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Organ fibrosis is a pathological condition associated with chronic inflammatory diseases. In
fibrosis, excessive deposition of extracellular matrix (ECM) severely impairs tissue architec-
ture and function, eventually resulting in organ failure.This process is mediated primarily by
the induction of myofibroblasts, which produce large amounts of collagen I, the main com-
ponent of the ECM. Accordingly, the origin, developmental pathways, and mechanisms of
myofibroblast regulation are attracting increasing attention as potential therapeutic targets.
The fibrotic cascade, from initial epithelial damage to eventual myofibroblast induction, is
mediated by complex biological processes such as macrophage infiltration, a shift from
Th1 toTh2 phenotype, and by inflammatory mediators such as transforming growth factor-
β. Here, we review the current understanding of the cellular and molecular mechanisms
underlying organ fibrosis.
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INTRODUCTION
Organ fibrosis is an intractable, progressive condition that arises
in multi-factorial chronic inflammatory diseases in which exces-
sive deposition of extracellular matrix (ECM), mainly composed
of collagen I (Col I), severely impairs tissue architecture and func-
tion, eventually resulting in organ failure (Kis et al., 2011). Fibrosis
affects various organs following tissue injury, including the lungs,
liver, and kidneys, and has become a major cause of death in the
developed world.

Lung fibrosis occurs mainly in idiopathic interstitial pneumo-
nia (IIPs), a general term describing multi-factorial conditions
such as idiopathic pulmonary fibrosis (IPF), non-specific intersti-
tial pneumonia (NSIP), and cryptogenic organizing pneumonia
(COP). IPF is a chronic and progressive disease with an estimated
prevalence of 20 cases per 100,000. The prognosis for patients with
IPF is poor, and 50% die within 3 years of diagnosis.

Hepatic fibrosis (fibrosis of the liver) can be triggered by the
hepatitis virus or alcohol. There are an estimated 350 million and
180 million carriers of the Hepatitis B (HBV) and C (HCV) viruses
worldwide, respectively. In Japan, deaths from hepatic cirrhosis
total around 15,000 per year (HCV, 50%; HBV, 12%; non B/non
C, 4%; alcoholic hepatitis, 13%). In addition, hepatic cirrhosis is
associated with hepatic cancer, which causes over 30,000 deaths
annually. The prevalence of non-alcoholic steatohepatitis (NASH)

Abbreviations: smooth muscle actin; Ang II, angiotensin II; BMP, bone mor-
phogenic protein; Col I, collagen I; CTGF, connective tissue growth factor; EMT,
epithelial–mesenchymal transition; FSP-1, fibroblast specific protein-1; HBV/HCV,
hepatitis B/C virus; IIP, idiopathic interstitial pneumonia; IPF, idiopathic pul-
monary fibrosis; LPA, lysophosphatidic acid; LT, leukotriene; MMP, matrix met-
alloproteinase; MSC, mesenchymal stem cell; PDGF, platelet-derived growth factor;
PGE2, prostaglandin E2; S1P, sphingosine-1-phosphate; TGFβ, transforming growth
factor-β; TIMP, tissue inhibitor of matrix metalloproteinases.

ranges from 9 to 37% of the population depending on the country,
and a subset of NASH patients eventually develops hepatitis and
hepatic cancer.

Kidney fibrosis commonly occurs in glomerulonephritis and
diabetic nephropathy. While the number of patients requiring
dialysis due to chronic glomerulonephritis has decreased in recent
years, the number of those with diabetic nephropathy continues
to increase year by year. The cost of dialysis represents a consid-
erable medical expense in advanced countries. In addition, organ
fibrosis is associated with autoimmune diseases. About 15–30% of
rheumatoid arthritis patients develop IPF, and about 30% of IIP
cases are associated with autoimmune diseases.

