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Heat shock protein (HSP)-based anticancer vaccines have undergone successful preclinical
testing and are now entering clinical trial. Questions still remain, however regarding the
immunological properties of HSPs. It is now accepted that many of the HSPs participate
in tumor immunity, at least in part by chaperoning tumor antigenic peptides, introducing
them into antigen presenting cells such as dendritic cells (DC) that display the antigens
on MHC class I molecules on the cell surface and stimulate cytotoxic lymphocytes (CTL).
However, in order for activated CD8+ T cells to function as effective CTL and kill tumor
cells, additional signals must be induced to obtain a sturdy CTL response. These include
the expression of co-stimulatory molecules on the DC surface and inflammatory events
that can induce immunogenic cytokine cascades.That such events occur is indicated by the
ability of Hsp70 vaccines to induce antitumor immunity and overcome tolerance to tumor
antigens such as mucin1. Secondary activation of CTL can be induced by inflammatory
signaling throughToll-like receptors and/or by interaction of antigen-activatedT helper cells
with the APC. We will discuss the role of the inflammatory properties of HSPs in tumor
immunity and the potential role of HSPs in activating T helper cells and DC licensing.

Keywords: heat shock protein, vaccine, inflammation, antigen presentation

INTRODUCTION
Heat shock proteins (HSP) were first discovered as a group of
polypeptides whose level of expression increases to dominate the
cellular proteome after stress (Lindquist and Craig, 1988). These
increases in HSPs synthesis correlate with a marked resistance
to potentially toxic stresses such as heat shock (Li and Werb,
1982). The finding that such proteins have extracellular immune
functions suggested that, as highly abundant intracellular pro-
teins they could be prime candidates as danger signals to the
immune response (Srivastava and Amato, 2001). There are sev-
eral human HSP gene families with known immune significance
and their classification is reviewed in Kampinga et al. (2009). These
include the HSPA (Hsp70) family, which includes the HPA1A and
HSPA1B genes encoding the two major stress-inducible Hsp70s,
that together are often referred to as Hsp72. When referring to
Hsp70 in this chapter, we generally refer to the products of these
two genes. The Hsp70 family also includes two other members
with immune function – HSPA8 and HSPA5 genes, whose pro-
tein products are known as Hsc70 the major constitutive Hsp70
family member and Grp78, a key ER-resident protein. In addi-
tion two more Hsp70 related genes have immune significance and
these include HSPH2 (Hsp110) and HSPH4 the ER-resident class
H protein Grp170. The Hsp90 family also has major functions
in tumor immunity and these include HSPC2 and HSPC3, which
encode the major cytoplasmic proteins Hsp90a and Hsp90b, and
HSPC4 that encodes ER chaperone Grp94. In addition, the prod-
uct of the HSPD1 gene, the mitochondrial chaperone Hsp60 has
some immunological functions. Mice have been shown to encode
orthologs of each of these genes (Kampinga et al., 2009).

It has been suggested that many of the HSPs have the prop-
erty of damage associated molecular patterns (DAMPs), inducers
of sterile inflammation and innate immunity (Kono and Rock,
2008). The additional discovery that intracellular HSPs function
as molecular chaperones and can bind to a wide spectrum of
intracellular polypeptides further indicated that they could play a
broad role in the immune response and might mediate both innate
immunity due to their status as DAMPs and adaptive immunity
by chaperoning antigens.

