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Immune responses to heat shock proteins (Hsp) develop in virtually all inflammatory
diseases; however, the significance of such responses is only now becoming clear. In
experimental disease models, Hsp administration can prevent or arrest inflammatory dam-
age, and in initial clinical trials in patients with chronic inflammatory diseases, Hsp peptides
have been shown to promote the production of anti-inflammatory cytokines, indicating
immunoregulatory potential of Hsp.Therefore, the presence of immune responses to Hsp
in inflammatory diseases can be seen as an attempt of the immune system to correct the
inflammatory condition. Hsp70 can modulate inflammatory responses in models of arthri-
tis, colitis and graft rejection, and the mechanisms underlying this effect are now being
elucidated. Incubation with microbial Hsp70 was seen to induce tolerogenic dendritic cells
(DCs) and to promote a suppressive phenotype in myeloid-derived suppressor cells and
monocytes.These DC could induce regulatory T cells (Tregs), independently of the antigens
they presented. Some Hsp70 family members are associated with autophagy, leading to
a preferential uploading of Hsp70 peptides in MHC class II molecules of stressed cells.
Henceforth, conserved Hsp70 peptides may be presented in these situations and consti-
tute targets ofTregs, contributing to downregulation of inflammation. Finally, an interfering
effect in multiple intracellular inflammatory signaling pathways is also known for Hsp70.
Altogether it seems attractive to use Hsp70, or its derivative peptides, for modulation
of inflammation. This is a physiological immunotherapy approach, without the immediate
necessity of defining disease-specific auto-antigens. In this article, we present the evi-
dence on anti-inflammatory effects of Hsp70 and discuss the need for experiments that
will be crucial for the further exploration of the immunosuppressive potential of this protein.
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Hsps ARE IMMUNODOMINANT PROTEINS
Heat shock proteins (Hsp) are highly conserved proteins, from
microbes through mammals. They are preferentially induced in
response to cell stresses including heat shock, oxidative stress,
ultraviolet radiation, ischemia-reperfusion injury, viral infections,
nutrient deprivation, and chemicals (Lindquist, 1986), protecting
cells from injury and promoting refolding of denatured proteins.
Hsp are grouped in families according to their molecular weight,
and constitutive members of each family can be found in differ-
ent cell compartments under non-stress conditions, performing
chaperone functions (Lindquist and Craig, 1988).

Hsp70 is the most highly conserved protein known to date
(Lindquist and Craig,1988; Ellis, 1990; Feder and Hofmann,1999).
It was therefore surprising when Hsp, including Hsp70, were found
to be immunodominant antigens. Early studies demonstrated that
10–20% of the T cells recognized Hsp60 of Mycobacterium tubercu-
losis after experimental mycobacterial immunization (Kaufmann
et al., 1987). Hsp70 of M. leprae was shown to be a promi-
nent antigen in humans infected with M. leprae (Kaufmann et al.,
1987; Janson et al., 1991). Such mycobacterial-Hsp-specific T cell
responses have also been observed in healthy individuals, not
previously exposed to mycobacterial infections (Munk et al., 1989)

and in cord blood (Fischer et al., 1992; Aalberse et al., 2011).
Immunization with Hsp70 of M. tuberculosis (TB-Hsp70) led to a
strong IgG response in 7 days without evidence of IgM production
(Bonorino et al., 1998), suggesting that antigen-specific T cells able
to provide help were already available in naïve mice. Interestingly,
a detailed analysis of the peptides recognized by T cells, both in
healthy and infected individuals, revealed that some of them were
highly conserved (Quayle et al., 1992; Anderton et al., 1995).

Hsp70 AS AN IMMUNOMODULATORY AGENT
It was then hypothesized that, because of their homology with self,
bacterial-Hsp would provoke autoimmunity through molecular
mimicry with self-proteins. This idea was refuted by the finding
that pre-immunization with bacterial-Hsp protected Lewis rats
from adjuvant-induced arthritis (van Eden et al., 1988). Subse-
quently, immunoregulatory features of Hsp were demonstrated in
various inflammatory diseases. The literature on immunomodu-
latory properties of Hsp is vast. In this review, we will focus on
Hsp70. Although it may be tempting to generalize observations on
different Hsp, it is important to consider that the different fam-
ilies of Hsp show no homology of sequence or structure, and
are encoded by different genes, transcribed under the control
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of different transcription factors, that are not always activated
in coordinate manner. Rather, Hsp are grouped under the same
banner because they are commonly induced in similar situations
of stress, cooperating to promote cell recovery and protection
from injury.

Hsp70 was demonstrated to have a disease suppressive role in
experimental models of autoimmunity. One study demonstrated
that T cells reactive to peptide 234–252 of TB-Hsp70 suppressed
inflammatory responses against Listeria monocytogenes via pro-
duction of IL-10 (Kimura et al., 1998). The same group later
showed that pretreatment with peptide 234–252 of TB-Hsp70 sup-
pressed the development of adjuvant-induced arthritis in Lewis
rats, generating T cells that were specific for this peptide, and pro-
duced high levels of IL-10, but not IFN-g (Tanaka et al., 1999).
Also the treatment with anti-IL-10 antibody abrogated protec-
tion. This peptide showed 58% amino acid identity between rat
and mycobacterial Hsp70. Another study revealed that a differ-
ent peptide of Hsp70, conserved between rat and mycobacteria,
protected Lewis rats from development of arthritis when given
intra-nasally (Wendling et al., 2000), preventing disease develop-
ment by the induction of IL-10 producing T cells. Endogenous
Hsp70 presence in the mouse, guaranteed by the presence of heat
shock factor 1 (HSF1), its transcription factor, was found to protect
from induced colitis (Tanaka et al., 2007). More recently, treatment
with whole endotoxin-free TB-Hsp70 inhibited acute rejection of
skin and tumor allografts (Borges et al., 2010). Consequently, dis-
ease suppressive effects have been observed in the case of both
microbial and self (mammalian) Hsp70, some studies using whole
protein, some studies using just the peptide, and IL-10 was always
important.