Given the prevalence and severity of diseases involving tissue
fibrosis, the prevention, and treatment of this condition remains a
major medical challenge. This review focuses on the cellular and
molecular bases for the accumulation of Col I producing fibrob-
lasts and myofibroblasts, which are responsible for the excessive
deposition of ECM during the fibrotic process.

THE ORIGIN OF Col I PRODUCING FIBROBLASTS AND
MYOFIBROBLASTS
Fibroblasts are non-hematopoietic,non-epithelial,non-endothelial
cells that widely distribute throughout the mesenchyme where
they synthesize ECM proteins that form a structural framework
to support tissue architecture and function in steady-state con-
ditions. Fibroblasts also play an important role in tissue repair
following multi-factorial tissue damage by forming a provisional
ECM, a process preceding re-epithelialization in successful repair.
Unfortunately, dysregulated activation, proliferation, and sur-
vival of fibroblasts often results in the excessive deposition of
ECM proteins and the inhibition of re-epithelialization, lead-
ing to tissue fibrosis (Gabbiani, 2003). Therefore, control of the
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activation, proliferation, and survival of fibroblasts is critical for
the prevention and treatment of tissue fibrosis.

Fibroblasts form clusters within fibrotic tissues that are known
as fibrotic foci (Visscher and Myers, 2006). These fibroblasts
include α-smooth muscle actin (αSMA) expressing myofibroblasts
that have the potential to produce large amounts of Col I, which
has resulted in this cell population being widely considered to be
the key effector cells in organ fibrosis (Gabbiani et al., 1971; Gab-
biani, 2003; Sandbo and Dulin, 2011). Results in some models of
organ fibrosis have suggested that there may be therapeutic benefit
in targeting myofibroblasts, although the experimental approaches
in these models leave-questions remaining about the selectivity of
the interventions for myofibroblasts (Douglass et al., 2008). As
mentioned above, fibroblasts are immunophenotypically identi-
fied as cells negative for hematopoietic, epithelial, and endothelial
makers. The lack of specific markers for fibroblasts or possible
subpopulations, including myofibroblasts, complicates the cellular
and molecular understanding of these cells. Thus, the establish-
ment of specific markers to identify fibroblasts and myofibroblasts
remains a major challenge in this field.

Myofibroblasts have classically been considered to differen-
tiate from tissue-resident fibroblasts. However, recent studies
have suggested alternative sources of myofibroblasts (Hinz et al.,
2007). Bone marrow-derived fibrocytes express both hematopoi-
etic markers (CD45, CD11b, and HLADR) and ECM proteins (Col
I and vimentin). These cells have been shown to be recruited from
the circulation to inflamed tissues via chemokine receptors CXCR4
and CCR1, 2, 5, and 7, after which they differentiate into myofi-
broblasts (Phillips et al., 2004; Keeley et al., 2011). Epithelial cells
are reported to trans-differentiate into myofibroblasts via chronic
inflammation-induced epithelial–mesenchymal transition (EMT)
in several fibrosis models (Kalluri and Neilson, 2003). In addi-
tion, blood vessel wall smooth muscle cells have been proposed
as myofibroblast progenitors. Meanwhile, stellate cells (Ito cells), a
type of hepatic pericyte, have attracted interest as a major precur-
sor of Col I producing fibroblasts and myofibroblasts in the liver
(Atzori et al., 2009). Despite these studies, overall understand-
ing of the origin and differentiation pathways of Col I producing
fibroblasts and myofibroblasts remains poor. Identification of the
major developmental pathway of these cells will be an essential step
toward the development of therapeutic interventions for organ
fibrosis.

