
as Ad vector systems. Additionally, Ad vectors allow for efficient
transduction of various proliferating and quiescent cell types, they
can allow for transfer of large segments of foreign DNA (up to
35 kb in some systems), and most importantly, Ad vectors do not
integrate, and therefore are much less likely to cause insertional
mutagenesis or germ line transmission associated problems, in
contrast to integrating virus based vectors, such as retrovirus and
lentivirus based gene transfer systems (Hacein-Bey-Abina et al.,
2003; Modlich et al., 2005; Howe et al., 2008).

As a result of the ability to both easily concentrate and deliver
large amounts of Ad vectors, coupled with high level transgene
expression derived from the vector once successful transduction
in vivo has occurred, it has become clear that the use of Ad vectors
also rapidly activates innate immune responses as well induces
potent cellular and humoral adaptive immune responses, against
both the vector and transgene product being expressed. These
events likely occur subsequent to gene transduction with use of
any gene transfer vector, virus or non-virus based. However, an
ability to only deliver very low particle titers of vector, or low
overall transduction efficiencies, may alter or prevent detection of
innate or adaptive immune responses subsequent to use of other
(non-Ad based) gene transfer vectors.

As viruses have evolved to more efficiently transduce host
cells, the mammalian immune system has co-evolved cellular and
humoral immune responses to prevent or limit the growth of an
invading virus or pathogen. The immune response to viruses is
generally composed of two branches: a rapid and non-specific
response mediated by the innate arm of the immune system, as
well as a relatively slower, more highly specific adaptive immune
response, the latter being endowed with memory of past infec-
tions to respond more efficiently upon repeat exposure to an
infecting organism such as a virus. The innate immune response
promotes initiation of the adaptive immune response, and can also
orchestrate its overall progression.

While innate immune responses are primarily driven by virion
components (capsid proteins, DNA, or RNA genomes) present
upon initial administration of the Ad virus into a living ani-
mal, adaptive immune responses are mainly associated with the
leaky expression of Ad derived genes in early generations of Ad
vectors (so called E1 deleted Ads), or more importantly driven
by whether or not the transgene being expressed by the Ad vec-
tor is perceived by the host as immunologically foreign (Tripathy
et al., 1994, 1996; Ding et al., 2001; Kiang et al., 2006b). Regard-
less of the cause, activation of the innate and adaptive immune
systems by Ad vectors can lead to tissue or organ inflamma-
tion, enhanced immune-mediated clearance of vector transduced
cells, and reduced transgene expression (Amalfitano, 2004). The

presence of memory T- and B-cells responses in individuals pre-
viously exposed to wild-type Ads further limits the potential for
benefit when utilizing Ad-based vectors (Barouch, 2010).

Ad vectors with additional deletions in their genome (accom-
modated by use of newer generation, trans-complementing pack-
aging cell lines) in the E2A, E2B, and E4 Ad genes have been
generated (Engelhardt et al., 1994; Amalfitano et al., 1998; Raper
et al., 1998; Amalfitano and Parks, 2002). These advanced gen-
eration Ad vectors produce fewer Ad derived gene products as
compared to first generation Ads, and can minimize the induc-
tion of vector-specific adaptive immune responses (Engelhardt
et al., 1994; Ding et al., 2001). These benefits are furthered by
the use of helper-dependent (HD)-fully deleted Ad vectors, that
have their entire genome deleted (thereby can accommodate up
to a 35-kb transgene payload) and are propagated with high effi-
ciency via use of a highly engineered helper virus (Parks et al.,
1996; Brunetti-Pierri and Ng, 2009). Overall, newer generations
of Ad vectors elicit lower immunogenicity (diminished adaptive
immune responses to Ad antigens), and allow for longer transgene
expression (Parks et al., 1996; Morral et al., 1998; Amalfitano and
Parks, 2002; Everett et al., 2003).

Despite the improved features of multiply deleted or HD-Ad
vectors, these vectors continue to elicit innate immune profiles in a
pattern similar to that induced by wild-type or first generation Ad
vectors (Brunetti-Pierri et al., 2004; McCaffrey et al., 2008; Seregin
and Amalfitano, 2009). Furthermore, some advanced generation
Ad vectors may still be subject to immunological neutralization
or cell mediate clearance by the presence of anti-Ad neutralizing
antibodies (NAbs) and/or Ad specific memory T cells present in
individuals previously exposed to wild-type Ads (Sumida et al.,
2004; Hutnick et al., 2010). Exploring and understanding the
mechanism by which Ad vectors interact with and activate the
innate and adaptive immune systems will not only allow for the
safer use of these vectors, but may also allow for pre-emptive and
specific modulation of these responses in efforts to allow for bet-
ter utilization of these important gene transfer platforms. Lessons
learned from the use of Ad vectors are also directly applicable to
most, if not all gene transfer vectors (virus or non-virus based), as
the mammalian innate and adaptive immune systems have evolved
to detect and rapidly neutralize all manner of invading particle,
especially those containing a DNA or RNA genome. We will review
here much of the current understanding relative to Ad vector medi-
ated induction of the innate and adaptive immune responses, and
the impact these responses have on the safety and efficacy of Ad
vector based therapies. We will also highlight some strategies pro-
posed to either mitigate or harness Ad-induced innate and adaptive
immune responses for the improved and broadened development
of advanced, Ad-based therapies.