How could the conservation of Hsp be reconciled with this
apparent predisposition for recognition by the immune sys-
tem? One idea was that the protective effects of microbial Hsp
were related, at least in part, to their capacity to induce T cell
responses which were cross-reactive with self-Hsp. Cohen pro-
posed that, to avoid excessive immune responses to both self-
and foreign-antigens, the immune system would be selective
in its responsiveness and focus on particular immunodominant
proteins: the so-called immunological homunculus (Cohen and
Young, 1991; Cohen, 2007). Hsp were thus postulated to be such
proteins. However, the regulatory capacity of Hsp could not
be completely explained by immunodominance and homology
between bacterial- and self-Hsp. This was demonstrated in studies
using the adjuvant-induced arthritis model, in which Hsps, but
not other highly immunogenic and conserved proteins of bacte-
rial origin, were found to suppress disease development (Prakken
et al., 2001). So, which additional features of Hsp would endow
them with the capacity to suppress inflammatory responses? Along
the years, different groups have collected evidence on Hsp70
involvement in innate and adaptive immune responses.

INNATE IMMUNE CELL MODULATION BY
Hsp70 – EXTRACELLULAR Hsp70
The idea that Hsp70 could modulate innate cell function comes
from studies that analyzed the interaction of Hsp70, either
delivered extracellularly or present in the outer cell mem-
brane/exosomes, with receptors on cells such as monocytes,

dendritic cells (DCs) and myeloid-derived suppressor cells
(MDSCs). This notion was surprising initially, because Hsp70 was
then believed to be an intracellular chaperone. However, studies
by Hightower and Guidon Jr. (1989) revealed that Hsp70 could
be released from cells, in a mechanism that was independent
of blockage of secretory pathways. A series of studies followed,
revealing that soluble Hsp70 could be measured in the serum of
both healthy and diseased individuals (Pockley et al., 1998); and
that this extracellular Hsp70 could be either actively secreted by
a non-classical pathway, or released from dying cells, review in
De Maio (2011).

Two new functions were then reported for extracellular Hsp70.
One study demonstrated that (mammalian) Hsp70–peptide com-
plexes purified from MethA sarcomas could lead to priming of
cytotoxic T cell (CTL) responses against these tumors (Udono
and Srivastava, 1993). That meant that Hsp70 could probably
bind to a membrane receptor in antigen-presenting cells (APCs),
and get access to the endogenous route of antigen processing and
presentation in MHC class I – i.e., cross-priming. A different
group later reported that human Hsp70 could bind to and acti-
vate human monocytes, promoting the secretion of inflammatory
cytokines, such as TNF-α, IL-1β, and IL-6 (Asea et al., 2000a).
Different groups went on to corroborate the findings of the cross-
priming abilities of Hsp70 (Delneste et al., 2002; Kammerer et al.,
2002; Ueda et al., 2004). However, the findings on the induction of
pro-inflammatory cytokines were disputed (Gao and Tsan, 2004)
when the removal of contaminating endotoxin of the recombi-
nant preparations of human Hsp70 abrogated the induction of
TNF-α by this protein. Hsp70 is a molecule with high affinity
for hydrophobic moieties (Tsan and Gao, 2009) and the efficient
removal of LPS and lipid-like contaminants from preparations of
Hsp70 proved to be a challenge for those working with this pro-
tein. It is thus very likely that the ability of Hsp70 to bind cell
surface receptors (see below) and be internalized, activating anti-
gen presentation, which has been verified by independent groups,
is independent of the induction of inflammatory cytokines by this
protein, which, to this date, is still disputed.

The removal of contaminating endotoxin and lipopeptides by
treatment with Triton X-114, a detergent, revealed that soluble
Hsp70 had, in fact, anti-inflammatory properties. It was demon-
strated that TB-Hsp70 could modulate cytokine production in
blood and synovial cells of arthritis patients. In vitro treatment
with endotoxin-free TB-Hsp70 for 48 h induced IL-10 production
in peripheral blood mononuclear cells (PBMCs) from rheumatoid
arthritis (RA) and reactive arthritis (ReA) patients as well as in
normal controls PBMCs (Detanico et al., 2004). Concomitantly,
PBMCs from these patients downregulated IFN-γ production
(900-fold for RA patients and 750-fold for ReA patients when
compared with untreated cells) and up-regulated IL-10 produc-
tion (900-fold for RA patients and 500-fold for ReA patients).
In addition, synovial cells incubated with TB-Hsp70 for 48 h
showed a reversal of the inflammatory profile, with an induc-
tion of IL-10 [a 4.9-fold increase when compared with cells
treated with bovine serum albumin (BSA) and LPS], correlat-
ing with a decrease in TNF-α and IFN-γ production. Synovial
monocytes from the arthritis patients were the major source of
IL-10 induced by TB-Hsp70. In accordance with these findings,
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Luo et al. (2008) demonstrated that human Hsp70 downregulated
in a concentration-dependent manner the TNF-α-induced pro-
duction of pro-inflammatory mediators IL-6, IL-8, and MCP-1 in
RA fibroblast-like synoviocytes when compared with OVA-treated
cells. Thus, Hsp70, both bacterial and human, were shown to be
associated with a protective phenotype in arthritis, corroborating
the initial findings in adjuvant arthritis.

