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To endow the immune system with the capacity to fight cancer has always attracted
attention, although the clinical results obtained have been until recently disappointing.
Cutaneous melanoma is a highly immunogenic tumor; therefore most of the attempts to
produce cancer vaccines have been addressed to this disease. New advances in the com-
prehension of the mechanisms of antigen presentation by dendritic cells, in the immune
responses triggered by adjuvants, as well as the understanding of the role of immuno-
suppressor molecules such as cytotoxicT-lymphocyte antigen-4 (CTLA-4), which led to the
recent approval of the anti-CTLA-4 monoclonal antibody ipilimumab, have opened new
hopes about the installment of immunotherapy as a new modality to treat cancer.
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The human immune system is highly elaborated, with a diver-
sity of stop and go mechanisms necessary to accomplish different
tasks, encompassing clear “stop” situations, such as those needed
to avoid fetal rejection during pregnancy, and permanent “go” sta-
tus, necessary to combat infections by virus, bacteria, or fungi.
Both mechanisms are in place or may be activated in a healthy
organism, and distinction of “self” and “foreign” is essential to
accomplish these tasks. Being cancer a disease generated by autol-
ogous cells, is it possible to teach the organism to fight it? In this
review, which does not intend to be exhaustive, we shall discuss
some of the most explored fields of research which aim to fight
cancer through stimulating or inhibiting some specific targets of
the immune system.

IMMUNE STIMULATION BY CANCER VACCINES
The rationale of using therapeutic vaccines in cancer began in
the 1950s, when the fact that tumors express specific antigens
(Ag) was demonstrated (Foley, 1953; Prehn and Main, 1957).
Thus, immunity to cancer might be acquired, and the idea of
developing cancer vaccines started. Most of the work in this field
was performed on cutaneous melanoma (CM), which originates
from melanocytes, melanin-containing cells that are responsible
for pigmentation and protection against UV DNA damage, and it
is a tumor with rising incidence worldwide (Siegel et al., 2012).
Although CM is curable by surgical resection if detected in the
early stages (Breslow Index <2 mm depth), once it metastasizes
its prognosis worsens, and it is refractory in the long-term to
most current therapies (Gray-Schopfer et al., 2007). Different
lines of evidence suggested that CM is an immunogenic tumor,
mainly demonstrated by the existence of regressions in primary
tumors and by the correlation between the presence of “brisk”
lymphocytic infiltrates in primary tumors and longer survival
(Clemente et al., 1996). Early work on CM vaccines was per-
formed by Morton et al. (1968, 1970), Seigler et al. (1975), and by
Berd and Mastrangelo (1988a,b), who used autologous irradiated

melanoma cells as vaccines. After these pioneer attempts, several
melanocytic differentiation Ag (MD-Ag) were discovered, such as
MelanA/MART-1 (MART-1; Coulie et al., 1994; Kawakami et al.,
1994a), gp100/PMEL17/silver (gp100; Kawakami et al., 1994b),
tyrosinase (Brichard et al., 1993); tyrosinase-related protein-2
(trp-2; Wang et al., 1996), MELOE-1 (Godet et al., 2008), and a
group of cancer-testis Ag (CT-Ag), such as the MAGE super-family
and NY-ESO-1 (van der Bruggen et al., 1991; Chen et al., 1997).
Besides these Ag, recent genomic work performed in human CM
revealed dozens of mutations present in the melanoma genome,
many of them residing in exons (Chin et al., 2006; Dutton-Regester
and Hayward, 2012). The development of new high-throughput
technologies, such as next-generation sequencing, will lead to a
better knowledge of the battery of mutations present in different
types of cancer and, particularly, in each patient. Somatic muta-
tions that occur with very low frequencies may be detected, as
well as other types of aberrations, including translocations and
epigenetic changes (Ross and Cronin, 2011). Castle et al. (2012)
identified somatic point mutations in B16F10 murine melanoma
cell line using next-generation sequencing. Immunogenicity of 50
validated mutations was assayed by immunizing mice with pep-
tides encoding for the mutated epitopes, founding that one third
of them were immunogenic.

