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Stromal cells provide the structural foundation of secondary lymphoid organs (SLOs), and
regulate leukocyte access and cell migration within the different compartments of spleen
and lymph nodes (LNs). Furthermore, several stromal cell subsets have been implied in
shaping of T cell responses through direct presentation of antigen. Despite significant
gain of knowledge on the biology of different SLO-resident stromal cell subsets, their
molecular and functional characterization has remained incomplete. To address this need,
we have generated a bacterial artificial chromosome-transgenic mouse model that utilizes
the podoplanin (pdpn) promoter to express the Cre-recombinase exclusively in stromal
cells of SLOs.The characterization of the Pdpn–Cre mouse revealed transgene expression
in subsets of fibroblastic reticular cells and lymphatic endothelial cells in LNs. Further-
more, the transgene facilitated the identification of a novel splenic perivascular stromal
cell subpopulation that forms web-like structures around central arterioles. Assessment of
the in vivo antigen expression in the genetically tagged stromal cells in Pdpn–Cre mice
revealed activation of both MHC I and II-restricted TCR transgenic T cells. Taken together,
stromal pdpn–Cre expression is well-suited to characterize the phenotype and to dissect
the function of lymphoid organ stromal cells.
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INTRODUCTION
Secondary lymphoid organs (SLOs) are characterized by a com-
plex architecture with specialized compartments that facilitate
the efficient interaction between immune cells. The structural
foundation of this compartmentalization is formed by elaborate
frameworks of stromal cell elements (Junt et al., 2008; Mueller and
Germain, 2009). These non-hematopoietic cells can be divided in
subpopulations that are distinguished by their properties, func-
tions, and localization. Endothelial cells are located at the interface
between liquid-transporting compartments and the parenchyma.
For example, the highly plastic system of lymphatic vessels that is
formed by lymphatic endothelial cells (LECs), distributes lymph
fluid through the lymphoid tissues and regulates lymphocyte
trafficking (Pham et al., 2010). Likewise, blood endothelial cells
(BECs) facilitate controlled access of leukocytes to SLOs by build-
ing the network of high endothelial venules (HEVs; Miyasaka and
Tanaka, 2004; Kumar et al., 2010). A bridging function, in terms
of junction formation between the lymphatic vasculature and the
conduit network, is fulfilled by marginal reticular cells (MRCs)
that form a dense web of stromal cells underlying the subcapsular

Abbreviations: BAC, bacterial artificial chromosome; EYFP, enhanced yellow fluo-
rescent protein; FRC, fibroblastic reticular cell; LEC, lymphatic endothelial cell; LN,
lymph node; pdpn, podoplanin; SLO, secondary lymphoid organ.

endothelium (Katakai et al., 2008). Other stromal cells are crit-
ical for the formation and maintenance of distinct lymphocyte
compartments. These include the CXCL13-producing follicular
dendritic cells (FDCs) of the B cell zone (Gunn et al., 1998) and
fibroblastic reticular cells (FRC) of the T cell zone. FRCs support T
cell survival through expression of IL-7, and guide the migration of
T cells and dendritic cells (DCs) via production of the constitutive
chemokines CCL19 and CCL21 (Luther et al., 2000; Bajenoff et al.,
2006; Link et al., 2007). Furthermore, FRCs form the microvascu-
lar conduit system that distributes small lymph-borne antigens
within the lymphoid tissue (Sixt et al., 2005). Although signifi-
cant insight into stromal cell biology has been generated over the
recent years, the molecular and functional characterization of the
above-described subsets has remained incomplete.