Heat shock proteins are currently employed as vaccines in can-
cer immunotherapy (Tamura et al., 1997; Murshid et al., 2011a).
The rationale behind the approach is that if HSPs can be extracted
from tumor tissue bound to the polypeptides which they chaper-
one during normal metabolism, they may retain antigenic peptides
specific to the tumor (Noessner et al., 2002; Srivastava, 2002; Wang
et al., 2003; Enomoto et al., 2006; Gong et al., 2010). Indeed,
vaccines based on Hsp70, Hsp90, Grp94, Hsp110, and Grp170
polypeptide complexes have been used successfully to immunize
mice to a range of tumor types and Hsp70 and Grp94 vaccines
have undergone recent clinical trials (rev: Murshid et al., 2011a).
These effects of the HSP vaccines on tumor immunity appear to be
mediated largely to the associated, co-isolated tumor polypeptides,
although in the case of Grp94 this question is still controversial and
tumor regression was observed in mice treated with the chaper-
one devoid of its peptide binding domain (Udono and Srivastava,
1993; Srivastava, 2002; Nicchitta, 2003; Chandawarkar et al., 2004;
Nicchitta et al., 2004). Use of such HSP vaccines is potentially a
powerful approach to tumor immunotherapy as the majority of
the antigenic repertoire of most individual tumor cells is unknown
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(Srivastava and Old, 1988; Srivastava,1996). Individual cancer cells
are likely to take a lone path in accumulating a spectrum of random
mutations. Although some mutations are functional, permitting
cells to become transformed and to progress into a highly malig-
nant state, many such changes are likely to be passenger mutations
not required to drive tumor growth (Srivastava and Old, 1988; Sri-
vastava, 1996). Some of these individual mutant sequences will be
novel antigenic epitopes and together with the few known shared
tumor antigens comprise an “antigenic fingerprint” for each indi-
vidual tumor (Srivastava, 1996). Accumulation of mutations in
cancer appears to be related to, and may drive the increases in
HSPs observed in many tumors (Kamal et al., 2003; Whitesell and
Lindquist, 2005; Trepel et al., 2010). As the mutant conformations
of tumor proteins are “locked in” due to the covalent nature of the
alterations, cancer cells appear to be under permanent proteotoxic
stress and rich in HSP expression (Ciocca and Calderwood, 2005).
For tumor immunology these conditions may offer a therapeutic
opportunity as individual HSPs, whose expression is expanded
in cancer will chaperone a cross-section of the “antigenic fin-
gerprint” of the individual tumors (Murshid et al., 2011a). This
approach was first utilized by Srivastava (2000, 2006) and led to the
development of immunotherapy using HSP–peptide complexes.

In addition to using HSP–peptide complexes extracted from
tumors, in cases where tumor antigens are known, these can
be directly loaded onto purified or recombinant HSPs and the
complex used as a vaccine. This procedure has been carried out
successfully in the case of the “large HSPs,” Hsp110 and Grp170
(Manjili et al., 2002, 2003). A variant of this approach employs the
molecular engineering of tumor antigens in order to produce mol-
ecular chaperone-fusion genes which encode products in which
the HSP is fused covalently to the antigen. The fusion proteins are
then employed as vaccines. This approach was pioneered by Young
et al. who showed that a fusion between mycobacterial Hsp70 and
ovalbumin could induced cytotoxic lymphocytes (CTL) in mice
with the capacity to kill Ova-expressing cancer cells (Suzue et al.,
1997). The vaccines could be used effectively without adjuvant
and adjuvant properties were ascribed to the molecular chaperone
component of the fusion protein. Subsequent studies have con-
firmed the utility of the approach in targeting common tumor
antigens such as the melanoma antigen Mage3 (Wang et al., 2009).

HSPs AND IMMUNOSURVEILLANCE IN CANCER
The question next arises as to the role of endogenous HSPs, with
or without bound antigens in immunosurveillance of cancer cells.
Although the immune system can recognize tumor antigens and
generate a CTL response, most cancers evade immune cell killing
by a range of strategies (van der Bruggen et al., 1991; Pardoll, 2003).
These include the down-regulation of surface MHC class I mole-
cules by individual tumor cells and release of immunosuppressive
IL-10 by tumors (Moller and Hammerling, 1992; Chouaib et al.,
2002). Tumors in vivo also appear to attract a range of hematopoi-
etic cells with immunosuppressive action including regulatory
CD4+CD25+FoxP3+ T cells (Treg), M2 macrophages, myeloid-
derived suppressor cells (MDSC) and some classes of natural killer
cells (Pekarek et al., 1995; Terabe et al., 2005; Mantovani et al., 2008;
Marigo et al., 2008). The tumor milieu also contain a small frac-
tion of cells of mesenchymal origin identified by surface fibroblast