CHALLENGING THE EMT HYPOTHESIS
Epithelial–mesenchymal transition is a process that was origi-
nally characterized in the context of embryonic development,
in which epithelial cells lose their original phenotypic and func-
tional features, including cell–cell adhesion and cell polarity, while
acquiring migratory and invasive properties (Thiery et al., 2009).
In vitro cell culture studies have shown clearly and reproducibly
that transforming growth factor-β (TGFβ) treatment of epithelial
cells induces expression of mesenchymal markers and morphol-
ogy with a concomitant loss of epithelial markers (Qi et al., 2005;
Venkov et al., 2007). Over the past 15 years, numerous studies have
proposed that EMT also contributes to the activated fibroblast pool
in various regenerative and pathogenic processes. For example,
transition from epithelial tumor cells to mesenchymal cells occurs

at the invasive front of many tumors, driving tumor progres-
sion and metastasis. In addition, inflammation-induced epithelial
cell damage in parenchymal organs such as the liver, lungs, and
kidneys recapitulates part of the EMT process in that epithelial
cells acquire mesenchymal cell-like properties and migrate beyond
the basal membrane to the interstitium, where they differentiate
into Col I producing fibroblasts and myofibroblasts. However, the
inflammation-associated EMT hypothesis has been challenged by
an increasing number of studies, and lacks convincing evidence
(Wells, 2010; Kriz et al., 2011).

For example, the EMT hypothesis for kidney fibrosis was first
reported by Strutz et al. (1995), when the authors used FSP-1
(fibroblast specific protein-1/S100A4) as a marker of mesenchy-
mal lineage. However, subsequent characterization revealed that
FSP-1 is not a mesenchymal cell specific marker, and is expressed
on leukocytes and endothelial cells as well. Similarly, expression
of vimentin, another marker commonly used in EMT studies, is
not enough on its own to identify mesenchymal cells, because
a subset of epithelial cells express vimentin in both resting and
inflammatory-states (Grone et al., 1987; Witzgall et al., 1994).
Moreover, recent extensive and well designed cell-fate tracing stud-
ies have not provided any evidence for inflammation-associated
EMT (Humphreys et al., 2010; Scholten et al., 2010). Unless the
inflammation-induced conversion of epithelial cells into Col I pro-
ducing fibroblasts and myofibroblasts in vivo can be demonstrated
more convincingly, the role of EMT in organ fibrosis should be
reconsidered.

FIBROCYTES MAKE ONLY A MINIMAL CONTRIBUTION TO
ORGAN FIBROSIS
The existence of bone marrow-derived fibrocytes was originally
reported by Bucala et al. (1994). Later, Strieter and colleagues
reported that fibrocytes express several chemokine receptors and
are recruited to inflamed tissues in a CXCR4 dependent manner,
where they contribute to the Col I producing myofibroblast pool
after bleomycin-induced epithelial injury in the lungs (Phillips
et al., 2004). We have also demonstrated that blocking chemokine
receptors CCR1, 2, 5, and 7 in mouse lung or kidney fibrosis mod-
els reduces the number of myofibroblasts detected and ameliorates
organ fibrosis (Sakai et al., 2006; Ishida et al., 2007). However, it
remains unclear whether the cognate chemokines regulate organ
fibrosis through the recruitment of fibrocytes to the inflamed
tissues, by influencing the activation or differentiation of fibrob-
lasts, or through the recruitment of inflammatory cells such as
macrophages and neutrophils that subsequently influence the tis-
sue microenvironment. While many studies have confirmed the
presence of fibrocytes in fibrotic disease, accumulating experi-
mental evidence suggests that the contribution of bone marrow-
derived cells to the Col I producing fibroblast/myofibroblast pool
is limited (Higashiyama et al., 2009, 2011).

ORIGIN OF CAPILLARY PERICYTES AND THEIR SIMILARITY
WITH TISSUE FIBROBLASTS
Recently, a novel role for pericytes as precursors of pro-fibrotic Col
I producing cells has been described. Studies using Col 1α2–GFP
transgenic mice have demonstrated that CD73+PDGFRβ+ peri-
cytes/fibroblasts migrate from capillaries to the interstitial space
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and differentiate to Col 1 producing myofibroblasts in kidney and
liver fibrosis models (Lin et al., 2008; Higashiyama et al., 2009).
In addition, Goritz et al. (2011) recently demonstrated that a spe-
cific pericyte subtype gives rise to scar-forming stromal cells in the
injured spinal cord. However, because fibroblasts in the interstitial
space not only provide a scaffold for micro-tissue architecture such
as nephrons and renal tubules (in the case of the kidneys), but also
come into direct contact with microvessels, it is often difficult to
distinguish between pericytes and tissue fibroblasts under steady-
state conditions (Kriz et al., 2011). The similarities, differences,
and lineage relationship between pericytes and tissue fibroblasts
remain to be elucidated.