Phenotypical and functional characterization of cells in vivo
can be achieved through the generation of transgenic mouse mod-
els expressing the bacteriophage P1 Cre-recombinase (Schmidt-
Supprian and Rajewsky, 2007). Cell type-specific promoters can
be utilized to express the Cre-recombinase in distinct cell subsets,
and to activate markers for lineage tracing, to conditionally switch-
off genes, or to express antigens in a cell type-restricted manner.
The choice of a particular promoter for such studies depends on
the pre-existing knowledge on the phenotypical diversification of
the cell populations under investigation. The current distinction
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of SLO stromal cells largely relies on the differential expression of
CD31 (Pecam-1) and podoplanin (pdpn, also known as glycopro-
tein 38). CD31 is a marker for endothelial cells and therefore is
expressed on BECs and LECs. Pdpn is a mesenchymally expressed
glycoprotein with distinct functions in the development of the
lymphatic system such as the separation between the lymphatic
and blood vascular system (Schacht et al., 2003). FRCs express
pdpn, whereas LECs express both pdpn and CD31. Since pdpn
is a major marker for stromal cells, we used a bacterial artifi-
cial chromosome (BAC)-encoded pdpn promoter to generate a
Cre-recombinase-transgenic mouse model that could serve as a
tool to facilitate in vivo characterization of SLO stromal subsets.
We found that pdpn promoter-driven Cre-recombinase expres-
sion labels subsets of FRCs and LECs in lymph nodes (LNs).
In addition, the analysis of Pdpn–Cre mice uncovered a novel
splenic stromal cell subpopulation that forms web-like structures
around central arterioles. Further immunological characterization
revealed that antigen expression directed to pdpn–Cre-expressing
cells led to activation of both MHC I and II-restricted TCR trans-
genic T cells, underscoring the potential of certain stromal cell
subsets in antigen presentation and T cell activation.

MATERIALS AND METHODS
ETHICS STATEMENT
Experiments were performed in accordance with federal and can-
tonal guidelines under permission numbers SG09/83 and SG09/87
following review and approval by the Cantonal Veterinary Office
(St. Gallen, Switzerland).

MICE
Bacterial artificial chromosome transgenic Tg (Pdpn–Cre) mice
were generated as described previously (Sparwasser et al., 2004;
Sparwasser and Eberl, 2007). The coding sequence for the Cre-
recombinase, including a stop codon, was inserted into pdpn
exon 1 utilizing the endogenous ATG translation start codon
on the 180-kb BAC RP23 146H1 (Invitrogen, Lucerne, Switzer-
land). The BAC carried at least 90 kb of sequence upstream of the
pdpn transcription start site. Integration of the Cre-recombinase
was analyzed by southern blot analysis using a digoxigenin-
labeled riboprobe binding to the ATG region of the inserted
Cre-recombinase according to the instructions of the manufac-
turer (Roche Diagnostics, Rotkreuz, Switzerland). Modified BACs
were screened with 5′ATG PCR (forward 5′-tctcttgccgatacccactc-
3′, reverse 5′-ctgcacacagacaggagcat-3′) and 3′polyA PCR (for-
ward 5′-cgggtcagaaagaatggtgt-3′, reverse 5′-ccactccttcaccaggaaag-
3′). Founder lines were genotyped by PCR using the fol-
lowing primers: forward 5′-atgctcctgtctgtgtgcag-3′, reverse 5′-
tctctgcccagagtcatcct-3′. B6.129 × 1-Gt(ROSA)26Sortm1(EYFP)Cos/J
(R26-EYFP) and B6.129S4-Gt(ROSA)26Sortm1Sor/J (R26-LacZ)
were obtained from The Jackson Laboratory. To analyze Cre-
recombinase expression, pdpn–Cre mice were crossed with R26-
EYFP and R26-LacZ mice. Bg1 (Bolinger et al., 2008) and Bg2
(Tewalt et al., 2009) mice were generously provided by Nicolas
P. Restifo (NCI, NIH, Bethesda, MD, USA). C57BL/6 mice were
obtained from Charles River (Sulzfeld, Germany). All animals
were kept under conventional conditions in individually ventilated
cages.

PREPARATION OF STROMAL CELLS
Lymph nodes and spleens were dissected into small pieces and
transferred into a well of a 24-well dish filled with RPMI 1640
medium containing 2% FCS, 20 mM Hepes (all from Lonza),
1 mg/ml Collagenase Type IV (Sigma), and 25 μg/ml DNaseI
(Applichem). LN and spleen pieces were incubated at 37˚C for
30 min. After enzymatic digestion, cell suspensions were passed
through a 45-μm gauze filter and washed with phosphate-buffered
saline (PBS) containing 0.5% FCS and 10 mM EDTA (Sigma). The
cell pellet was resuspended in 5 ml MACS-buffer and cells were
counted. To further enrich the stromal cell fraction, lymphocytes
were depleted by incubating the cell suspension with MACS anti-
CD45 microbeads and passing over a MACS LS column (Miltenyi
Biotec). The cells in the flow-through were collected and analyzed
by flow cytometry.