activation protein-a (FAP cells) that suppress antitumor immune
responses (Kraman et al., 2010). Endogenous tumor HSPs may
also participate in immune suppression. Although the majority
of the HSPs function as intracellular molecular chaperones, a
fraction of these proteins can be released from cells even under
unstressed conditions and may participate in immune functions
(rev: Murshid and Calderwood, 2012). Intracellular Hsp70 can
be actively secreted from tumor cells in either free form or pack-
aged into lipid-bounded structures called exosomes (Mambula
and Calderwood, 2006b; Chalmin et al., 2010). In addition Hsp70
and Hsp90 can also be found associated with the surfaces of tumor
cells where they can function as molecular chaperones or as recog-
nition structures for immune cells (Sidera et al., 2008; Qin et al.,
2010; Multhoff and Hightower, 2011). As Hsp70 was shown in
a number of earlier studies to be pro-inflammatory due to its
interaction with pattern recognition receptors such as Toll-like
receptors 2 and 4 (TLR2 and TLR4), these findings might sug-
gest, as mentioned above, that Hsp70 released by tumors could
be pro-inflammatory and possess the properties of DAMPs (Asea
et al., 2000, 2002; Vabulas et al., 2002). However, subsequent stud-
ies indicated that a portion of the TLR4 activation detected in the
earlier reports, involving exposure of monocytes, macrophages, or
dendritic cells (DC) to HSPs in vitro may be due to trace cont-
amination with bacterial pathogen associated molecular patterns
(PAMPs), potent TLR activators (Tsan and Gao, 2004). In spite
of these drawbacks, an overwhelming amount of evidence now
seems to indicate the interaction of Hsp70 and other HSPs with
TLRs (particularly TLR4) in vivo – in a wide range of physiolog-
ical and pathological conditions, leading to acute inflammation
in many conditions (Chase et al., 2007; Wheeler et al., 2009; see
Appendix for a full list of references). Thus both TLR2 and TLR4
appear to be important components of inflammatory responses
to Hsp70 under many pathophysiological conditions. In cancer
therapy it has been shown that autoimmunity can be triggered in
mice through necrotic killing of melanocytes engineered to over-
express Hsp70; such treatment led to the concomitant immune
destruction of B16 melanoma tumors that share patterns of anti-
gen expression with the killed melanocytes (Sanchez-Perez et al.,
2006). Hsp70 appears to play an adjuvant role in this form of
therapy through its interaction with TLR4 and induction of the
cytokine TNF-a (Sanchez-Perez et al., 2006). However, despite
these findings it has also been shown that depletion of Hsp70
in cancer cells can, in the absence of other treatments lead to
tumor regression by inducing antitumor immunity (Rerole et al.,
2011). This effect appears to be due to the secretion by cancer
cells of immunosuppressive exosomes containing Hsp70 that acti-
vate MDSC and lead to local immunosuppression (Chalmin et al.,
2010). Under normal circumstances therefore, release of endoge-
nous Hsp70 into the extracellular microenvironment may be a
component of the tumor defenses against immunosurveillance.
Extracellular Hsp60 has also been shown be immunomodula-
tory and can increase levels of FoxP3 Treg in vitro and suppress
T cell-mediated immunity (de Kleer et al., 2010; Aalberse et al.,
2011).