Therefore, and considering the failure of most chemotherapeu-
tic treatments, immunotherapy presents as a promising option.
Until recently, the still fully unanswered question was whether
humoral or cellular immune response would be more convenient
to eradicate tumors in general and CM in particular. In a phase
III randomized clinical study performed in 880 CM patients, a
vaccine of GM2 ganglioside coupled to Keyhole Limpet Hemo-
cyanin and using QS-21 as adjuvant, which induced IgM and IgG
antibodies, was compared with high-dose interferon-alfa. The vac-
cination arm did worse than the interferon arm, and the assay was
interrupted before completion (Kirkwood et al., 2001). However,
when the effort was placed in the stimulation of cellular immunity,
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initial results were also disappointing. Thus, several clinical trials
in stages IIB–IV CM patients utilizing vaccination with multiple
peptides derived from MD-Ag (MART-1, gp100, and tyrosinase),
and from CT-Ag (MAGE), had also limited success in CM patients
(Rosenberg et al., 2004; Terando et al., 2007; Slingluff et al., 2008).
It appears clear therefore that the optimal delivery of tumor Ag, in
the presence of appropriate adjuvants, has not yet been found. In
view of the multiplicity of possible Ag present in CM, mutated,
and non-mutated, an approach has been to use vaccines con-
sisting of irradiated whole tumor cells, which contain most of
tumor Ag, giving the immune system the opportunity to process
all of them (Barrio et al., 2006; von Euw et al., 2007, 2008). The
rationale assumption is that vaccination with a single or a few
tumor Ag would not be sufficient to eradicate tumors, even if
CD8+ and CD4+ cells are generated and are efficient in killing
Ag-positive tumor cells, since we and others have shown that Ag-
negative cells are present in most primary and metastatic CM and
would soon repopulate the tumor (Koebel et al., 2007; Aris et al.,
2012). The original approach of using autologous cells as vac-
cines (Berd and Mastrangelo, 1988a) has two major disadvantages:
first, patients must have heavy metastatic disease to obtain enough
cells after surgery to manufacture vaccines, and are therefore rel-
atively advanced stage of the disease; second, reproducibility in
vaccine preparation is difficult to attain, since different patients
have different tumor masses and cell yields are quite diverging. A
significant advance in the vaccination field was achieved when it
was demonstrated that the addition of the cytokine GM-CSF to
vaccines increased the immune response against tumors (Dranoff
et al., 1993). Several clinical trials have thereafter used GM-CSF
to increase immunogenicity. Luiten et al. (2005) used autologous
melanoma cells transduced with a GM-CSF-producing retrovirus,
and observed in some patients that tumor sites became infiltrated
with lymphoid cells. Also, Soiffer et al. (2003) used as vaccines irra-
diated autologous melanoma cells transduced with an adenovirus
containing the GM-CSF gene. In this trial, immune reactivity at
tumor sites was also observed, but all tested patients developed
anti-adenovirus antibodies. We therefore decided to use as ther-
apeutic vaccine a mixture of irradiated allogeneic melanoma cell
lines, with BCG as adjuvant and injecting at the vaccination site
GM-CSF coincidently with the vaccines; in this way we could
exactly determine the amount of injected GM-CSF, and thus avoid
the uncertainty of the amount and length of GM-CSF produc-
tion by irradiated tumor cells. Using this approach in a Phase I
clinical trial including 20 CM patients in stages III and IV, we
obtained 70% of relapse-free survivors in stage III CM patients
after a median follow-up of 106 months (Barrio et al., 2006). A
similar vaccine (CSF 470) is now being assayed in a randomized
Phase II/III clinical study, in which CSF470 plus GM-CSF and BCG
as adjuvants is compared with IFN-alfa in stages IIB, IIC, and III
CM patients.