TB-Hsp70 could also modulate cytokine production in DCs.
These cells provide a link between innate and adaptive responses,
by presenting antigen to T cells, activating them, and shaping
their differentiation into effector phenotypes (Heath and Car-
bone, 2009; Watowich and Liu, 2010). Production of IL-12 by DCs
leads to a Th1 program of differentiation for the antigen-specific
CD4+ T cells, while IL-4 production induces a Th2 phenotype.
Tolerogenic DCs, however, are characterized by low production
of pro-inflammatory cytokines and high production of anti-
inflammatory cytokines. It has been shown that cells expressing
low levels of both MHC class II and T cell co-stimulatory molecules
– such as CD80 and CD86, and that do or do not produce IL-10
and TGF-β, can be tolerogenic (Steinman et al., 2003; Rutella et al.,
2006; Morelli and Thomson, 2007).

LPS-free TB-Hsp70 blocked the in vitro differentiation of DCs
from bone marrow precursors. When murine bone marrow DCs
(BMDCs) were treated with TB-Hsp70 for 24 or 48 h, an inhi-
bition of maturation characterized by a failure to acquire MHC
class II and CD86 expression was observed. TB-Hsp70-treated
BMDCs had an eightfold increase in IL-10 production when com-
pared with dexamethasone treated cells and produced 1,200-fold
less TNF-α than LPS stimulated cells after 48 h of culture (Motta
et al., 2007), suggesting not all transcription was inhibited in the
treated BMDCs. More recently, a different group demonstrated
that soluble inducible human Hsp70 (now known as HSPA1A)
can also induce a regulatory phenotype in monocyte-derived DCs
(MoDCs; Stocki et al., 2012). They tested three preparations of
Hsp70, two commercial ones, with high or medium endotoxin lev-
els, and one other with very low endotoxin levels. Only the Hsp70
preparations with high and medium endotoxin levels induced
maturation of MoDCs in culture. The very low endotoxin level
Hsp70, however, inhibited the maturation of MoDCs and reduced
the capacity of those cells of stimulating allogeneic T cell prolif-
eration. Together, these results indicated that both TB-Hsp70 and
human Hsp70 produced a tolerogenic phenotype in DCs, provided
that LPS contamination was eliminated.

These findings in DC have an important implication for a regu-
latory role of soluble forms of Hsp70. Tolerogenic DCs are known
to contribute to the creation of a “suppressive environment” facil-
itating the peripheral generation of peripheral Tregs. Tregs play a
crucial role in suppressing the excessive effector immune response
that is harmful to the host (Sakaguchi et al., 2008). These cells can
be divided into two subphenotypes. The first one is the Foxp3-
expressing Tregs that develop in the thymus (nTregs; Feuerer et al.,
2009). The second are the cells that can be induced in peripheral
sites when given appropriate signals by the APCs (iTregs; She-
vach, 2006). Tregs produce IL-10 or TGF-β, sometimes both, and
actively suppress non-Treg proliferation (Vignali et al., 2008). Low
levels of antigen presentation coupled to low co-stimulation have
been linked to the differentiation of induced Tregs (iTregs; Jenkins

et al., 1990; Steinman et al., 2000; Long et al., 2011). Thus, it was
possible that, by modulating the APCs, Hsp70 could lead to the
induction of Tregs in the periphery.

Confirming this prediction, soluble TB-Hsp70 was demon-
strated to inhibit acute allograft rejection (Borges et al., 2010).
When C57Bl/6 tumor cells or skin sections were pre-incubated in
a solution with endotoxin-free TB-Hsp70 and then grafted onto
a BALB/c host, the tumor cells formed a solid tumor, and skin
rejection was delayed for 7–10 days, compared to controls. This
effect was abrogated by depletion of Tregs, which were shown
to infiltrate the accepted grafts. Interestingly, when soluble TB-
Hsp70 was injected subcutaneously, this led to an increase in
CD4+CD25+Foxp3+ cells in the draining lymph node, which
correlated to a diminished proliferation of lymph node cells in
response to a T cell mitogen. The conclusion was that one sin-
gle pretreatment with TB-Hsp70 could inhibit a powerful in
vivo inflammatory process, and this correlated with the presence
of Tregs.

The possibility that Hsp70 and Tregs are intimately linked is
discussed in detail in the second part of this article (adaptive
immunity). In the meantime, we wish discuss one more evi-
dence that Hsp70 can act as an immunosuppressant – and this
is related to another discovery, namely that Hsp70 could localize
in membranes.

It was shown that Hsp70 (Vega et al., 2008), similarly to Hsc70
(Arispe and De Maio, 2000) could integrate into an artificial lipid
bilayer, opening cationic conductance channels, and this ability
was associated with the presence of phosphatidylserine (PS; Arispe
et al., 2004). Other sphingolipids, such as globotriaosylceramide,
have also been reported to enhance Hsp70 insertion into mem-
branes (Gehrmann et al., 2008). This supported previous reports
that Hsp70 could be found in the membrane of tumors (Fer-
rarini et al., 1992; Multhoff et al., 1995). Hsp70 was not simply
associated with a receptor in the membrane, but rather inserted,
because it could not be eluted by acid washes, or Triton X-1000
(Vega et al., 2008) and because only one antibody, recognizing a
part of the C-terminus, but not antibodies that would recognize
the N-terminus, would detect it (Botzler et al., 1998). The presence
of Hsp70 in membranes of cells or exosomes of tumors presented
one more way of extracellular interactions of Hsp70.