The pro-inflammatory properties of extracellular HSPs may be
more evident under in vivo situations particularly in the context
of tissue damage (Sanchez-Perez et al., 2006). For instance when
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elevated temperatures were used to boost Hsp70 release from Lewis
Lung carcinoma cells in vivo, antitumor immunity was activated
along with release of chemokines CCL2, CCL5, and CCL10, in a
TLR4-dependent manner, leading to attraction of DC and T cells
into the tumor (Chen et al., 2009). Thus under resting conditions,
the tumor milieu appears to be a specialized immunosuppressive
environment, rich in inhibitory cells such as Treg, MDSC, and M2
macrophages and inaccessible to “exhausted” CD8+ T cells that
often fail to penetrate the tumor microcirculation. However, under
inflammatory conditions involving necrotic cell killing of tumor
cells, extracellular HSPs may be able to amplify the anticancer
immune response, intracellular HSPs may be released to further
increase such a response and CTL may triggered to penetrate the
tumor milieu, inducing antigen-specific cancer cell killing (Evans
et al., 2001; Mambula and Calderwood, 2006a; Sanchez-Perez et al.,
2006; Chen et al., 2009).

HSP-BASED ANTICANCER VACCINES
It is apparent that a number of HSP types, conjugated to pep-
tide complexes (HSP.PC) from cancer cells form effective bases
for immunotherapy approaches with unique properties, as men-
tioned above (Calderwood et al., 2008; Murshid et al., 2011a). The
immunogenicity of most HSP.PC appears to involve the ability of
the HSPs to sample the tumor “antigenic fingerprint,” deliver the
antigens to antigen presenting cells (APC) such as DC and stim-
ulate activation of CTL (Tamura et al., 1997; Singh-Jasuja et al.,
2000b; Wang et al., 2003; Murshid et al., 2010). A number of studies
show that HSPs can chaperone tumor antigens and deliver them
to the appropriate destination – MHC class I molecules on the
DC surface (Singh-Jasuja et al., 2000a,b; Srivastava and Amato,
2001; Delneste et al., 2002; Enomoto et al., 2006; Gong et al.,
2009). In addition, Hsp70 has been shown to chaperone viral anti-
genic peptides and increase cross priming of human CTL under ex
vivo conditions (Tischer et al., 2011). However, it is still far from
clear how the process of HSP-mediated cross priming unfolds. For
instance, the CD8+ expressing DC subpopulation in lymph nodes
is regarded as the primary cross-presenting APC (Heath and Car-
bone, 2009). It is not however currently known whether the CD8+
DC subset or other peripheral or lymph-node resident, DC inter-
act with HSP vaccines to induce cross presentation. HSPs appear
to be able to enter APC, such as mouse bone marrow derived
DC (BMDC) and human DC in a receptor-mediated manner
(Basu et al., 2001; Delneste et al., 2002; Gong et al., 2009; Mur-
shid et al., 2010). However, no unique endocytosing HSP receptor
has emerged and HSP–antigen complexes appear instead to be
taken up by proteins with “scavenger” function such as LOX-1,
SRECI, and CD91 that can each take up a wide range of extra-
cellular ligands (Basu et al., 2001; Delneste et al., 2002; Theriault
et al., 2006; Murshid et al., 2010). A pathway for Hsp90–peptide
(Hsp90.PC) uptake has been characterized in mouse BMDC by
scavenger receptor SRECI (Murshid et al., 2010). SRECI is able
to mediate the whole process of Hsp90.PC endocytosis, traffick-
ing through the cytoplasm to the sites of antigen processing and
presentation of antigens to CD8+ T lymphocytes on MHC class
I molecules (Murshid et al., 2010). This process is known as anti-
gen cross presentation (Kurts et al., 2010). It is not currently clear
what the relative contribution to antigen cross presentation of

the various HSP receptors might be under in vivo conditions. It
may be that each receptor class contributes to an individual aspect
of CTL activation by HSP peptide complexes although a defin-
itive understanding may await studies in mice deficient in each
receptor class.