INNATE IMMUNE RESPONSES TO VIRAL INFECTION
The innate immune system is conserved across species and repre-
sents the first line of general defense against pathogenic infections,
inclusive of viral infections specifically (Hoffmann et al., 1999).
These, “pathogen associated molecular patterns” (PAMPs), are
detected by the host’s deployment of a wide array of extracellular,
cell surface or intracellular molecules, proteins, and receptors gen-
erally known as “pattern recognition receptors” (PRRs; Girardin
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et al., 2002; Kawai and Akira, 2010). The innate immune system
is also composed of a network of different cell types expressing or
reacting to PRR activation, including: monocytes/macrophages,
dendritic cells (DCs), natural killer (NK) cells, NK T cells, neu-
trophils, gamma delta T cells, and mast cells. Each cell of the
innate immune system expresses various types of PRRs. For exam-
ple, a widely studied family of PRRs are the toll-like receptors
(TLRs; Kawai and Akira, 2010). Emerging data also indicates an
important role for other families of intracellular PRRs, includ-
ing the nucleotide-binding oligomerization domain/leucine-rich
repeat receptors (NOD–LRR) and the retinoic acid-inducible gene
(RIG)-1-like receptors (RLRs; Takeuchi and Akira, 2010). Once
activated by a specific ligand, these various PRRs trigger a series
of signaling cascades that result in down-stream activation and
transcription of immune response genes via the NFκB, mitogen-
activated protein kinases (MAPKs), and/or interferon regulatory
factors (IRFs) 3 and/or 7 signaling pathways, as but some examples.
Activation of these pathways eventuates in the production and/or
rapid release of pro-inflammatory cytokines and chemokines, ini-
tiation of type I interferon responses that limit the replication
of invading pathogens, as well as the promotion and shaping
of pathogen-specific B- and T cell adaptive immune responses
(Medzhitov, 2007; O’Neill and Bowie, 2010).

INNATE IMMUNE RESPONSES TO Ad VECTORS
Similar to any invading pathogen, gene transfer vectors in gen-
eral, and Ad vectors in particular are recognized by both immune
and non-immune cells, recognitions that activate robust innate
immune responses in vivo (Schnell et al., 2001; Zhang et al., 2001;
Hartman et al., 2007, 2008; Rhee et al., 2011). These responses are
dose-dependent and can limit the efficacy of gene transfer medi-
ated by these vectors due to the development of inflammation and
the rapid activation of the humoral and/or cytolytic arms of the
innate and adaptive immune system (Everett et al., 2003).

One must take note that the mammalian innate system has
evolved to rapidly detect very low numbers of an invading
pathogen such as a virus, and respond accordingly. Therefore,
administration of most any gene transfer vector will result in acti-
vation of the innate immune system, and likely in an exaggerated
manner since large numbers of gene transfer vectors (virus or non-
virus based) need to be delivered before evidence of relevant levels
of transgene expression can be confirmed. This caveat is in contrast
to the generally low numbers of particles being present during the
initial stages of a wild-type virus infection. To account for this, the
immunological response is much like a rheostat, a rheostat that
has a very large and multi-faceted “dynamic range.” For exam-
ple, detection of low levels of pathogen numbers, or replication,
by the innate immune system may result in undetectable, or low
level cytokine or chemokine elevations resulting in undetectable
or milder symptoms, such as arthralgia, malaise, or fever (the latter
being much more difficult to ascertain in some animal models).
Greater provocation of the innate immune system after expo-
sure to greater numbers of virus particles induces greater levels
of pro-inflammatory compounds and cellular activations. These
responses can become exaggerated, and manifest as a cytokine
“storm” that can cause serious medical complications, including
the systemic inflammatory response syndrome, and even death

as in OTC clinical trial (Raper et al., 2003; Matsuda and Hattori,
2006). Furthermore, these responses by the innate immune system
are also likely occurring at the local level, and/or when lower levels
of vector are administered, though these activations may not be
easily detected.

Upon initial introduction into a host, The innate immune
response can be initiated following the binding or coating of the Ad
vector capsid with several humoral (extracellular) factors includ-
ing: surfactant-A (SP-A), lactoferrin, pre-existing immunoglob-
ulin, and protein members of the complement pathways, both
classical (C1q, C4) and alternative (Factor B, Factor D; Jiang et al.,
2004; Shayakhmetov et al., 2005; Shifrin et al., 2005; Huarte et al.,
2006; Kiang et al., 2006; Johansson et al., 2007; Zhu et al., 2007;
Appledorn et al., 2008). These early interactions attempt to usher
the virus away from vulnerable tissues or organs, and rather deliver
the virus particles to cells of the reticulo-endothelial system (Jiang
et al., 2004; Blom and Ram, 2008; Seregin et al., 2010a,b). It should
be clear to the reader that these mechanisms are likely at play for
any virus vector (or for that matter, complexes of DNA or RNA
coupled with complex liposomes; i.e., containing targeting motifs),
and may obviate attempts to retarget capsid modified vectors to
various tissues beyond the reticulo-endothelial system (RES).