THE ROLE OF INFLAMMATORY CELLS IN FIBROTIC TISSUE
Macrophage infiltration into inflamed tissues has been impli-
cated in chronic inflammation-induced organ fibrosis (Wynn
and Barron, 2010). Inflamed tissue-infiltrating macrophages are
derived from CCR2+ inflammatory monocytes or CX3CR1hi res-
ident monocytes (Ricardo et al., 2008). The phenotype of these
macrophages is generally reported to match that of alternatively
activated cells (M2) rather than classically activated cells (M1).
M2 macrophages express immunosuppressive molecules such as
IL-10 and arginase I, which suppress the induction of Th1 cells
that produce the anti-fibrotic cytokine IFNγ. On the other hand,
M1 macrophages express IL-1, IL-12, IL-23, and induce Th1 cell
infiltration and activation. However, it remains to be established
whether a particular macrophage subset with M2-type properties
preferentially infiltrates into fibrotic tissues, or whether it is the
pro-fibrotic microenvironment that drives macrophage polariza-
tion toward an M2 phenotype. In addition to their roles in immune
regulation, macrophages play a pivotal role in matrix regression
during the recovery phase of fibrosis (Duffield et al., 2005) and
in the regulation of stellate cell proliferation (Olaso et al., 2011).
In the future, conditional and lineage specific depletion or gene
targeting approaches may help to reveal the specific function and
overall role of each macrophage subset in tissue fibrosis.

The contribution of T lymphocytes to organ fibrosis seems
to be context dependent. While a number of studies suggest an
exacerbating role of T cells in fibrosis, T cells also appear to
be dispensable because T cell-deficient mice develop fibrosis in
some models (Luzina et al., 2008). The general concept is that
prolonged inflammation induces a shift from a Th1 to Th2 phe-
notype, and the resulting production of Th2 cytokines induces
the infiltration of pro-fibrotic eosinophils via cognate chemokine
(e.g., eotaxin) production. On the other hand, a role for recently
identified functional T cell subsets such as Th17 and regulatory
T cells in tissue fibrosis has also begun to emerge. For exam-
ple, adoptive transfer of CD4 T cells restored bacterial-induced
lung inflammatory and fibrotic responses in TCRβ deficient mice
with an accompanying increase in lung IL-17A protein levels,
and IL-17 receptor α deficient mice develop less severe inflam-
mation and fibrosis than wild type counterparts (Simonian et al.,
2009). Recently, platelet-derived growth factor (PDGF)-producing
CD4+Foxp3+Tregs have been shown to promote lung fibrosis by
activating fibroblasts (Lo Re et al., 2011). A better understanding
of the roles that inflammatory cells play in the fibrotic process
may reveal new points of therapeutic intervention, which may be

able to induce a shift from a pro-fibrotic microenvironment to an
anti-fibrotic microenvironment.

REGULATION OF FIBROSIS BY INFLAMMATORY MEDIATORS
The fibrotic signaling cascade that occurs during chronic inflam-
mation, which is initiated by epithelial injury and results in
irreversible organ damage, is regulated by various inflammatory
mediators. The pro-fibrotic roles of plasma components, platelet-
derived soluble factors, and cytokines produced by activated tissue
cells and infiltrating leukocytes, have been demonstrated in ani-
mal models. These mediators include factors induced as a part of
an inflammatory cascade, regulatory molecules that provide feed-
back during the inflammatory response, and factors constitutively
expressed in the body.