FLOW CYTOMETRY
Stromal cell suspensions (106 cells per stain) were incubated for
20 min at 4˚C in PBS containing 1% FCS and 10 mM EDTA with
the following antibodies: PE-conjugated anti-gp38/podoplanin
(clone8.1.1, BD Biosciences), Alexa647-conjugated anti-CD31,
PE-conjugated anti-inter-cellular adhesion molecule-I (ICAM-
1), PerCP-conjugated anti-vascular cell adhesion molecule-1
(VCAM-1; all from eBioscience). Cells were analyzed with a FAC-
SCanto (BD Biosciences) and FlowJo software (Tree star Inc.). For
peripheral blood lymphocyte (PBL) samples, erythrocytes were
lysed with FACS Lysing Solution (BD Biosciences).

IMMUNOHISTOCHEMISTRY
Lymphoid tissues were fixed over night in freshly prepared 4%
paraformaldehyde (Sigma). Fixed tissues were embedded in 4%
low melting agarose (Invitrogen) in PBS and sectioned with a
vibratome (Leica VT-1200). Twenty to thirty micrometer thick
sections were blocked in PBS containing 10% FCS, 1 mg/ml anti-
Fcγ receptor (BD Biosciences) and 0.1% Triton X-100. Sections
were incubated over night at 4˚C with the following monoclonal
antibodies: anti-gp38/podoplanin (clone8.1.1, BD Biosciences),
Alexa647-conjugated anti-B220 (BD Biosciences), anti-EYFP
(Clontech), Alexa647-conjugated anti-CD31 (eBioscience), anti-
LyveI (eBioscience), or anti-βGal (Abcam). Unconjugated anti-
bodies were detected with the following secondary antibodies:
Dylight649-conjugated anti-rat-IgG, Alexa488-conjugated anti-
rabbit-IgG, and Dylight549-conjugated anti-syrian hamster-IgG
all purchased from Jackson Immunotools (Brunschwig AG).
Microscopical analysis was done using a confocal microscope
(Zeiss LSM-710, Carl Zeiss, Inc.) and images were processed with
ZEN 2009 software (Carl Zeiss, Inc.).

CFSE-LABELING OF TCR TRANSGENIC T CELLS AND ADOPTIVE
TRANSFER
Single-cell suspensions from the spleens of Bg1-Thy1.1 or Bg2-
CD45.1 mice were subjected to hypotonic red blood cell lysis and
stained with CFSE (Molecular Probes). A maximum concentra-
tion of 2.5 × 107 cells/ml were incubated in 5 μM CFSE in PBS for
10 min at 37˚C. Cells were washed twice with ice-cold balanced
salt solution (BSS) and resuspended in BSS. Pdpn-Cre, R26-LacZ
or control mice were injected intravenously with 107 Bg1-Thy1.1
and/or Bg2-CD45.1 splenocytes in 200 μl BSS.
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RESULTS
GENERATION OF THE BAC TRANSGENIC PDPN–CRE MOUSE
In order to target stromal cells in vivo, we used the BAC homol-
ogous recombination technology (Sparwasser et al., 2004; Spar-
wasser and Eberl, 2007). Here, a BAC containing approximately
190 kb of the mouse chromosome 4 with the pdpn locus was used
to replace exon 1 of the pdpn gene with a codon-optimized Cre-
recombinase sequence and a polyadenylization site (Figure 1A).
The recombination resulted in the expected integration of the Cre-
recombinase gene downstream of the pdpn start codon as shown
by PCR reactions detecting the Cre-recombinase, the 5′ATG, and
the 3′polyA regions (Figure 1B). Primer pairs of the 5′- and 3′-
PCRs contained one primer within the transgene and one primer
within the adjacent region, so that only properly modified BAC
clones could be detected. Positive BAC clones were sequence-
verified and the presence of the transgene in the correct location on
the BAC was analyzed using a digoxigenin-labeled DNA probe in
a southern blot (Figure 1C). Successfully recombined Pdpn–Cre
BACs were linearized, purified, and injected into the pronucleus
of C57BL/6 zygotes. The microinjection gave rise to 17 offsprings
with three animals being PCR-positive for Cre-recombinase and
the 5′ATG region (Figure 1D).