ADENOVIRUS VECTOR INDUCTION OF PRO-INFLAMMATORY CYTOKINE
AND CHEMOKINE RESPONSES
Despite the initial interactions with the several components of the
innate immune system, Ad vector particles can and do infect tar-
get cells (primarily accomplished by administration of excessive
doses of the vector), this many times accomplished by administer-
ing large doses of the vector that effectively overruns the capacity
of the RES system to sequester virus particles (Bristol et al., 2000;
Morral et al., 2002; Ziegler et al., 2002). However, this does not
come without a serious cost. The administration of Ad vectors also
results in the immediate production (1–6 h post injection) of var-
ious pro-inflammatory cytokines and chemokines, as well as type
I interferons in mice, non-human, and human primates (Schnell
et al., 2001; Basner-Tschakarjan et al., 2006; Hartman et al., 2007,
2008; Appledorn et al., 2008; Appledorn et al., 2010). Specifically,
high dose, intravascular administrations of Ad vectors have been
found to induce high levels of the cytokines tumor necrosis fac-
tor α (TNFα), IL-6, IL-12, interferon γ (IFNγ), IL-1α, and IL-1β

and the chemokines RANTES (regulated on activation, normal
T cell expressed and secreted), MCP-1(monocytes chemoattrac-
tant protein 1), KC, MIP-1α (macrophage inhibitory protein-1
alpha), MIP-1β, and IFNγ inducible protein 10 (IP-10; Hartman
et al., 2007; Appledorn et al., 2008c, 2010; Di Paolo et al., 2009),
(Table 1).

The origins of these pro-inflammatory mediators in vivo is not
fully known but is likely from multiple sources inclusive of Kupffer
cells, macrophages, endothelial cells as well as Ad transduced tis-
sues, and organs themselves (Shifrin et al., 2005; Appledorn et al.,
2008c). Some studies suggest that conventional DCs (cDCs) and
macrophages are the main source of acute inflammatory cytokines
in response to systemic Ad vectors administration (Zhang et al.,
2001). Depletion of Kupffer cells in mice, by intravenous injec-
tion of gadolinium chloride (GdCl3), resulted in inhibition of
Ad-mediated TNFα production. However, robust production of
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Table 1 | Innate recognition of adenovirus vectors.

Innate immune

receptors

Response/implication Cytokine responses Reference

Complement Ad vector activates the classical (C1q,

C4, C3) and alternative (Factor B, Factor

D, C3) complement pathways

Production of IL-6, IL-12, G-CSF, MIP-1β,

RANTES, and MCP-1

Shayakhmetov et al. (2005), Appledorn et al.

(2008b), Seregin et al. (2010a,b), Kiang et al.

(2006a)

TLRs

TLR2 Activation of NFκB MAPK signaling Production of MCP-1, RANTES Appledorn et al. (2008c)

TLR3 Activation of NFκB MAPK signaling via

TRIF adaptor

Appledorn et al. (2008c, 2009)

TLR4 Activation of NFκB MAPK signaling via

MyD88 and TRIF adaptor

Appledorn et al. (2008c, 2009)

TLR9 Activation of NFκB and ERK1/2 MAPK

signaling via MyD88 adaptor

Production of type I IFN, IL-6, MCP-1,

IL-12p40, G-CSF, and RANTES

Hartman et al. (2007), Appledorn et al. (2008c),

Basner-Tschakarjan et al. (2006)

NON-TLRs

CAR Activation of the PI3K/JAML signaling

pathways

Verdino et al. (2010)

RIG-I Activation of IRF3 and IRF7 signaling Production of type I interferons Otake et al. (1998)

v5 Integrins Activation of the PI3K signaling pathway

and enhancement of DCs maturation

TNFα Li et al. (1998), Philpott et al. (2004)

NOD-LIKE RECEPTORS (NLRs)

AIM2 Activation of caspase-1 and inflamma-

some

IL-1β processing and release Hornung et al. (2009), Burckstummer et al.

(2009)

NALP3/ASC

inflamasome

Induces maturation of pro-interleukin-1β

and activation of caspase-1

IL-1β processing and release Barlan et al. (2011), Lotze and Tracey (2005)

Summary of the innate immune pathways that are activated in response to adenovirus vector administration. TLRs, toll-like receptors; CAR, coxsackievirus and

adenovirus receptor; AIM2, absent in melanoma 2; NALP3, NACHT-, LRP-, and PYD-containing protein-3; ASC, apoptosis-associated speck-like protein containing a

CARD.

IL-6 has been observed in Kupffer cell depleted mice with no
change in NFκB activity, suggesting that there might be additional
cell types that contribute to Ad vector-mediate pro-inflammatory
cytokine production (Lieber et al., 1997).