HSPs AND CTL PROGRAMMING
It is evident that that HSPs can mediate antigen cross presenta-
tion and activate CD8+ T lymphocytes. However, presentation of
tumor antigens by DC is not sufficient for CTL programming and,
in the absence of co-stimulatory molecules and innate immunity,
the “helpless” CD8+ cells will cease to proliferate abundantly and
will most likely undergo apoptosis (Schurich et al., 2009; Kurts
et al., 2010). One mechanism for enhancing CTL programming
involves activation of the TLR pathways that lead to synthesis of co-
stimulatory molecules (Rudd et al., 2009; Yamamoto and Takeda,
2010). The co-stimulatory molecules, including CD80 and CD86
then become expressed on the DC cell surface and amplify the sig-
nals induced by binding of the T cell receptor on CD8+ T cells to
MHC class I peptide complexes on the presenting DC (Parra et al.,
1995; Rudd et al., 2009). This process is important in pathogen
infection in which microbially derived antigens are encountered
in the presence of inflammatory PAMPs that can activate innate
immune transcriptional networks. Originally it had been thought
that HSPs could provide analogous stimulation through their sus-
pected activity as DAMPs and their inbuilt ability to trigger innate
immunity through TLR2 and TLR4 on DC (Asea et al., 2000, 2002;
Vabulas et al., 2002). (The potential role of HSPs as DAMPs has
been the subject of a recent review: van Eden et al., 2012). Subse-
quent studies on the capacity of HSPs to bind TLRs do not indicate
avid binding of Hsp70 to either TLR2 or TLR4 when expressed in
cells deficient in HSP receptors in vitro (Theriault et al., 2006).
In vivo however, TLR signaling is essential for Hsp70 vaccine-
induced tumor cell killing. Studies of tumor-bearing mice treated
with an Hsp70 vaccine in vivo indicated that vaccine function is
depleted by knockout of the TLR signaling intermediate Myd88
and completely abrogated by double knockout of TLR2 and TLR4
(Gong et al., 2009). These findings were somewhat complicated
by the fact that TLR4 is involved in upstream regulation of the
expression of Hsp70 receptor SRECI, but do strongly implicate a
role for these receptors in amplifying immune signaling by Hsp70
vaccines and Hsp70-based immunotherapy (Sanchez-Perez et al.,
2006; Gong et al., 2009). It is still not clear to what degree HSPs
are capable of providing a sturdy DC maturing signal through
TLR2/TLR4. The potency of HSP anticancer vaccines could poten-
tially be improved by addition of PAMPs such as CpG DNA shown
to activate TLR9, or double stranded RNA that can activate TLR3
(Murshid et al., 2011a). As mentioned, one contradictory factor in
the earlier studies was that, although TLR2 and TLR4 are required
for a sturdy Hsp70 vaccine-mediated immune response, direct
binding of Hsp70 to these receptors was not observed (Theriault
et al., 2006; Gong et al., 2009; Murshid et al., 2012). A rationale
for these findings might be that HSPs can activate TLR signaling
indirectly through primary binding to established HSP receptors
such as LOX-1 and SRECI which secondarily recruit and activate
the TLRs (Murshid et al., 2011b). Both of these scavenger recep-
tors bind to TLR2 upon stimulation and activate TLR2-based
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signaling (Jeannin et al., 2005; A. Murshid and SK Calderwood,
in preparation). In addition, we have found that Hsp90–SRECI
complexes move to the lipid raft compartment of the cell, an envi-
ronment highly enriched in TLR2 and TLR4 (Triantafilou et al.,
2002; Murshid et al., 2010).