Myeloid-derived suppressor cells are a different, heterogeneous
population of cells that are expanded during cancer, inflamma-
tion, and infection, with a remarkable ability to suppress T cell
responses (Gabrilovich and Nagaraj, 2009). Chalmin et al. (2010)
demonstrated, in mice and humans, that membrane-associated
Hsp70 found in tumor-derived exosomes (TDEs) restrained
tumor immune surveillance by promoting MDSCs suppressive
functions. It was demonstrated that TDEs, contained in the
tumor cell supernatant of three tumor cell lines, could medi-
ate T cell-dependent immunosuppressive functions of MDSCs.
The authors identified that the factor present on the TDEs that
induced MDSCs activation was the inducible Hsp70 (HSPA1A)
expressed on TDE cell surface. Hsp70 was only present on exoso-
mal fractions, not in other microparticles. These findings indicated
that immunomodulatory effects of tumor cells include their
potential of inducing functional MDSCs by releasing exosomes
expressing Hsp70.
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Hsp70 PUTATIVE RECEPTORS AND RESPECTIVE
SIGNALING PATHWAYS
Many studies asked the question of how would cells perceive
the presence of extracellular Hsp. CD14 (Asea et al., 2000b), and
Toll-like receptors (TLRs) 2 and 4 (Asea et al., 2002) were first pro-
posed to be receptors for soluble extracellular human Hsp70 – and
this was, as discussed above, disputed due to the contamination
issue. CD40 (Wang et al., 2001) was then proposed as a receptor
for mammalian Hsp70, however a different study (Binder, 2009)
refuted this idea, demonstrating that Hsp70 would still bind to
cells in CD40 knockout mice. CD91 (Basu et al., 2001) and LOX-
1 (Delneste et al., 2002), two scavenger receptors, were shown to
bind Hsp70–antigen complexes, increasing cross-presentation and
eliciting a protective immune response against antigen-expressing
tumor cells in vivo. Floto et al. (2006) suggested that TB-Hsp70
promoted DC aggregation, immune synapse formation between
DCs and T cells, and an effector immune response the signaling
through the CCR5 chemokine receptor. All these different results
generated great confusion. A consistent finding among studies
was the ability of extracellular Hsp70 to be internalized and inter-
act with antigen presentation routes, inducing T cell responses to
the peptides that associated with this protein. TLRs and CD40
are signaling receptors, rather than endocytic receptors. Scavenger
receptors and lectin-like receptors are endocytic receptors, and
the signaling events downstream binding and internalization that
follows binding are not fully characterized.

A thorough study transfected Chinese hamster ovary (CHO)
cells with cDNAs expressing each of these putative receptors, as
well as other scavenger receptors and lectins, and studied their
interaction with mammalian extracellular Hsp70 (Theriault et al.,
2005). The authors verified no binding or internalization of Hsp70
with cells expressing TLR2, TLR4, CD40, or CD91. In a follow-
up study, they used the same approach focusing on scavenger
receptors (Theriault et al., 2006). They demonstrated that LOX-1,
SREC-1, and FEEL-1 bind and internalize Hsp70. However, dif-
ferent forms of Hsp70 (peptide bound or ATP bound) interacted
with each of these receptors with different affinities. In summary,
while binding to signaling receptors was refuted by more than one
study, different groups provided evidence for scavenger receptors
as the likely receptors for extracellular Hsp70.

SIGNALING ROUTES ACTIVATED BY Hsp70
If extracellular Hsp70 indeed interacts with membrane-bound
receptors, will it activate signaling pathways associated with these
receptors? Few studies approached this issue.

Mitogen-activated protein (MAP) kinase cascade is one of the
most ancient and evolutionarily conserved signaling pathways,
which is also important for many processes in immune responses
(Dong et al., 2002). TDE-associated Hsp70 was found to medi-
ate the suppressive activity of the MDSCs via activation of STAT3
and ERK (Chalmin et al., 2010). An ERK-dependent route for
IL-10 production by different immune system cells upon TLR
stimulation has been described (Saraiva and O’Garra, 2010). It
has been suggested that some TLR2 agonists are good inducers
of IL-10 production (Dillon et al., 2006; Manicassamy et al., 2009;
Saraiva and O’Garra, 2010; Yamazaki et al., 2011). It is an interest-
ing feature of TLR2 that, depending on the nature of the ligand

and the population of target cells, it can mediate either inflam-
matory or anti-inflammatory responses to the same infectious
organism (Dillon et al., 2006; Frodermann et al., 2011), and the
anti-inflammatory response is mediated by IL-10.

IL-10 is the main anti-inflammatory and immunosuppres-
sive cytokine (Moore et al., 2001). However, depending on the
situation, it can exert a pro-inflammatory role like in lupus ery-
thematosus (Bussolati et al., 2000; Sharif et al., 2004). It has been
suggested that type I interferons regulate the balance between anti-
and pro-inflammatory role of IL-10 (Sharif et al., 2004). In mono-
cytes of patients with systemic lupus erythematosus (SLE), it was
demonstrated that IL-10 can stimulate production of platelet-
activating factor (PAF) and this production was correlated with
disease severity (Bussolati et al., 2000).