Furthermore, Ad vectors can either activate of directly trans-
duce various immune cells types in the liver and spleen includ-
ing: DCs (Lore et al., 2007), both plasmacytoid DCs (pDCs;
Basner-Tschakarjan et al., 2006) and (cDCs; Lindsay et al., 2010),
macrophages (Aldhamen et al., 2011), and to a lesser extent (NK)
cells (Schroers et al., 2004; Aldhamen et al., 2011). The induction
of type I interferon is critical for innate immune defense against
Ad vectors in vivo (Zhu et al., 2008); the maturation of antigen
presenting cells, both DCs and macrophages (Hensley et al., 2005);
and the regulation of the induction of pro-inflammatory cytokines
(Huarte et al., 2006; Zhu et al., 2007).

In addition to DCs and macrophages, we and others have shown
that NK cells are another major group of innate immune effector
cells that responds to the presence of Ad vectors. As early as 6 h post
injection, NK cells accumulate in the liver and spleen producing
high levels of IFNγ, which contributes significantly to the innate
immune elimination of Ad vectors and the induction of T helper
cell type 1 (TH1) adaptive immune responses (Peng et al., 2001;
Ruzek et al., 2002; Zhu et al., 2008, 2010; Appledorn et al., 2010,
2011; Aldhamen et al., 2011). Furthermore, NK cell activation by
Ad vectors contributes to liver injury, as NK cell depletion using
anti-NK1.1 or anti-asialo GM1 (AsGM1) antibodies reduced Ad

vector induced elevations of transaminases, as well as hepatocyte
cell death (Liu et al., 2000).

MOLECULAR BASIS FOR CELLULAR RECOGNITION OF ADENOVIRUS
VECTOR INFECTION
Ad5 vectors interact with both the coxsackie-adenovirus receptor
(CAR; via the Ad fiber knob domain) and with cellular inte-
grins (via the Ad penton base RGD motifs) to initiate host cell
penetration (Wickham et al., 1993; Bergelson et al., 1997). The
penetration process itself will also simultaneously trigger cellu-
lar pro-inflammatory innate immune responses. Inductions of
IP-10 by Ads have been detected after infecting kidney derived
epithelial cells with WT capsid vectors, as well as CAR bind-
ing ablated fiber knob mutants (Tibbles et al., 2002). However,
recent data has shown that binding of CAR by Ads also pro-
motes the clustering of junctional adhesion molecule-like protein
(JAML) and activation of the P13K signaling pathway, suggest-
ing another role for CAR binding during the initiation of innate
immune responses to Ads (Verdino et al., 2010). Various reports
have also shown a significant role for αv-integrins for Ad vec-
tor induced innate immune responses (Huang et al., 1996; Li
et al., 1998; Nemerow and Stewart, 1999). Specifically, Ad pen-
ton base interactions with αv-integrins have also been shown
to activate the PI3K signaling pathway and induce DCs matu-
ration via TNFα autocrine signaling (Li et al., 1998; Philpott et al.,
2004). Inhibiting PI3K signaling also blocked Ad-induced DC
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maturation and reduced Ad-induced TNFα production (Philpott
et al., 2004).

After internalization and upon endosomal escape, Ad vectors
have been shown to activate MAPK and NFκB signaling pathways
via both TLR dependent and TLR non-dependent mechanisms
(Zhu et al., 2007; Appledorn et al., 2008c). We and others have
shown that, Ad vectors activate TLR signaling and induce various
cytokines and chemokines responses in a MyD88 and TLR9 depen-
dent manner (Basner-Tschakarjan et al., 2006; Hartman et al.,
2007; Appledorn et al., 2008c). However, the induction of some
chemokines, for example KC and MCP-1, was not dependent on
TLR9, but still required a functional MyD88 adaptor protein, sug-
gesting either the involvement of other TLRs, or other MyD88
dependent signaling systems, for the complete induction of the
innate immune response to Ad vectors (Cerullo et al., 2007).
Studies in our laboratory have shown that the induction of sev-
eral cytokines and chemokines, the expression of innate immune
response genes, and the generation of antibodies to both Ad vectors
(NAbs) as well as Ad expressed transgene products were also TLR2,
TLR3, and TLR4 dependent, and required both functional MyD88
and TRIF (TIR-domain-containing adapter-inducing interferon-
beta) adaptors proteins (Appledorn et al., 2008c, 2009). In addi-
tion, our studies also demonstrated a suppressive role for TLR4
signaling in some Ad-induced innate immune responses; sug-
gesting a complex role for TLRs in Ad vectors-mediated immune
responses (Appledorn et al., 2009).

Besides TLRs, significant evidence has been accumulated in
recent years implicating a TLR9-independent mechanism for sens-
ing Ad5 (dsDNA) genomes (Nociari et al., 2007; Zhu et al., 2007;
Shayakhmetov et al., 2010). Takaoka et al. (2007) showed that a
dsDNA sensor called DNA-dependent activator of interferon reg-
ulatory factors (DAI) activates type I interferon in response to
DNA viruses in L-929 cells, but subsequent studies suggested the
presence of other cytoplasmic DNA sensor(s) (Ishii and Akira,
2006; Ishii et al., 2008). Absent in melanoma 2 (AIM2) has been
shown to respond to cytoplasmic dsDNA and activate the inflam-
masome, driving the activation of caspase-1 and IL-1β processing
and release (Burckstummer et al., 2009; Fernandes-Alnemri et al.,
2009; Hornung et al., 2009). AIM2 was suggested to be impor-
tant for the induction of pro-inflammatory immune responses
against several viruses that produce cytosolic DNA during their
lifecycle, such as vaccinia virus, herpes simplex virus-1 (HSV-
1), and adenovirus (Kanneganti, 2010; Rathinam et al., 2010).
However, it is our understanding that there is as yet no direct
evidence linking the activation of the inflammasome by Ads
to AIM2.