HSPs, THE CLASS II PATHWAY, AND DC LICENSING
In addition to activating antigen cross presentation, HSPs have
been shown to chaperone antigens through the MHC class II path-
way and induce CD4+ T lymphocytes (Murshid et al., 2011a).
Presentation of soluble or particulate antigens though the cross
presentation and Class II pathways usually involves different mech-
anisms and primary receptors that partition the antigens toward
MHC class I or MHC class II proteins in a process that is not
completely understood (Burgdorf and Kurts, 2008; Amigorena
and Savina, 2010). It has been shown that SRECI mediates anti-
gen presentation in DC through both the MHC class I and MHC
class II pathways in DC from mice stimulated by Hsp70 vaccines
(Gong et al., 2009). However, the sorting mechanisms that dis-
tribute antigens bound to Hsp90 and SRECI between these two
antigen presentation pathways are, at this moment completely
unknown. CTL programming can be powerfully reinforced by a
process known as DC licensing in which CD4+ T lymphocytes rec-
ognize epitopes presented on MHC class II molecules by the same
DC that activates the CTL (Bennett et al., 1997, 1998; Kurts et al.,
2010). Kurts et al. (2010) have likened this process to the immune
response demanding a “second opinion” as to the suitability of
the antigen recognized by the CTL. CD4+ T cells recognize anti-
gens presented by MHC class II molecules on the DC and activate
the “licensing” reaction which involves the CD40 ligand on the
CD4+ T cell interacting with CD40 on the DC (Kurts et al., 2010;
Figure 1). The molecular consequences of CD40 activation in DC
are similar to the results of TLR signaling, involving expression
of co-stimulatory molecules and cytokines such as TNF-a and IL-
12 (Ma and Clark, 2009). This complex licensing process leads
to a sturdy activation of CTL by the DC with vigorous prolifera-
tion, robust survival of CTL clones, and production of memory
T cells (Castellino and Germain, 2006; Kurts et al., 2010). The
coincidence and binding of three rare cell types: antigen-bearing
DC and antigen-responsive CD4+ and CD8+ T cells might seem
an unlikely event (Castellino and Germain, 2006). However it
seems that the interaction does not need to be concurrent and,
for instance licensing Th1 CD4+ T cells may find and interact
with the DC prior to the CD8+ T cells, and that the DC can store
the “licensing signal” prior to secondary encounter with CD8+ T
cells entering the lymph nodes. In addition it has been shown that
CD8+ T cells express CCR5 chemokine receptors on their surfaces,
permitting them to home toward “licensed DCs” resident in the
lymph nodes (Oppermann, 2004). These interactions are strongly
stimulated by inflammatory CC chemokines such as CCL3, CCL4
(Castellino and Germain, 2006). It is currently unclear whether
HSP vaccines trigger such a chemokine response. However, in
mouse Lewis Lung carcinoma cells in vivo, antitumor immunity
was activated along with release of chemokines CCL2, CCL5, and
CCL10, in an Hsp70- and TLR4-dependent manner (Chen et al.,
2009). In addition, it has been shown that microbial Hsp70 can
bind directly to CCR5 and stimulate IL-12 and TNF-a synthesis

FIGURE 1 | Heat shock protein–peptide complexes extracted from

tumor cells interact with endocytosing receptors (HSP-R) such as

SRECI or signaling receptors (TLR) such asTLR4 on DC. SREC1
mediates uptake and intracellular processing of antigens and the
presentation of resulting peptides on surface MHC class I and MHC class II
proteins. MHC class II receptor–peptide complexes then bind to T cell
receptors on CD4+ cells. One consequence of binding is interaction of
CD40 ligand on the MHC class II cell with CD40 on the DC leading to the
licensing interaction that results in enhanced expression of co-stimulatory
proteins on the DC cell surface. The licensed DC may then interact with
CD8+T cells throughT cell interaction with MHC class I peptide complexes.
This effect will be enhanced by simultaneous interaction of CD80 or Cd86
co-stimulatory complexes on the DC with CD28 on the CD8+ cells, leading
to effective CD8+ CTL that can lyse tumor cells. T cell programming can
also be amplified by signals emanating from activated TLR that can boost
levels of CD80 and CD86 as well as inflammatory cytokines (not shown).