IL-10 production of by DCs stimulated via TLRs is diminished
in presence of selective ERK inhibitors (Yi et al., 2002; Dillon et al.,
2004; Kaiser et al., 2009) or in ERK-deficient cells (Agrawal et al.,
2006). Besides, differences in IL-10 production by macrophages,
myeloid DCs, and plasmacytoid DCs are correlated with differ-
ent levels of ERK activation in these cells (Saraiva and O’Garra,
2010). Borges et al. (in preparation) observed that BMDCs treated
with TB-Hsp70 showed a higher expression of phospho-ERK
when compared with unstimulated cells, and inhibition of ERK
expression with the specific ERK inhibitor PD98059 blocked IL-10
production upon incubation with Hsp70.

STAT3 is associated with IL-10 production and tolerance (Bar-
ton, 2006; Dhingra et al., 2011). Also, IL-10R recruits and activates
JNK1-STAT3 pathway (Murray, 2006). In contrast, STAT3 can be
activated by pro-inflammatory cytokines like IL-6, through IL-6R
(Murray, 2007) and Oncostatin M (Halfter et al., 1999). Despite
this duality in STAT3 activation, this transcription factor may be
activated after IL-10 release induced by TB-Hsp70.

Based on this, we propose a model in which extracellular
Hsp70 could regulate innate immune cell function, binding to
cell surface receptors (a scavenger or lectin-like receptor), signal-
ing through TLR2 via ERK to induce IL-10 production, resulting
in an anti-inflammatory response. This model is depicted in
Figure 1.

Is it possible to reconcile this model with what has been
observed for the cross-priming and pro-inflammatory roles
described for this protein? We believe that the next studies should
test the possibility that extracellular Hsp70, upon binding to lectin-
like or scavenger receptors, uses associated receptors to signal. It
is possible that depending on the form of Hsp70 (associated with
peptide; with membranes; with nucleotides; peptide-free) it will
associate with a different receptor. Another issue that has to be
considered is that, while in bacteria, Hsp70 comes from one gene,
in mammals, there may be at least eight genes that code for Hsp70
(Kampinga et al., 2009). Bulk preparations of mammalian Hsp70
from cells contain not only the inducible, HSPA1A, but products
from other genes as well. And this may also influence the outcome
of the experiment. Finally, binding and internalization, followed
by antigen presentation, may lead to inflammatory as well as to
regulatory responses, depending on which receptor is engaged, as
demonstrated in a recent study (Li et al., 2012). The authors ver-
ified that targeting an antigen to LOX-1 or DC-ASGPR on the
surface of DCs led to internalization and cross-presentation of
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FIGURE 1 | Hsp70 can interact directly with innate immune cells.

(A) A possible mechanism of the Hsp70 action is its interaction with
dendritic cells (DCs), myeloid-derived suppressor cells (MDSCs), and
monocytes. Hsp70 would bind to endocytic receptors, and be endocytosed,
gaining access to routes of antigen presentation, modulating the cell
phenotype toward a tolerogenic one, leading to the production of the
anti-inflammatory cytokine IL-10 and consequently to immunosuppression.

In DCs, Hsp70 downregulates CD86 and MHC class II expression,
and inhibits TNF-α production. Also, Hsp70 can inhibit IFN-γ by
monocytes. (B) Upon binding to an endocytic, Hsp70 signals through
TLR2, resulting in MyD88 activation. The subsequent phosphorylation
of ERK can trigger the activation of an undetermined transcription
factor that will bind the il-10 gene promoter leading to IL-10
production.

the antigen. However, while targeting to LOX-1 resulted in INF-
gamma producing T cells, targeting to DC-ASGPR resulted in
IL-10 producing CD4 T cells. Thus, it is possible that, depend-
ing on the form of extracellular Hsp70 and the target cell/tissue
microenvironment, different outcomes may ensue. If this possi-
bility is verified experimentally, that would in part explain some of
the conflicting results previously discussed here. We are now left
with the challenge to test these possibilities in order to elucidate
the whole potential of Hsp70 as an immunomodulatory agent.

ADAPTIVE IMMUNITY REGULATION BY Hsp70
Besides the innate effects discussed above, several adaptive immu-
nity associated mechanisms have been proposed for induction of
Hsp-specific Tregs under physiological conditions.

The role of Hsp70 in adaptive immunity to mediate suppression
through Tregs could be related to presentation of Hsp70 peptides,
or to the modulation of the innate environment as described in
the previous section, leading to the induction of Tregs.

The presentation of Hsp70 peptides in MHC molecules could
result either from overexpression of endogenous Hsp70 in situa-
tions of physiological stress, or from endocytosis of extracellular
Hsp; In response to physiological stress, intracellular levels of
Hsp70 will rise in the stressed cells which can lead to presentation

of Hsp peptides on MHC class I via the default MHC loading
route for cytosolic proteins. This pathway includes degradation
of the protein by the proteasome, transporter associated with
antigen presentation (TAP) mediated translocation to the endo-
plasmic reticulum and subsequent loading of the peptides on
MHC class I molecules (Neefjes et al., 2011). As will be discussed
in more detail below, it is now becoming clear that via autophagy,
intracellular Hsp can also be loaded on MHC class II molecules.
Peptides derived from extracellular Hsp (pathogen-associated or
secreted endogenous Hsp) can be presented via endocytic path-
ways by MHC class II molecules on APCs or on non-APCs upon
stimulation with factors like IFNγ.