The activation of the NALP3 inflammasome by Ad derived
dsDNA leads to caspase-dependent activation of IL-1β and induc-
tion of pro-inflammatory cytokine and chemokine responses
including elevations of IL-6, MIP-1β, IP-10, and MCP-1 (Muruve
et al., 2008). In addition, Ad-mediated disruption of lysosomal
membranes, and the release of cathepsin B into the cytoplasm,
are required for Ad-induced NLRP3 inflammasome activation
(Barlan et al., 2011). Furthermore, Ad5 activation of NLRP3
also induced necrotic cell death, resulting in the release of the
pro-inflammatory molecule High-mobility group box 1 protein
(HMGB1), a recently identified damage (or danger)-associated

molecular pattern (DAMP) that mediates the response to infec-
tion, injury, and inflammation (Lotze and Tracey, 2005; Barlan
et al., 2011). It is important to note that, only partial reduc-
tions of pro-inflammatory cytokines and chemokines have been
observed in Ad treated mice deficient of TLR9, NALP3, or the
ASC inflammasome; suggesting the involvement of other innate
immune PRRs, or a synergy between the inflammasome and other
innate immune receptors during the innate immune recognition
of Ad vector derived DNA (Cerullo et al., 2007; Muruve et al.,
2008; Hornung et al., 2009). In addition, it has been demon-
strated that adenovirus virus-associated RNA (VA) is recognized
by retinoic acid-inducible gene I (RIG-I), a cytosolic PRR, and
activates RIG-I down-stream signaling, leading to the induction
of type I interferons (IFNs; Minamitani et al., 2011).

Together, these findings confirm that Ad vectors activate a num-
ber of complex innate immune response networks (Table 1). These
newly identified networks may also provide targets for the develop-
ment of new approaches to further improve the safety and efficacy
of Ad based, as well as other important gene transfer platforms.

MODULATION OF INNATE IMMUNE RESPONSES TO Ad VECTORS
Various strategies have been attempted in efforts to manipulate
Ad vector-inductions of the innate immune system to develop
safe and efficacious Ad-based gene transfer therapies. For gene
transfer based applications applied to genetic diseases, multi-
ple approaches have been utilized to minimize innate immune
responses to Ad vectors including the use of immunosuppres-
sive agents and depletion of innate immune cells (i.e., DCs and
macrophages) thought to be primarily responsible for cytokine
and chemokine production following Ad vector administrations.
For example, the modulation of Ad vector induced inflammation
by prophylactic use of anti-inflammatory corticosteroids (such as
Dexamethasone, DEX) was associated with a significantly reduced
ability of Ad vectors to induce several acute inflammatory cytokine
and chemokine responses including: TNFα, IL-6, IL-12, MCP-1,
MIP-1α, G-CSF, in concert with sustained, as well in some cases,
improved transgene expression subsequent to gene transduction
(Otake et al., 1998; Seregin et al., 2009). These improvements were
in some instances coupled with reductions in pro-inflammatory
leukocyte infiltrations into the liver, as well reduced induction of
pro-inflammatory gene expression in Ad transduced liver hepato-
cytes and spleen derived cells (Seregin et al., 2009). In addition,
the use of more targeted strategies in mice, such as: TLR9 block-
ade with ODN-2088, administration of anti-TNFα monoclonal
antibodies, and administration of Erk or p38 MAPK inhibitors
(U0126 and SB203580, respectively) prior to Ad vector admin-
istration each significantly reduced Ad-triggered innate immune
responses (Tibbles et al., 2002; Wilderman et al., 2006; Cerullo
et al., 2007; Appledorn et al., 2008c).

Ad vectors have also been engineered to enhance innate
immune responses subsequent to administration. In tumor
immunotherapy based approaches, Ad vectors expressing pro-
inflammatory mediators, such as IFNγ, IL-2, IL-12, IL-18, and
IL-23, have been shown to possess potent anti-tumor activities
in several pre-clinical and clinical investigations utilizing the vec-
tors as tumor-lytics (Siddiqui et al., 2007; Urosevic et al., 2007;
Reay et al., 2009; Choi et al., 2011). Administration of Ad vectors
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over-expressing MyD88 has been shown to improve the induc-
tion of antigen specific adaptive immune responses, and enhance
tumor cell lysis in a mouse model in vivo (Hartman et al., 2010).
Studies in our laboratory have shown that Ad vectors expressing a
recombinant Eimeria tenella derived TLR agonist (rEA) induced
potent innate immune responses that correlated with an improved
induction of cellular immune responses to several target antigens
(Appledorn et al., 2010). Analogous to use of MyD88 (Hartman
et al., 2010), we have also recently shown that Ad vectors expressing
EAT-2 (Ewing’s sarcoma-associated transcript-2), a signaling lym-
phocytic activation molecules (SLAM) derived adaptor protein,
enhanced innate immune cell (NK-, DCs, and macrophages) acti-
vation and induced beneficial cytokine and chemokine responses.
These responses also correlated with improved inductions of anti-
gen specific adaptive immune responses (including induction
of cytotoxic T cell responses) by Ads expressing EAT-2 in vivo
(Aldhamen et al., 2011).