The overall evidence has been shifting to the concept that
immunity against CM should rely more on the development of
specific CD8 and CD4 cells rather than on antibodies. The ratio-
nale of vaccination with tumor Ag, either in the form of Ag
peptides, whole tumor cells, or cell lysates, is that such Ag should
be captured by dendritic cells (DC), first described by Steinman
and Cohn (1973) in murine lymphoid organs, and later found
to be potent stimulators of naïve lymphocytes (Steinman and

Witmer, 1978). Subsequent work demonstrated that DC partic-
ipate in the afferent and efferent limbs of the immune response,
each requiring Ag presentation and MHC restriction. When study-
ing Langerhans cells, a distinct type of DC present in epidermis,
Schuler and Steinman (1985) demonstrated that DC may exist in
two states: immature DC, which are able to phagocytose Ag but
not to process and present them to naïve lymphocytes, and mature
DC, which have lost the ability to capture Ag but present processed
Ag with great efficacy. The generally accepted pathways that DC
use to activate naïve lymphocytes involves several steps: (i) capture
of Ag in the periphery; (ii) maturation and migration of DC to
draining lymph nodes; (iii) settling of DC in the lymph nodes and
activation of naïve lymphocytes. Some of these steps have been
analyzed to some detail in mice, although evidence in humans
is still lacking. Thus, Eggert et al. (1999) demonstrated that only
about 1% of subcutaneously injected DC migrate to lymph nodes,
although resident Langerhans cells, after immunization in vivo,
migrate in high numbers to lymph nodes and persist there for
about 2 weeks (Garg et al., 2003). It may be thus concluded that
in vivo migration of DC is substantially more efficient than migra-
tion after DC production in vitro and subcutaneous injection,
which could hamper vaccination attempts with DC loaded with
tumor Ag. After this scarce migration of injected DC to regional
lymph nodes, they must still overcome another difficulty: to find
the appropriate T cells expressing the adequate TCR while main-
taining bound to their HLA molecules the Ag peptides long enough
to induce long-lasting contacts (Hugues et al., 2004). In fact, a
clinical study comparing DC charged with tumor peptides or cell
lysates demonstrated that only the latter were capable of induc-
ing immune responses (Hersey et al., 2004). An explanation for
these results came recently, since it has been shown that Ag pep-
tides induced a quicker and stronger, but less prolonged response,
than larger Ag peptides that are taken up by DC and degraded
inside the cells (Faure et al., 2009). Recently, several approaches
have taken profit of the ability of DC to capture foreign Ag, among
them tumor Ag, and present them to naïve lymphocytes (Gold-
szmid et al., 2003; Liu et al., 2005). In humans, Palucka et al.
(2006) demonstrated that autologous DC were able to capture
killed cells from an allogeneic tumor cell line and induce CD8+
T cell responses in 20 stage IV CM patients, leading to one com-
plete and one partial response. Our group has demonstrated that
autologous DC could capture a mixture of apoptotic and necrotic
allogeneic melanoma cells, subsequently mature and cross-present
MD-Ag to CD8 T cell clones (von Euw et al., 2007). von Euw et al.
(2008) also performed a clinical study in CM patients demon-
strating that up to 1% anti-MART-1 and anti-gp100 CD8 T cell
lymphocytes could be found in circulating blood after vaccination.
Although 80% of Stage III patients attained a disease-free survival
longer than 116 months, all stage IV patients relapsed. None of
the approaches used so far could demonstrate that injected DC
charged with apoptotic/necrotic tumor cells in humans are able to
migrate efficiently to draining lymph nodes and establish a cor-
rect communication with naïve lymphocytes. The duration of the
in vivo tumor Ag exposure by DC has also not been thoroughly
studied in humans, as well as the number of CD8 cytotoxic T cells
formed. A selection of different completed phase III clinical trials
consisting in immunotherapeutic approaches against melanoma
is shown in Table 1.
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Table 1 | Immunotherapies against cancer: completed phase III clinical trials in CM.

Type of treatment Type of cancer Clinical trial

phase

Adjuvants used Clinical results

obtained

Reference

E
nh
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ng
im

m
un

e
re

sp
on

se

Ganglioside vaccine

GMK vs. high-dose

IFN-alpha2b (HDI) E1694

Melanoma stages IIb/III III KLH – QS-21 PFS and OS benefit

with HDI vs. GMK

Kirkwood et al.

(2001)

Peptide vaccines

Gp100 vaccine + high dose

IL-2 vs. high dose IL-2

NCT00019682

Melanoma stage IV and

unresectable stage III

III IFA (Montanide

ISA 51)

Longer PFS vs. high

dose IL-2, no significant

improvement in OS

Schwartzentruber

et al. (2011)

Vitespen (autologous

tumor-derived heat shock

protein gp96 peptide complex

vaccine) NCT00039000

Melanoma stage IV III None No changes in OS vs.

physician choice

Testori et al. (2008)

Whole cell vaccines

Canvaxin + BCG vs.

placebo + BCG NCT00052156

Melanoma stage IV III BCG No change in OS vs.