The mechanisms leading to production of Hsp-specific Treg can
be manifold. Continuous encounter of bacterial-Hsp, in mucosal
surfaces such as the gut can be a way to induce bacterial-Hsp-
specific Treg, contributing to Hsp-specific mucosal tolerance (van
Eden et al., 2005, 2007). Another possibility is the up-regulation of
self-Hsp on non-professional APCs in response to various forms
of stress in tissues. In the gut lamina propria of many species,
MHC class II is also found to be present on non-professional
APCs (Stokes et al., 1996). In addition, the inflammatory medi-
ator IFN-γ is known to induce MHC class II in various cell types.
Thus, MHC class II presentation of Hsp fragments in the absence
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of proper co-stimulation may add to the production of tolero-
genic or regulatory T cell responses. In addition, presentation of
self-Hsp70 conserved peptides in presence of TGF-β (Sela et al.,
2011) could lead to Treg induction and/or expansion (Rosen-
blum et al., 2011). Also, because some self-Hsp70 peptides are
not completely identical to their bacterial homolog peptides, such
presented self-peptides could function as altered peptide ligands
for bacterial-Hsp-specific cells leading to induction of a partially
agonistic and therefore downmodulated T cell response (Wauben
et al., 1993). Finally, induction of Treg might be reinforced by the
increased levels of the immunoregulatory cytokine IL-10, induced
upon stress in multiple tissues (Stordeur and Goldman, 1998).

AUTOPHAGY, LOADING Hsp PEPTIDES ON MHC CLASS II
To activate CD4+ T cells, peptides should be presented by MHC
class II molecules. Cytosolic proteins, like Hsp70, are by default
loaded on MHC class I molecules while extracellular proteins
will be presented on MHC class II. Thus, another fundamental
question can be raised; how do Hsp peptides end up to become
presented by MHC class II? The distinct localization between MHC
class I and MHC class II loading pathways has been proven incor-
rect because cytosolic proteins have been eluted from MHC class
II and vice versa (Schmid et al., 2007). Autophagy has been ini-
tially found as a process to sustain metabolic fitness during food
deprivation through bulk protein degradation (Kuma et al., 2004).
The role of autophagy in the immune system is only now becom-
ing clear (Schmid and Munz, 2007; Munz, 2009). Two pathways
can result in loading of intracellular peptides on MHC class II.
First, intracellular proteins can be incorporated in autophago-
somes that subsequently fuse with lysosomes for degradation of
their cargo (macroautophagy). In addition, cytosolic proteins can
be transported via LAMP2a directly into the lysosome (chap-
erone mediated autophagy; Munz, 2006; Schmid et al., 2007;
Strawbridge and Blum, 2007). Recently, the role of autophagy
in loading Hsp70 peptides has been described; in human HLA-
DR4+ B cells a striking increase of especially Hsp70 peptides was
eluted from HLA-DR4 upon induction of autophagy by amino
acid deprivation (Dengjel et al., 2005). Autophagy induction coin-
cided with elevated Hsp70 mRNA levels. In other words, especially
under conditions of cell stress, fragments of Hsp70 will be pre-
sented on APCs to T cells, possibly initiating a regulatory T cell
response.

PHENOTYPE OF Hsp-SPECIFIC Treg
The phenotype of Hsp-specific Treg has not been studied in
detail. However, since Hsp-specific T cells have been observed
in cord blood, some of them will probably be thymus derived
CD4+CD25+Foxp3+ natural Treg (Sakaguchi et al., 1995; Tang
and Bluestone, 2008). Also, Hsp-specific Treg can be induced
in the periphery, which potentially leads to induction of several
induced Treg subsets. For example, Foxp3− Tr1 cells, which are
induced by repetitive stimulation with antigen in the presence
of IL-10 (Groux et al., 1997; Roncarolo and Battaglia, 2007).
Alternatively, mucosal exposure of Hsp can produce iTregs,
expressing a CD4+CD25+Foxp3+ phenotype (Chen et al., 1994;
Weiner, 2001). Or, conversion of naïve CD4+CD25-Foxp3− cells
into induced CD4+CD25+Foxp3+ can occur in the presence

of IL-2 and TGF-β at low levels of pro-inflammatory cytokines
(Horwitz et al., 2008).

The phenotype of the Hsp-specific Treg may depend on
the exposure route. Intraperitoneal (i.p.) immunization with
endotoxin-free TB-Hsp70 or OVA as a control resulted in
CD4+CD25+ T cells from Hsp70 immunized mice expressing
slightly enhanced levels of regulatory cytokine IL-10, but not
increasingly expression of Foxp3 (Wieten et al., 2009a). In contrast,
in a study in a mouse atherosclerosis model, oral Hsp admin-
istration increased Foxp3 expression (van Puijvelde et al., 2007).
Enhanced Foxp3 expression, both systemically in the spleen and
locally in the inflamed joint, was also found upon up-regulation
of endogenous Hsp70 in Peyer’s patches of carvacrol (a co-inducer
of Hsp70) fed mice (Wieten et al., 2010). The finding that Foxp3
levels were increased in cells obtained from joint synovial fluid
suggested that induced Treg could have actually migrated to the
site of inflammation.