ADAPTIVE IMMUNE RESPONSES AGAINST ADENOVIRUS
VECTORS
DEVELOPMENT OF NEUTRALIZING ANTIBODIES AND CD8+ T CELL
RESPONSES TO THE Ad VECTOR
When attempting to summarize adaptive immune responses to
Ad-based vectors, one must consider two primary issues, adap-
tive immune responses to Ad derived proteins (either Ad genes
still expressed from early generation vectors, or the Ad capsid pro-
teins themselves) as well the adaptive immune responses to the
transgene expressed by a respective Ad vector.

Both gene therapy and vaccine applications utilizing Ad-
based vector platforms may suffer from diminished efficacy (i.e.,
diminished antigen specific immune responses or blunted tran-
sient expression of therapeutic transgene) when pre-existing Ad5
immunity is present. A majority (over 60%) of the worldwide
human population have had previous exposure to wild-type Ads
in childhood or adulthood, these exposures result in the devel-
opment of various forms of pre-existing immunity to the most
common Ad serotypes (Abbink et al., 2007; Lasaro and Ertl, 2009;
Seregin and Amalfitano, 2009). NABs to Ad vectors are primar-
ily directed against the surface loops of the viral hexon protein,
however, antibodies to the penton base or the fiber can also neu-
tralize Ads (Sumida et al., 2005). Ad NABs affect the efficacy of
Ad vector gene transfer by blocking cell transduction (Smith et al.,
2008; Parker et al., 2009; Pichla-Gollon et al., 2009; Seregin and
Amalfitano, 2009).

When utilizing early generation Ad5 based vectors that are
deleted for only the E1 genes, or alternative serotype Ad vectors
that are also only E1 deleted, this results in reduced transgene prod-
uct expression and thus, reduced induction of transgene-specific
CD8+ T cell immune responses in vaccine applications (Sumida
et al., 2004; Thorner et al., 2006; McCoy et al., 2007; Liu et al.,
2008; Gabitzsch et al., 2009b; Osada et al., 2009; Haut et al., 2011).
Since the presence of high levels of NABs to the most commonly
utilized Ad vector,Ad5, are highly prevalent in certain populations,
including sub-Saharan Africa (Abbink et al., 2007; Barouch et al.,
2011), recent efforts have focused on developing Ad vectors that
have either had immunogenic portions of the Ad5 capsid replaced
with homologous regions from alternative serotype Ads, or on Ad

vectors entirely derived from rarer human, or chimp derived Ad
serotypes (Abbink et al., 2007; Barouch, 2008; Seregin and Amalfi-
tano, 2009; Geisbert et al., 2011). While the use of these alternative
serotypes may allow for partial overcoming of transductional inef-
ficiencies due to the presence of pre-existing Ad5 NABs, their use
will also have several limitations, including altered biodistribution
and biosafety profiles, as well they are also subject to neutralization
upon their readministration (Barouch et al., 2004; Thorner et al.,
2006; Appledorn et al., 2008a; Liu et al., 2009).

Additionally, several studies emphasize a significant role for Ad
specific CD8+ T cells in pre-existing Ad immunity. Ad vector spe-
cific (mostly against hexon capsid protein) CD8+ T cells can be
readily detected in PBMCs in a high percentage of healthy adults
(Molinier-Frenkel et al., 2000, 2002; Tang et al., 2006). This latter
point must also be considered when alternative, rarer Ad serotypes
are utilized in attempts to circumvent pre-existing common Ad
serotype specific antibodies, since pre-existing T cell responses to
one Ad serotype can still be harnessed when a host is exposed to an
alternative Ad serotype (Heemskerk et al., 2003; Leen et al., 2004;
Hutnick et al., 2010). An important and recent study demonstrated
that CD8+ T cells against the E2b encoded polymerase protein can
be found at frequencies as high as found for CD8+ T cells against
the major immunodominant Ad protein hexon in Ad immune
individuals (Joshi et al., 2009). This feature may be responsible for
the recent finding that administration of Ad5 vectors devoid of
expression of the Ad polymerase (E2b) protein can induce benefi-
cial adaptive immune responses to expressed antigens, even in the
Ad5 immune host (Gabitzsch et al., 2009a,b, 2010; Weaver et al.,
2009; Clarke et al., 2010).

ADAPTIVE IMMUNE RESPONSES TO Ad VECTOR EXPRESSED
TRANSGENES
A continued fallacy regarding the use of Ad-based gene transfer
is the notion that Ads are incapable of allowing for long term
transgene expression in the immune competent host. However,
Ad vectors have been repeatedly shown to allow for long term
transgene expression, especially in animals that do not perceive
the transgene being delivered by the Ad vector as immunologically
foreign. We and others have reviewed this topic extensively in the
past, and refer the reader to those publications for full validation
and understanding of these views (Amalfitano, 2004; Seregin and
Amalfitano, 2009, 2010).