Transforming growth factor-β plays a central role in fibrob-
last activation and fibroblast-to-myofibroblast differentiation, and
induces the expression of genes for ECM components including
Col 1. However, despite its great potential as a therapeutic target
for fibrosis, inhibition of TGFβ signaling has unacceptable side
effects due to the critical role of this cytokine in the maintenance
of homeostasis (Leask, 2010).

Bone morphogenic proteins (BMPs) belong to the TGFβ family
and regulate proliferation and differentiation of both mesenchy-
mal cells and epithelial cells (Rider and Mulloy, 2010). Recent
studies have revealed that BMP7 prevents fibrosis by promoting
epithelial regeneration, while BMP antagonists such as gremlin
and ectodin drive organ fibrosis by inhibiting BMP7 signaling.
Interestingly, there is a direct Smad-dependent counteraction of
the TGFβ pathway by BMP7 signaling, and vice versa (Zeisberg
et al., 2003).

G-protein coupled receptor ligands also regulate chronic
inflammation and the fibrotic cascade. Angiotensin II (Ang II)
induces the expression of pro-fibrotic factors such as connective
tissue growth factor (CTGF; Ruperez et al., 2003; Esteban et al.,
2004), and recent studies have revealed that there is an intracellular
cross-talk between Ang II signaling and TGFβ signaling that coop-
eratively promotes fibrosis (Campbell and Katwa, 1997; Schultz Jel
et al., 2002; Gao et al., 2009). Leukotrienes (LTs) not only induce
fibroblast migration, proliferation, and matrix protein synthesis,
but also promote fibrosis through the stimulation and activation
of TGFβ (Shim et al., 2006). On the contrary, prostaglandin E2

(PGE2), which has well established anti-inflammatory activities,
may suppress fibrosis by inhibiting the proliferation, migration,
and differentiation of myofibroblasts (Kohyama et al., 2001; Lama
et al., 2002; Thomas et al., 2007). Recent studies have demonstrated
that PGF2a receptor deficient mice are resistant against bleomycin-
induced lung fibrosis (Oga et al., 2009), and that LTB4 recep-
tor inhibitors and LPA1 inhibitors suppress bleomycin-induced
lung fibrosis (Tager et al., 2008). Lysophosphatidic acid (LPA)
and sphingosine-1-phosphate (S1P) are liberated from stored
lipid precursors through enzymatic activation and provide migra-
tion, proliferation, and differentiation signals to a variety of cells
through the LPA receptors (LPA1–8) and S1P receptors (S1P1–5),
respectively (Pattanaik and Postlethwaite, 2010). LPA1 deficient
mice are protected from bleomycin-induced lung fibrosis and uni-
lateral ureteral ligation induced-renal fibrosis (Tager et al., 2008).
The pro-fibrotic role of LPA is reportedly mediated in part by

www.frontiersin.org April 2012 | Volume 3 | Article 71 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Innate_Immunity/archive


Ueha et al. Mechanisms of organ fibrosis

the induction of fibroblast-to-myofibroblast differentiation (Yin
et al., 2008). S1P plays a critical role in the circulation of lympho-
cytes, and accordingly, inhibition of the S1P–S1P1 axis results in
strong immunosuppressive effects. In addition, S1P also regulates
the migration and activation of fibroblasts, and recent studies have
revealed cross-talk between the S1P3 and TGFβ – Smad signaling
pathways that promote cardiac fibrosis (Takuwa et al., 2010).