BCG

Commented in

Sondak et al. (2006),

Dalgleish (2011)

C
ou

nt
er

in
g

im
m

un
os

up
pr

es
si

on

CTLA-4

Ipilimumab vs.

Ipilimumab + gp100 vs. gp100

NCT00065442

Melanoma stage IV and

unresectable stage III

III IFA (Montanide

ISA-51) in vaccine

groups

Improved OS

ipilimumab alone or

+gp100 vs. gp100 alone

Hodi et al. (2010)

Ipilimumab + dacarbazine vs.

placebo + dacarbazine

NCT00324155

Melanoma stage IV and

unresectable stage III

III None Longer OS with ipili-

mumab + dacarbazine

Robert et al. (2011)

PFS, progression free survival; OS, overall survival.

Up to date, the only vaccine approved for cancer treatment
is Provenge (sipuleucel-T), a vaccine for advanced prostate can-
cer which consists of a mixture of peripheral blood mononuclear
cells exposed to prostatic acid phosphatase fused to GM-CSF. In
a phase III clinical trial, the use of Provenge prolonged overall
survival in patients with metastatic castration-resistant prostate
cancer (Kantoff et al., 2010), but no effect on time to disease
progression was observed. Provenge hypothesized mechanism for
antitumor activity is that Ag-presenting cells (APC) process and
present the recombinant Ag on their surface. After being reinfused
into the patient, these cells could activate T cells that recognize the
specific Ag and, therefore, stimulate them to attack prostatic acid
phosphatase-positive prostate cancer cells (Sonpavde et al., 2012).
This proposed mechanism requires further validation. There are
several critiques to this vaccine related with the fact that improved
overall survival was not accompanied with measurable antitumor
effect and with the lack of supportive evidence for the mecha-
nism proposed. After reanalysis of phase III data and of previously
unpublished data obtained from FDA documents, Huber et al.
(2012) made some concerns about this recently approved vac-
cine. In the first place, unexpected interactions between patient
age and survival were found: an 11-month difference in median
overall survival between placebo patients younger and older than
65 years was observed, and sipuleucel-T treatment appeared to
have only a positive effect in survival of older patients. These
results were unexpected because age is not a prognostic factor
in castration-resistant prostate patients under chemotherapeu-
tic treatment and immunotherapies should be more effective in
younger patients. Other important point is that patients in the

placebo group appeared to have shorter overall survival than might
be expected from other studies, which led to think that placebo
treatment is actually an inappropriate control for sipuleucel-T.
Huber et al. also discussed the manufacture protocol of the vac-
cine and the placebo, suggesting that the placebo protocol included
steps that could contribute to cell killing and therefore, injection of
dead cells in patients of the placebo arm could lead to a reduction
in overall survival (OS).

Besides this vaccine in particular, the reasons that could
explain why therapeutic cancer vaccines do not act as well as
expected are multiple. Finding the right adjuvants and countering
immunosuppression are possible keys to bypass such limitations.

ADJUVANTS
A successful vaccination requires the addition to the desired Ag
of adjuvants, which serve as amplifiers of the immune response.
Adjuvants for clinical use must equilibrate efficacy with safety,
although this balance should also integrate the purpose of vaccina-
tion: it is not the same scenario to vaccinate preventively millions
of people against a viral disease such as influenza, than to vacci-
nate therapeutically a much more limited population with cancer,
as would be the case of CM patients. In the latter case, a certain
degree of toxicity of the adjuvants could be tolerated if the anti-
tumor effect of vaccines is enhanced. We are still largely ignorant
of the mechanism of action of adjuvants. The extremely potent
complete Freund adjuvant (CFA) and incomplete Freund adju-
vant (IFA) have been used for decades (Freund, 1956), but in
spite of their potency, their use is not allowed in humans due
to toxicity, since they may lead to harmful local injuries and
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autoimmune diseases. Essentially, IFA is paraffin oil suspended
in water, and in addition, CFA contains heat-killed Mycobacte-
ria, usually M. tuberculosis. Although used by immunologists for
decades, the mechanisms of action of IFA and CFA are barely
understood and are still being analyzed (Billiau and Matthys,
2001). Since IFA and CFA are potent but toxic, mineral oil has
been replaced by terpenoids, among them the lipophilic substance
squalene, a triterpene found in the adjuvants MF59 and AS03.
Both have been used in clinical trials with a good safety profile
and have been approved in Europe and conditionally approved
in the US as stockpiled adjuvants in the pandemic influenza (Fox
et al., 2011). Montanide™incomplete Seppic adjuvant (ISA) 51
and 720 are water-in-oil emulsions similar to IFA that are under
investigation for their use in humans. Montanide™ISA 51 con-
tains a mannide monooleate emulsifier and a degradable mineral
oil, which has been demonstrated to be non-carcinogenic, non-
teratogenic, and non-mutagenic. To improve safety, the mineral
oil has been switched in Montanide™ISA 720 to the metabolizable
squalene oil (Aucouturier et al., 2006).