Conversely, Ad-based vectors have a potent ability to induce
potent humoral, but more importantly, cellular immune responses
to expressed foreign antigens, and have therefore recently received
much attention for use in a number of vaccine based applications
(Lasaro and Ertl, 2009; Barouch, 2010). Specifically, E1 deleted
Ad5 vectors expressing the HIV-1 gag, pol, and nef genes have been
utilized in human trial subjects (Buchbinder et al., 2008; Priddy
et al., 2008). The results from the early-phase clinical trials demon-
strated that the Ad5 vector-based vaccines elicited some of the
most potent, HIV specific cellular immune responses in humans to
date, however, the presence of pre-existing Ad5-specific NABs par-
tially suppressed these responses (Buchbinder et al., 2008; Priddy
et al., 2008).

Utilization of advanced generation Ad vectors have also recently
been shown to allow for improved efficacy in several vaccine
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based applications (Gabitzsch et al., 2009b, 2010, 2011; Weaver
et al., 2009). Specifically, [E1-, E2b-]Ad5 vectors were able to
induce heightened gene specific T cell responses in mice and pri-
mates (Gabitzsch et al., 2009a,b, 2010). In contrast to E1 deleted
Ad vectors, these types of Ad vaccines can show strong efficacy
despite the existence of of pre-existing Ad immunity possibly
by their avoidance of CD8+ T cell responses directed to the Ad
polymerase gene (Gabitzsch et al., 2009a,b, 2010, 2011; Osada et al.,
2009). [E1-, E2b-]Ad vectors, expressing tumor derived antigens
were also able to induce beneficial, cytolytic T cell responses that
promoted tumor regression in murine models (Gabitzsch et al.,
2011). Based upon these improvements, a phase I/II clinical trial is
currently underway, utilizing a CEA (Carcinoembryonic Antigen)
expressing [E1-, E2b-]Ad5 vector in an attempt to safely induce
beneficial, CEA specific adaptive immune responses in patients
(both Ad5 naive and Ad5 immune) bearing CEA expressing
tumors2.

FURTHER STRATEGIES FOR EVADING HOST IMMUNE RESPONSES
AFTER Ad VECTOR MEDIATED GENE TRANSFER
Several elegant approaches have been developed in various
attempts to diminish Ad vector and transgene-triggered innate
and/or adaptive immune responses, thereby, maximizing the effi-
ciency and persistence of Ad-mediated gene transfer for a variety
of applications. This chapter will briefly summarize the latest
advances, and refer readers to several recent reviews summarizing
earlier papers on these topics (Seregin and Amalfitano, 2010).

The approaches attempting to maximize the duration of trans-
gene expression from an Ad vector and minimize potential side
effects can be categorized as follows: (Waehler et al., 2007) pre-
emptive transient immune modulation of the host; consisting
of the use of immunosuppressive drugs or specific compounds
to block important immune pathways, which are known to be
induced by Ad vectors and (St George, 2003) selective modifica-
tion of the Ad vector itself. The latter approaches includes several
innovative strategies, with the most prominent being covalent
modifications of the entire Ad vector capsid moiety; Ad capsid-
display of specific inhibitors or ligands; the use of tissue specific
promoters to drive transgene expression in selected tissues to min-
imize adaptive immune responses, and as alluded to previously,
the use of genome modified Ads, chimeric Ads, and alternative Ad
serotypes (Seregin and Amalfitano, 2010).

Transient, non-specific immunosuppression of the host with
(Dexamethasone, FK506, cyclosporine A), or selective immuno-
suppression of the host (TLR9 or TNFα blockers, CTLA4-Ig,
anti-CD40 antibodies), and/or attempts at induction of a gen-
eralized tolerance state (IL-10, TGFβ) have all been strategies that
have been described in animal models to successfully improve
outcomes of Ad-based gene transfer. Moreover, some of these
immunosuppression approaches have been tested in clinical tri-
als, as reviewed (Seregin and Amalfitano, 2010). In regards to
the non-specific modification of the Ad vector capsid itself,
Ad vectors have also been complexed with several polymers in
a manner to shield the capsid from either innate or adaptive

2http://clinicaltrials.gov/ct2/show/NCT01147965?term = adenovirus + CEA&
rank = 1

humoral immune components, such as NABs. These moieties
included the use of polyethylene glycol (PEG; O’Riordan et al.,
1999), polylactic glycolic acid (PLGA; Matthews et al., 1999)
or other lipids (Lee et al., 2000), each of which have been
reported to improve efficacy and/or safety of Ad-mediated gene
transfer, when the vector is produced in a complex with these
moieties.

The non-enveloped Ad virion is composed of a large capsid
of about 90 nm in diameter, containing nine proteins (Rux and
Burnett, 2004; Parks, 2005; Vellinga et al., 2005). Several novel and
specific modifications to the Ad capsid have also been engineered
in attempts to improve the efficacy of the basic Ad vector platform.
The fiber, penton, protein IX, and hexon proteins have all been
exploited for genetic insertion of foreign peptides, either as “in-
frame” insertions within the proteins, or as “in-frame” C-terminal
fusions.