In a recent study, after local injection of whole TB-Hsp70,
a higher percentage of CD4+CD25+Foxp3+ cells in draining
lymph nodes compared with local injection with OVA was
observed. Moreover, TB-Hsp70 inhibition of lymph node cell
proliferation was superior to the inhibition induced by dex-
amethasone after PHA stimulation. The authors also observed
that inhibition of acute rejection induced by TB-Hsp70 was
dependent on CD4+CD25+ T cells in a skin allograft model
(Borges et al., 2010).

To study the phenotype of Hsp-specific Treg in more detail, the
expression of the transcription factor Helios in Tregs elicited by
Hsp70 treatment, to verify if they are nTregs or iTregs (Thorn-
ton et al., 2010), since peripherally induced Tregs do not usually
express this molecule. It will also be interesting to see if T cells
found at the site of inflammation are Hsp70 specific, and if they
indeed express special homing receptors. Future studies should
tell us the relative proportions of nTregs and iTregs in Hsp70-
specific Tregs, as well as what are the mechanisms by which they
can mediate suppression in each of these models.

SUPPRESSIVE MECHANISM OF Hsp-SPECIFIC Treg
Hsp-specific Treg will probably use similar suppressive mech-
anisms as other antigen-specific Treg, like the production of
anti-inflammatory cytokines, cell contact dependent suppression
or killing of effector T cells and conversion of APC into a tolero-
genic state (Vignali et al., 2008). Most Treg subsets use IL-10 for
suppression (Bluestone, 2005). It has been recently demonstrated
that Treg IL-10 is important for local responses, and not for the
systemic suppression of inflammation (Rubtsov et al., 2008). In
previous studies, we showed that cross-reactive Hsp-specific T cell
responses coincided with the production of IL-10 (Anderton et al.,
1995; Wendling et al., 2000; Prakken et al., 2001). Subcutaneous
injection of soluble TB-Hsp70 increased IL-10 production and the
number of Tregs in draining lymph nodes when compared with
OVA injection (Borges et al., 2010). Moreover, while addressing
the role of IL-10 in modulation of Proteoglycan-induced arthritis
(PGIA) upon i.p. immunization with TB-Hsp70 and after nasal
administration of Hsp70 peptides, it was observed that both treat-
ment strategies enhanced Hsp70-specific T cell proliferation and
IL-10 production. TB-Hsp70 immunization failed to rescue IL-10
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deficient mice from PGIA development. In both wild type and IL-
10 deficient mice, Hsp70-specific T cell responses were found,
but only in wild type mice these responses suppressed arthri-
tis (Wieten et al., 2009a). In addition, increased PG-specific T
cell proliferation, IFN-γ and IL-10 production were found in
wild type, but not in IL-10 deficient mice. This illustrates that
Hsp70 immunization also modified the PG response to a more
anti-inflammatory response. It is therefore possible that Hsp70-
induced Tregs generated a tolerogenic micro-milieu by their
cytokine production that enabled the outgrowth of new Tregs with
antigen specificities beyond Hsp and that IL-10 was required for
this effect.

These findings emphasize that Hsp-specific Tregs use mech-
anisms of infectious tolerance for modulation of inflammation.
This has been shown before in transplantation (Qin et al., 1993;
Borges et al., 2010), type-1 diabetes (Tarbell et al., 2007), and
experimental autoimmune encephalomyelitis (EAE; Mekala et al.,
2005) models. Besides IL-10, the role of other cytokines associ-
ated with Tregs, like IL-35 has not been addressed but might be
relevant.

HOW IMPORTANT IS STRESS-INDUCED Hsp EXPRESSION?
Hsp expression is up-regulated in virtually every inflammatory
condition. Also in autoimmune disease this has been reported;
enhanced expression of Hsp60 has been shown in synovial and
mononuclear cells of juvenile idiopathic arthritis (JIA) patients
(Boog et al., 1992; de Graeff-Meeder et al., 1995). In addition,
increased expression of inducible Hsp70 and HSF1 has been shown
in the inflamed joint of RA patients (Schett et al., 1998). This
has also been seen for BiP, an ER restricted Hsp70 family mem-
ber (Blass et al., 2001) and interestingly enhanced expression in
RA synovium was also seen for the constitutive Hsc70 (Schick
et al., 2004).

As mentioned before, stress-induced Hsp expression has been
proposed to be important for induction, maintenance, and activa-
tion of Hsp-specific Treg. If indeed so, reduced expression of Hsp
– like with aging, as also depicted in Figure 2, where a reduced
HSF activity leads to a relatively poor capacity to up-regulate
Hsp (Rao et al., 1999; Njemini et al., 2003) – can be expected to
influence Hsp mediated immune homeostasis and therefore might
contribute to development of chronic inflammatory diseases. In
fact, Hsp70 polymorphisms have been associated with inflam-
matory or autoimmune diseases such as Crohn’s disease (Debler
et al., 2003), Alzheimer’s disease (Clarimon et al., 2003), pancreati-
tis (Balog et al., 2005) and with development of graft versus host
disease upon allogeneic hematopoietic stem cell transplantation
(Bogunia-Kubik and Lange, 2005).

Decreased Hsp expression has been observed in several immune
disorders. A low Hsp70 response has also been described in
a subtype of Biobreeding (BB) rats with a high susceptibility
for development of autoimmune (Bellmann et al., 1997). Sim-
ilar results have been found in human PBMC from patients
with newly diagnosed type-1 diabetes. In that study, stress
responses were found to become re-established again in patients
with longstanding diabetes, more than 8 months after disease
manifestation. So, defective Hsp70 induction coincided with
beta cell directed inflammatory activity, and seemed modulated

by pro-inflammatory cytokines rather than metabolic factors
(Burkart et al., 2008).