The founders C57BL/6N-Tg (Pdpn–Cre)406–408Biat , subse-
quently designated as line 6, 12, and 14 were crossed to R26-
EYFP reporter mice in which a transcriptional stop-cassette can
be excised in a Cre-recombinase-dependent manner (Srinivas
et al., 2001). Initial examination of the resulting Pdpn–Cre,R26-
EYFP mouse lines revealed that transgene expression could not be
detected in mice derived from founder 12, suggesting that pdpn
promoter-driven Cre expression was not sufficient for success-
ful recombination. In mice derived from founder 6, some EYFP

FIGURE 1 | Generation of the Bacterial Artificial Chromosome (BAC)

transgenic Pdpn–Cre mouse. (A) Schematic representation of BAC
mutagenesis with introduction of the Cre-recombinase gene into the pdpn
locus on BAC RP23 146H1. Colored arrows indicate primer location of
Cre–PCR (green), 5′ATG PCR (blue) and 3′polyA PCR (red). (B) Initial
screening of successfully recombined BAC by PCR for Cre-recombinase,
5′ATG region, and 3′polyA region. (C) PCR-positive BAC clones were
examined by southern blot using a digoxigenin-labeled 5′ATG probe
covering transgene and BAC sequences on the recombined (rec), but not
the wild-type BAC (wt). (D) PCR analysis of purified genomic DNA from a
cohort of potential founder mice. BAC indicates positive control DNA.

expression could be detected in the CD45+ non-stromal cell com-
partment (not shown). Founder line 6 was therefore excluded
from further analysis. Examination of transgene activity in Pdpn–
Cre,R26-EYFP offsprings from founder line 14 by flow cytometry
revealed substantial transgene activity in CD45− LN cells and
a complete absence of transgene activity in non-stromal cells
(Figure 2A and Figure A1 in Appendix) with coexpression of the
stromal cell markers ICAM-1 and VCAM-1 (Figure 2B). Further
analysis of LN stromal cells revealed transgene activity in approx-
imately 15% of cells in the LEC and FRC fractions (Figure 2C,D).
Transgene expression in BECs was very low (Figure 2D, left his-
togram) or completely absent in the double-negative fraction
(not shown). Assessment of transgene activity in splenic stro-
mal cells showed that the Pdpn–Cre transgene is almost exclu-
sively active in the pdpn+CD31− FRC fraction (Figure 2E,F).
Taken together, these data indicate that the Pdpn–Cre trans-
gene is well-suited to track particular stromal cell subsets within
SLOs.

PDPN–CRE EXPRESSION TARGETS FRCs AND LECs IN VIVO
In order to localize transgene-expressing cells in spleen and LNs of
Pdpn–Cre,R26-EYFP mice, we performed extensive in situ analy-
sis using confocal laser scanning microscopy. LN sections were