Plasma coagulation cascade proteases are also involved in fibro-
sis (Chambers and Laurent, 2002); thrombin, factor VII, and factor
Xa activate protease-activated receptor-1 (PAR-1) on fibroblasts
and induce their proliferation. In addition, these proteases pro-
mote fibrosis through the induction of pro-fibrotic molecules
such as platelet-derived growth factors and CTGF. CTGF medi-
ates mesenchymal stem cell (MSC)-to-fibroblast differentiation as
well as fibroblast activation (Ponticos et al., 2009; Lee et al., 2010),
while PDGFs induce the proliferation and activation of fibroblasts
leading to vascular diseases and fibrosis. Ijichi et al. (2011) have
demonstrated that CXC chemokines induce CTGF expression in
fibroblasts, and that the inhibition of CXCR2 in tumor-bearing
mice impairs tumor progression.

Matrix metalloproteinases (MMPs) and their inhibitors, tis-
sue inhibitors of MMPs (TIMPs), play an important role in
the regulation of ECM turnover in fibrotic tissues. While the

degradation of pathological fibrillar collagen by MMPs is a key
event in the resolution of fibrosis, the degradation of normal ECM
components in the early stages of fibrosis promotes deposition of
newly synthesized collagen (Hemmann et al., 2007).

ATP released from damaged epithelial cells serves as a danger
signal to alert the immune system of tissue damage, and may also
trigger a fibrotic cascade (Mortaz et al., 2010). Activation of the
Wnt/β-catenin signaling pathway, which regulates epithelial and
mesenchymal proliferation and activation, has been demonstrated
in lung epithelial cells of IPF patients. Overall, this activation drives
fibrosis rather than epithelial repair, possibly due to cross-talk with
other pro-fibrotic factors such as TGFβ and CTGF (Konigshoff and
Eickelberg, 2010). Furthermore, inhibition of Wnt signaling (Hen-
derson et al., 2010) and the BMP binding protein ectodin (Tanaka
et al., 2010) ameliorates renal fibrosis. A better understanding of
the role of each inflammatory mediator in the fibrotic cascade
is likely to reveal novel molecular targets for the early diagnosis,
prevention, and treatment of fibrotic disease.

CONCLUSION AND FUTURE PERSPECTIVES
In recent years, confusion has surrounded the major source of
myofibroblasts in fibrosis, with attention centering on tissue-
resident fibroblasts and pericytes (Figure 1). However, the relative

FIGURE 1 | Molecular and cellular mechanisms of chronic

inflammation-associated organ fibrosis. Organ fibrosis is mediated
primarily by the induction of myofibroblasts, which produce large amounts
of collagen I. Tissue fibroblasts, transdifferentiated epithelial cells (EMT),
bone marrow-derived fibrocytes, and pericytes have attracted interest as

potential myofibroblast precursors. The fibrotic cascade, from initial
epithelial damage to eventual myofibroblast induction, is mediated by
complex biological processes such as macrophage infiltration, a shift from
Th1 to Th2 phenotype, and by inflammatory mediators such as
transforming growth factor-β.
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importance of the various developmental pathways of Col I pro-
ducing fibroblasts and myofibroblasts needs to be re-examined
by lineage tracing approaches, utilizing cell-type specific promot-
ers, and inducible systems in a range of fibrosis models. It will
also be important to further elucidate the mechanisms underlying
the maintenance of myofibroblasts during chronic inflammation.
It is possible that precursor cells provide a continuous supply of
myofibroblasts, that myofibroblasts have proliferative potential, or
that the myofibroblast lifespan is relatively long. A deeper under-
standing of the population dynamics of myofibroblasts and their
precursors may reveal new points of therapeutic intervention with
the potential to halt myofibroblast accumulation in fibrotic tissue.

Although removal of the cause of chronic inflammation is
essential and effective for the prevention and treatment of tis-
sue fibrosis (for example, virus clearance by interferon effectively

prevents viral hepatitis-associated fibrosis), this can be challenging
as the precise cause of the inflammation is often unclear. Given that
in most cases steroids are largely ineffective against fibrosis, cur-
rently there is no effective drug available for patients with clinically
significant organ fibrosis. Further elucidation of the molecular and
cellular bases for chronic inflammation-associated organ fibrosis is
imperative for the development of effective anti-fibrotic therapies.
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