To amplify stress-induced Hsp70 expression, a study tested
multiple food-derived compounds for their effect on Hsp70
expression (Wieten et al., 2009b). One of the compounds, car-
vacrol, was identified as a potent enhancer of stress-induced Hsp70
both in vitro and in vivo. Also in vivo, intragastric (i.g.) gavage of
carvacrol enhanced Hsp70 expression in Peyer’s patches (Wieten
et al., 2010). Carvacrol was used to boost Hsp levels in APCs and
this enhanced Hsp-specific T cell hybridoma activation. We also
addressed the immunomodulatory potential of carvacrol in vivo
and found that i.g. carvacrol treatment specifically boosted Hsp70-
specific T cell responses. The finding that adoptive transfer of T
cells, isolated from carvacrol treated donor mice, suppressed PGIA,
were indicative of the induction of Treg.

The above mentioned findings suggested that the immune
system can recognize and react on altered expression of these
proteins.

PERSPECTIVES
Hsp expression or Hsp-specific T cell responses have been posi-
tively associated with a better disease prognosis in several inflam-
matory conditions (de Graeff-Meeder et al., 1991; de Kleer et al.,
2003). In addition, the immunosuppressive action of Hsp has
been demonstrated in multiple rodent disease models. So, it
is attractive to speculate that simply enhancing Hsp mediated
immunoregulation in either way could be used as therapy.

Apparently, this is oversimplified. Depending on multiple fac-
tors such as disease etiology and inflammatory status, patient age
and genetic background, difficulties will be encountered. In gen-
eral, defects in for example positive or negative selection in the
thymus, IL-2 production by effector T cells or IL-10 or TGF-β
production by Tregs can lead to loss of peripheral tolerance as a
result of decreased T cell numbers or functioning (Brusko et al.,
2008). Some of these defects might also influence Hsp-specific
Treg. For example, the findings that Hsp70-induced suppression
of arthritis failed in the absence of IL-10 (Wieten et al., 2009a),
illustrated that defects in IL-10 production will also influence Hsp-
specific Treg. Furthermore, as disease progresses, severe ongoing
inflammation has been described to obstruct the effectiveness of
antigen-specific Tregs (Valencia et al., 2006; Peluso et al., 2007). It
is currently not known if Hsp-specific Treg can also be hampered
by ongoing inflammation. Recent experiments performed by us
(Lotte Wieten, Martijn J. C. van Herwijnen, Femke Broere, Ruurd
van der Zee, and Willem van Eden) have indicated that this is not
the case, however. Transfer of Hsp70 peptide-induced Tregs were
found to suppress ongoing experimental arthritis (van Herwijnen
et al., in preparation). Recently, it has been reported that iTreg but
not natural Treg can convert into Th17 cells after exposure to IL-6
and TGF-β (Horwitz et al., 2008). Besides Th1 cells, Th17 cells
are major pathogenic effector cells in many autoimmune diseases.
Whether Hsp-specific Treg can convert into Th17 cells has not been
studied, but if so, timing and route of boosting the Hsp response
could be important to avoid exacerbation of disease instead of
induction of regulation.

Earlier studies have emphasized the pro-inflammatory nature
of stress proteins such as the Hsp70 family members. In this
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FIGURE 2 | Hsp-specific immunoregulation in the healthy and aged

immune system. Self-Hsp-specific T cells reside in the circulation after
escape from central tolerance in the thymus. Since Hsp are highly conserved,
these self-Hsp-specific T cells can cross-recognize bacterial-Hsp. This T cell
population can be expanded after exposure to bacterial-Hsp at mucosal
surfaces like the gut or during infection. At mucosal surfaces, these T cells
will be directed toward a regulatory phenotype through mechanisms of
mucosal tolerance. In addition, Treg induction and maintenance will be
promoted by stress-induced Hsp expression in peripheral tissues, because
up-regulation of self-Hsp and presentation of Hsp peptides by MHC class II

can occur in the absence of co-stimulation. Treg induction will be enhanced by
IL-10 produced in response to stress. Furthermore, self-Hsp peptides can
function as altered peptide ligands for bacterial-Hsp-specific T cells. During
inflammation, Hsp will be induced and presented on professional APCs at the
inflammatory site, leading to full activation of Hsp-specific Treg and local
dampening ongoing inflammation. In the aged immune system,
stress-induced Hsp expression is decreased. Therefore, reduced Hsp
inducibility will probably influence both the induction of Hsp-specific Treg in
the periphery and their activation during inflammation. Ultimately, this could
result in reduced Treg numbers and function.

sense, they were often mentioned as prime examples of so-
called DAMPs or damage-associated molecular patterns. It is
possible that contaminating microbial components present in
partially purified recombinant proteins used in the experiments
have contributed to this (Bausinger et al., 2002; Gao and Tsan,
2004; Motta et al., 2007). Besides this, there are other argu-
ments to make against a pro-inflammatory role of Hsp (Broere
et al., 2011). As discussed here above, experimental evidence in
favor of an immunomodulatory role for Hsp70 is accumulat-
ing and therefore Hsp70’s immunosuppressive potential seems to
constitute a real phenomenon. A more detailed characterization
of the molecular pathways activated by Hsp70 in different cell

subpopulations is needed. Such studies will allow us to under-
stand and maximize the use of Hsp70 as an anti-inflammatory
agent.
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