FIGURE 2 | Validation of transgene expression and Cre-mediated

recombination. Filial generation 1 of Pdpn–Cre founder 14 was crossed to
R26-EYFP reporter mice. (A) Flow cytometric analysis of CD45-depleted
cell suspensions utilized the distinct forward and side scatter properties
(left dot plot) and lack of CD45-staining in EYFP+ population as found in
right dot plot, upper left quadrant. (B) VCAM-1 (left histogram) and ICAM-1
(right histogram) expression on CD45−EYFP+ stromal cells from LNs of
pdpn–Cre,R26-EYFP mice. (C–F) Stromal cell subsets in CD45-depleted cell
preparations from LNs (C) and spleen (E) according to CD31 and pdpn
expression. EYFP expression was determined on the indicated LN (D) or
splenic (F) stromal cell subsets from Pdpn–Cre,R26-EYFP (black lines) and
C57BL/6 control mice (gray shaded). Values in histograms in (D,F) indicate
mean percentage ± SEM of EYFP-positive cells (n = 3 mice).
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stained for Pdpn and B220 to visualize the Pdpn+ FRC net-
work of the T cell zone, the Pdpn+ lymphatic endothelium, and
B220+ B cell areas (Figure 3A). More detailed examination of
transgene-expressing EYFP+ cells in the T cell zone showed that
transgene-expressing cells were indeed part of the Pdpn+ FRC
network (Figure 3B). In addition, pronounced transgene activity
could be detected in lymphatic vessel endothelial hyaluron recep-
tor I (LyveI)-positive cells with a particularly high accumulation
of these cells in the subcapsular sinus of the LN (Figure 3C). Thus,
the Pdpn–Cre transgene facilitates selective tagging of FRCs and
LECs in LNs.

Since the flow cytometric analysis of transgene activity in
spleen revealed a more FRC-specific transgene expression pattern
(Figure 2F), we wanted to confirm this finding using in situ analy-
sis. Applying the identical immunofluorescent stainings as in the
LN sections, we could detect transgene activity only within the
Pdpn+ stromal cell network in the white pulp (Figure 4A). High
resolution analysis revealed that EYFP+ cells accumulate in the
central areas of the white pulp (Figure 4B). Co-staining with anti-
CD31 showed that the Pdpn–Cre+ cells form a web-like structure
around the central arteriole (Figure 4C). The EYFP+ perivascular
stromal cells co-expressed the Pdpn protein, but were negative
for CD31 (Figure 4D). It is noteworthy that Pdpn-expressing
EYFP+ cells formed tube-like structures extending into the T cell

FIGURE 3 | Localization and morphological phenotype of

transgene-expressing stromal cells in LNs of Pdpn–Cre,R26-EYFP mice.

(A) Histological section of inguinal LN from a Pdpn–Cre,R26-EYFP mouse
stained for B cells (B220 in blue), Pdpn expressing stromal cells (red), and
Cre-mediated transgene expression (EYFP, green). Inserts in the left panel
mark the regions taken to acquire more detailed images in (B,C). Scale bar
equals 200 μm. (B) Transgene-expressing stromal cells in the T cell zone
with typical FRC structure marked with white arrow in the right panel. (C)

Transgene-positive stromal cell in the subcapsular sinus (SCS) region
visualized with anti-LyveI and anti-EYFP staining. Sinus-lining LEC is marked
with white arrow in the right panel. Scale bars in (B,C) equal 10 μm.

zone (Figure 4D). In summary, transgene expression in spleens
of Pdpn–Cre,R26-EYFP mice identified a novel stromal cell sub-
set within the splenic white pulp that displays a FRC-signature
(Pdpn+CD31−), but shows an exclusive location in the center of
the white pulp.

ACTIVATION OF TCR TRANSGENIC T CELLS IN ANTIGEN-EXPRESSING
PDPN–CRE MICE
The organized structures of SLOs are critical for the activation
of innate and adaptive immune responses (Junt et al., 2008). It is
therefore intriguing that stromal cells can, at the same time, con-
tribute to the tolerization of T cells. For example, it has been shown
that direct presentation of self antigen by non-hematopoietic cells
to autoreactive T cells results in activation, proliferation, and
subsequent deletion of CD8+ T cells (Lee et al., 2007). Further-
more, a subpopulation of stromal cells in LNs and spleen was
shown to express the transcription factor autoimmune regula-
tor (AIRE) and was able to mediate the deletion of autoreactive
CD8+ T cells (Gardner et al., 2008). Interestingly, it appears that
different stromal cell subsets expressing peripheral tissue antigens
may contribute to the maintenance of tolerance under distinct
conditions (Cohen et al., 2010; Fletcher et al., 2010). To assess
the impact of antigen expression by stromal cells in the Pdpn–
Cre model, we crossed Pdpn–Cre to R26-LacZ mice that express
the beta-galactosidase (βgal) antigen following Cre-recombinase-
mediated removal of a transcriptional stop-cassette (Soriano,
1999). We have shown previously that βgal expression in non-
hematopoietic stromal cells can be used to dissect mechanisms