In a vaccine targeted application, antigenic epitopes, derived
from the hemagglutinin (HA) protein of the influenza A virus,
were incorporated into, and displayed from the Ad capsid as hexon,
penton base, fiber knob, or protein IX fusions (Krause et al., 2006).
The fiber-displaying Ads induced the highest levels of HA-specific
immunity, as determined by measuring production of HA-specific
IgM and IgG humoral responses, as well as HA-specific IL-4 or
IFNγ producing CD4+ T cellular immune responses (Krause et al.,
2006). In another example, the immunodominant portions of the
Bacillus anthracis protective antigen (PA) were genetically inserted
and displayed from the HVR5 site of the Ad5 hexon (McConnell
et al., 2006). Intramuscular injections of the novel vector into
BALB/c mice resulted in generation of PA-specific IgG1 and IgG2a
antibodies, possibly indicating that TH1 and TH2 immunity to the
antigen was generated, surpassing the efficacy of synthetic peptide
based vaccination strategies (McConnell et al., 2006). The HVR5
site of hexon has also been exploited for display of the Pseudomonas
aeruginosa B cell epitope-encoding peptide. Footpad vaccinations
with the novel vaccines induced antibody responses to the P. aerug-
inosa antigen (Worgall et al., 2005). Both IFNγ-positive CD4+ and
CD8+ P. aeruginosa specific T cell responses were also generated.
Most convincingly, mice vaccinated with the P. aeruginosa B cell
epitope displaying Ad were protected against subsequent lethal
pulmonary challenge with several P. aeruginosa strains (Worgall
et al., 2005).

In contrast, Ad capsid-display of immuno-evasive proteins can
also dramatically improve the efficacy and/or safety of Ad-based
gene transfer (Seregin et al., 2010a, 2011). Specifically, the human
decay-accelerating factor (DAF) natural complement inhibitor
was shown to retain anti-complement activity when displayed
from the surface of the Ad capsid in a retro-oriented fashion
(Seregin et al., 2010). Subsequent studies have shown that mice
injected with the “DAF-displaying” Ad5 vector, demonstrated sig-
nificant reductions in pro-inflammatory cytokine release, avoid-
ance of thrombocytopenia, reduced endothelial cell activation,
minimized activation of pro-inflammatory genes expression, and
reduced plasma ALT levels in mice as compared to unmodified
Ad5 vectors. Moreover, these results correlated positively with a
significantly decreased activation of DCs, NK cells, CD3+CD8+ T
cells, and CD3+CD8− T cells (Seregin et al., 2010a, 2011). Impor-
tantly, this modulation of the complement dependent arm of the
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innate immune response resulted in significantly reduced induc-
tion of Ad neutralizing antibody responses, as well as in blunted
T cell responses to the transgene (i.e., HIV-gag or GFP) by the
DAF-displaying Ad (Seregin et al., 2011).

In addition, genetic modifications, or wholesale “swapping”
of the Ad capsid hexon and fiber proteins from one serotype to
another have been undertaken in efforts to avoid pre-existing Ad
serotype specific neutralizing antibody responses, as previously
described (Gall et al., 1998; Roy et al., 1998; Molinier-Frenkel et al.,
2002; Ritter et al., 2002; Wu et al., 2002).

CONCLUSION AND FUTURE PERSPECTIVES
After full analysis of the several points covered in this review, the
reader should understand that the interactions of Ad-based vectors
with the host innate and adaptive immune systems are multi-
faceted and complex. These complexities should make it clear that
one cannot make simple assertions regarding the potential for use
of Ad vectors in a specific gene therapy or vaccine based applica-
tion, especially, if only limited information is provided, or general
assumptions are being promulgated. It is also clear that despite
this level of complexity and potential for several limitations, Ad
vectors continue to be the platform of choice for an ever increasing
number of clinical trials worldwide.

Utilization of Ad vectors (or any gene transfer vector) for imple-
menting gene therapy for genetic disorders is very challenging.
The induction of potent innate immune responses by the vector
may limit its utility for this purpose in some instances. However,
this same limitation may be of benefit when considering utiliza-
tion of the vector in various vaccine based applications. It should
also be clear that there have been a number of vector modifi-
cations attempted to improve the safety or efficacy of Ad-based
gene transfer, some of these modified Ads may well be better uti-
lized for some clinical applications but not for others. Despite this
context-specific utility, it is obvious that the Ad-based gene trans-
fer platform appears to be highly“plastic”and capable of tolerating
a number of elegant molecular manipulations. Importantly, solely
with use of first generation (E1 deleted) Ad vectors, the number
of Ad vector utilizing clinical trials has doubled within the last
5 years. Bolstered by a clearer understanding as to the benefits,
and more importantly, identified limitations of Ad-based vectors,
we predict a continued expansion for clinical use of Ad vectors
in general, an expansion that will be bolstered by the current and
expanded future use of modified Ad vectors, as well inclusion of
pharmacological and/or other supportive interventions to further
enhance both the safety and efficacy of Ad-mediated gene transfer
into humans.
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