(Whittall et al., 2006). In addition to stimulating Th help, Hsp70
has also been shown to induce cytotoxic CD4+ cells (Figueiredo
et al., 2009). Treatment of CD4+ helper T cells with Hsp70 led
to increased proliferation, elevation in Granzyme B levels and
target-independent enhancement in cytotoxicity (Figueiredo et al.,
2009).

Hsp70, CELL DAMAGE, AND INFLAMMATION
The question of whether Hsp70 acts as DAMP and could by itself
induce an inflammatory response in cancer patients in vivo is still
open. However, some recent studies by Vile et al. using a gene ther-
apy approach may shed some light on the inflammatory role of
Hsp70 in tumor therapy. In this approach, as mentioned above,
normal murine tissues were engineered to express high Hsp70 lev-
els then subjected to treatments that lead to necrotic killing. The
aim was to stimulate an autoimmune response that could lead
to bystander immune killing of tumor cells that share the anti-
genic repertoire as the killed normal cells (Sanchez-Perez et al.,
2006). In the initial studies, normal melanocytes were preloaded
with Hsp70 plasmids and then necrotic cell death was triggered
(Daniels et al., 2004). This treatment led to T cell-mediated
immune killing of syngeneic B16 melanoma cells transplanted
at a distant site in the mouse, presumably in response to anti-
gens shared by the killed normal melanocytes and melanoma cell
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(Daniels et al., 2004). This effect only occurred when melanocytes
were induced to undergo necrosis and Hsp70 levels were elevated,
indicating a role for high levels of Hsp70 in the tumor specific
immune response. Interestingly, these conditions did not lead to
a prolonged autoimmune response, an effect mediated by the
induction of a delayed Treg response (Srivastava, 2003; Daniels
et al., 2004). It is notable that some early studies of chaperone-
based tumor vaccines in animal models demonstrated a primary
CTL response to tumors in response to treatment followed by
delayed activation of a Treg reaction, and that chaperone lev-
els must be carefully titrated for effective induction of tumor
immunity (Udono and Srivastava, 1993; Liu et al., 2009). The role
of Hsp70 in autoimmune rejection of tumors was also investi-
gated in prostate cancer (Kottke et al., 2007). Ablation of normal
prostate cells by necrotic killing with fusogenic viruses in the
absence of Hsp70 elevation led to the induction of the cytokines
IL-10 and TGF-b in the mouse prostate and a Treg response.
However, when Hsp70 levels were elevated in these cells, IL-10,
TGF-b, and IL-6 were induced simultaneously, the IL-6 com-
ponent leading to further induction of IL-17, a profound Th17
response and tumor rejection (Kottke et al., 2007). Thus ele-
vated levels of Hsp70, presumably released from cells undergoing
necrosis can influence the local cytokine patterns and lead to an
inflammatory state in vivo. Interestingly, these results seem to be
tissue specific as inflammatory killing of pancreatic cells even in
the presence of elevated Hsp70 did not provoke IL-6 release, a
Th17 response or tumor rejection and the Treg response domi-
nated under these conditions (Kottke et al., 2009). Thus the role
of Hsp70 in tissue inflammation and tumor rejection seems to
require elevated concentrations of extracellular chaperones, sig-
nificant levels of necrotic cell killing, and tissue specific cytokine
release.

CONCLUSION
(1) Earlier studies investigating HSP vaccines considered such

structures to be the “Swiss penknives” of immunology able
to deliver antigens directly to APC and confer a maturing
signal that could render DC able to effectively program CTL
(Srivastava and Amato, 2001; Noessner et al., 2002). It is well
established now that Hsp70, Hsp90, Hsp110, and GRP170 can
chaperone tumor antigens and activate antigen cross presenta-
tion (Murshid et al., 2011a). In addition, HSPs were thought to
be DAMPs with ability to strongly activate TLR signaling and
innate immunity (Asea et al., 2000). However, although there

is compelling evidence to indicate that Hsp70, for instance can
interact with TLR4 under a number of pathological situations
(see Appendix, Sanchez-Perez et al., 2006), it remains unclear
whether free Hsp70 binds directly to the Toll-like receptor and
induces innate immunity in the absence of other treatments
in vitro (Tsan and Gao, 2004).