FIGURE 4 | Distinct localization and morphology of Pdpn–Cre+ cells in

spleen. (A) Splenic white pulp area of a Pdpn–Cre,R26-EYFP mouse
stained for B cells (B220 in blue), Pdpn expressing stromal cells (red), and
Cre-mediated transgene expression (EYFP, green). Insert in the right panel
marks the region used for more detailed image in (B). Scale bar equals
100 μm. (B) Boxed area in (A) showing the central localization of
transgene-expressing Pdpn+ cells. (C) Longitudinal section of the CD31+

central arteriole (c.a.) with surrounding transgene-expressing perivascular
stromal cells (marked as PSC in right panel). Scale bar equals 20 μm. (D) 3D
projection of transverse section of the CD31+ central arteriole (c.a.) and
surrounding pdpn+EYFP+ perivascular stromal cells. Note the tube-like
structures extending into the surrounding T cell zone. Scale bar equals
50 μm.
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of peripheral tolerance (Bolinger et al., 2008, 2010). Histological
analysis of LNs from Pdpn–Cre,R26-LacZ mice revealed an anti-
gen expression pattern (Figure 5A) that was comparable to the
EYFP expression in LNs of Pdpn–Cre,R26-EYFP mice (Figure 3A).
To assess whether βgal expression in Pdpn–Cre+ stromal cells
would suffice for activation of βgal-specific CD8+ and CD4+
T cells, we adoptively transferred Bg1 (Bolinger et al., 2008)
and Bg2 (Tewalt et al., 2009) TCR transgenic cells into Pdpn–
Cre,R26-LacZ mice. Single transfer of MHC I-restricted T cells
did not result in significant activation (Figure 5B, left column),
whereas transfer of Bg2 cells alone led to strong T cell prolif-
eration as shown by substantial dilution of the intracellular dye
CFSE (Figure 5B, right column). Co-transfer of Bg1 and Bg2
cells was accompanied by proliferation of both T cell popula-
tions (Figure 5B, middle columns) indicating that under these
conditions, stromal cell-specific CD8+ T cells received help from
CD4+ T cells and could therefore enter into proliferative cycles.
Taken together, these data underscore the high versatility of the
Pdpn–Cre model with successful and comparable Cre-mediated
recombination in different reporter strains, and secondly indi-
cate that Pdpn–Cre mice can be utilized to investigate the inter-
play of stromal cells during the activation and/or tolerization
of T cells that encounter antigens exclusively expressed in these
cells.

DISCUSSION
In this study, we describe the generation and first phenotypi-
cal analysis of a stromal cell-specific Pdpn–Cre BAC transgenic
mouse. The importance of stromal cell-immune cell interaction
has received increased attention over the recent years (Mebius,
2007; Mueller and Germain, 2009; Turley et al., 2010). However,
the characterization of stromal cells within SLOs has relied largely
on particular cell surface marker combinations. The present study
has addressed the need to generate models that facilitate (i) genetic
definition of distinct LN and splenic stromal cell populations, (ii)
in vivo labeling and tracking of particular stromal cell subsets,
and (iii) functional assessment of immune activation/tolerization
processes through selective expression of model antigens. Further-
more, it will be possible to utilize this model to selectively delete
molecularly defined target structures through crossing with con-
ditionally gene-targeted mouse strains such as the LTβRfl/fl strain
(Wang et al., 2010), or to transiently deplete stromal cells in the
inducible diphtheria toxin receptor system (Buch et al., 2005).

Genomic integration of modified BACs is a widely used tech-
nology to generate transgenic mouse models. Comparable to
other BAC transgenic mouse lines expressing the Cre-recombinase
(Nishikawa et al., 2010), we observed varying levels of transgene
expression and recombination frequencies in different founder
lines. Phenotypic variability among several founder lines most
likely resulted from different chromosomal integration sites and
varying numbers of integrated BAC copies thereby determining
the level of Cre-recombinase expression. Here, one of the three
Pdpn–Cre founder lines displayed a suitable transgene expres-
sion pattern that facilitated the identification of novel stromal cell
subpopulations in SLOs such as the splenic perivascular stromal
cell. This finding implies that the currently used FRC phenotype
description (Pdpn+CD31−) may obscure the true diversity of

FIGURE 5 | βgal expression in FRCs and LECs in Pdpn–Cre,R26-LacZ

mice leads to activation of βgal-specificTCR transgenicT cells. (A)

Pdpn–Cre mice were crossed to R26-LacZ reporter mice and βgal
expression in LNs was detected by immunofluorescence analysis. Section
of inguinal LN from Pdpn-Cre,R26-LacZ mouse stained for βgal (green),
Pdpn (blue), and CD4 (red). Scale bar equals 100 μm. (B) Stimulation of
βgal-specific TCR transgenic T cells by stromal βgal expression was
determined by flow cytometry using CFSE-labeled congenic Bg1 and Bg2
cells. CFSE dilution in blood, spleen, and LNs was measured on day 5 after
adoptive transfer in Pdpn–Cre,R26-LacZ mice (black lines) or Cre-negative
littermates (gray shaded). Bg1 or Bg2 cells were adoptively transferred
either alone or in combination. Values in the histograms indicate percentage
of proliferated TCR transgenic cells; proliferation in Cre-negative littermates
was always below 5%.

stromal cells in SLOs. This interpretation has been confirmed in a
recent study that defines a particular FRC subpopulation through
JAM-C controlled chemokine secretion (Frontera et al., 2011).
Using genetic tools such as BAC transgenic mouse lines with stro-
mal cell-specific promoters will help to define both function and
phenotype of SLO stromal cells in future studies.

Antigen presentation and activation of T cells is a well-
controlled process that relies on a division of labor between
different myeloid cell subsets, mainly DCs (Turley et al., 2010). It is
possible that a similar specialization in the display of self-antigens
for the tolerization of autoreactive T cells is distributed between
different stromal cell subsets. Indeed, recent studies suggest that
diverse stromal cell subsets, in particular FRCs and endothelial
cells, participate in presenting antigen via MHC class I and thereby
critically contribute to the shaping of a T cell response (Cohen
et al., 2010; Fletcher et al., 2010). The Pdpn–Cre mouse will
facilitate future studies on the exact nature of direct or indirect
stromal cell-T cell interaction. It will be important to determine
whether the observed lack of βgal-specific CD8+ T cell activa-
tion in Pdpn–Cre,R26-LacZ mice is simply the lack of interaction,
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i.e., immunological ignorance (Bolinger et al., 2008) or an active
process with down-tuning of T cell reactivity. Clearly, CD4+ T
cells specific for a stromal cell-specific antigen were activated
efficiently in the βgal system as presented here. Whether this
activation was due to direct MHC II-mediated contact between
stromal cells and CD4+ T cells or whether indirect activation
through DCs had occurred, will require further investigations that
exceed the scope of this initial characterization of this novel mouse
strain.

In summary, stromal cell-specific Cre-recombinase expression
is well-suited to better characterize SLO stromal cells through defi-
nition of functionally and phenotypically distinct subpopulations.
In particular, the Pdpn–Cre mouse model can serve as a tool to
dissect antigen presentation by FRCs and LECs in LNs and by the
novel perivascular stromal cell population in spleen.
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APPENDIX

FIGURE A1 | Pdpn–Cre transgene-expressing cells are

non-hematopoietic stromal cells. (A) Flow cytometric analysis of
Pdpn–Cre,R26-EYFP LN single-cell suspensions. Appropriate gates were
established (boxed area) for subsequent analysis of EYFP+ and EYFP−

populations. Histogram shows analysis of CD45 expression on EYFP+

(black line) and EYFP− (gray shaded) cells. (B) Confocal microscopy analysis
of a Pdpn–Cre,R26-EYFP LN section stained for T lymphocytes (CD4 in red),
B lymphocytes (B220 in blue), and transgene-expressing cells (EYFP in
green), scale bar equals 50 μm, boxed area defines area for magnified view
in (C) and three-dimensional rendering in (D), scale bars equal 20 μm, Fo: B
cell follicle.
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