(2) Elevated levels of extracellular HSPs appear to have the capac-
ity to amplify the effects of inflammatory signals emanating
from necrotic cells in vivo in a TLR4-dependent manner
(Daniels et al., 2004; Sanchez-Perez et al., 2006; Kottke et al.,
2007). In the presence of cell injury and death, elevated levels
of Hsp70 appear to increase the production of inflammatory
signals that involve cytokines such as IL-6 and IL-17 and lead
to a specific T cell-mediated immune response to tumor cells
sharing antigens with the dying cells (Kottke et al., 2007). The
mechanisms involved in these processes are not clear although
one possibility is that HSPs can induce the engulfment of
necrotic cells. Hsp70 has been shown to increase bystander
engulfment of a variety of structures (Wang et al., 2006a,b).
In addition, tumor cells treated with elevated temperatures
release inflammatory chemokines in an Hsp70 and TLR4-
dependent mechanisms and this effect may be significant in
CTL programming and tumor cell killing (Chen et al., 2009).
Our studies indicate that CTL induction by Hsp70 vaccines
in vivo has an absolute requirement for TLR2 and TLR4 sug-
gesting that at least in vivo HSPs can trigger innate immunity
through TLR signaling (Gong et al., 2009).

(3) HSPs appear also to be able to direct antigen presentation
through the class II pathway in DC and may stimulate T helper
cells (Gong et al., 2009). It may thus be possible that HSPs
participate in DC licensing and reinforce CTL programming
during exposure to HSP vaccines. Future studies will address
these questions.

(4) A further interesting consideration is whether HSPs released
from untreated tumor cells enhance or depress tumor immu-
nity. One initial study shows that Hsp70 released from tumor
cells in exosomes can strongly decrease tumor immunity
through effects on MDSC (Chalmin et al., 2010). Further
studies will be required to make a definitive statement on
these questions.
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APPENDIX
EVIDENCE FOR AND AGAINST A ROLE FOR Hsp70–TLR4 INTERACTIONS IN A RANGE OF PATHOPHYSIOLOGICAL PROCESSES
The following reports indicate that HSP70 and TLR are involved in pro-inflammatory signaling in tissue transplantation, lung pathology,
stroke, hyperthermia, surgical stress, infection and pancreatitis, anaphylactic shock, DC maturation, liver metabolism, atherosclerotic
lesions, neurodegeneration, and traumatic brain injury in studies carried out largely in vivo (Dybdahl et al., 2002; Kakimura et al., 2002;
Vabulas et al., 2002; Curry et al., 2003; Becker et al., 2005; Chen et al., 2005; Mun et al., 2005; Andrade et al., 2006; Aosai et al., 2006;
Fekete et al., 2006; Mortaz et al., 2006; Satoh et al., 2006; Chase et al., 2007; Karoly et al., 2007; Fang et al., 2008; Galloway et al., 2008;
Ishikawa et al., 2008; Khan et al., 2008; Luo et al., 2008; Marincek et al., 2008; Song et al., 2008; Zou et al., 2008; Chen et al., 2009; de
Jong et al., 2009; Wheeler et al., 2009; Su et al., 2010; Suzuki et al., 2010; Brea et al., 2011; Fang et al., 2011; Makino et al., 2011; Mathur
et al., 2011; Zhang et al., 2011).

These reports indicate that it is difficult to demonstrate a direct role for HSP–TLR interaction in tissue culture cells in vitro and
that contamination of purified HSPs with PAMPs may be a problem in interpreting in vitro studies (Tsan and Gao, 2004; Ye and Gan,
2007).
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