Also, QS-21, a water-soluble triterpene glycoside, has been used
in clinical trials (Soltysik et al., 1995; Livingston et al., 1997; Kensil
and Kammer, 1998). Novel isoprenoid immunostimulants, such
as those phytol-derived, are also being analyzed (Chowdhury and
Ghosh, 2012).

Aluminum salt/gel-based (Alum) adjuvants are approved for
clinical use in the US and have been used for many years
as immunopotentiator for vaccines, being particularly effective
to promote protective humoral immunity (Schijns and Lavelle,
2011). However, Alum adjuvants do not induce a T helper type 1
cell-mediated immune response.

A great input to understand the mechanism of action of adju-
vants came after the seminal finding by Hoffman’s group of
the immune function of Toll receptors in flies (Lemaitre et al.,
1996). The identification of toll like receptors (TLR) in mam-
mals, of which more than 10 different varieties are now rec-
ognized, paved the way to understand the importance of the
innate immune response to Ag, and the subsequent interactions
between the innate and adaptive immune system (Medzhitov et al.,
1997). Specially important was the finding by Beutler’s group
that TLR4 recognizes pathogen-associated molecular patterns
(PAMPS) such as those present in the bacterial lipopolysaccharide
(LPS; Poltorak et al., 1998). From that point on, the appropri-
ate search and use of adjuvants has acquired a more rational
basis (for a review, see Duthie et al., 2011). Other mechanisms
of TLR recognition of foreign molecules, such as TLR3 bind-
ing of double-stranded RNA present in virus, have been discov-
ered and originated the synthetic adjuvant double-stranded RNA
polyriboinosinic–polyribocytidylic acid (poly I:C; Trumpfheller
et al., 2008).

Treg: IMPLICATIONS FOR IMMUNOTHERAPY
Regulatory T (Treg) cells are a subpopulation responsible for con-
trolling immune homeostasis, maintaining T cell tolerance to self
Ag. Treg-mediated immunosuppression is thought to be one of the
most important mechanisms of tumor immune evasion and prob-
ably a main obstacle for effective cancer immunotherapies (Zou,
2006).

Treg represent 5–10% of the CD4 T cells in peripheral blood
(Loser and Beissert, 2012). They are characterized by the consti-
tutive expression of CD25 (IL-2 receptor alpha-chain) and by the
expression of the transcription factor forkhead box P3 (FOXP3),
crucial for Treg development and function (Fontenot et al., 2003).

Treg are augmented in peripheral blood of CM patients (Cesana
et al., 2006; Jandus et al., 2008; Correll et al., 2010) and they
are also highly enriched in the tumor microenvironment (Jacobs
et al., 2012) exerting an immunosuppressive function (Javia and
Rosenberg, 2003; Vence et al., 2007). In tumor infiltrating lym-
phocytes (TIL) from different types of tumors, Treg were identi-
fied as they expressed CD25, FOXP3 and glucocorticoid-induced
tumor necrosis factor receptor (GITR) and presented a suppressive
function (Wang et al., 2004; Kiniwa et al., 2007).

Curiel et al. (2004) reported that accumulation of Treg in the
tumor microenvironment was associated with death hazard and
reduced survival of ovarian cancer patients. However, the corre-
lation between Treg and prognosis in CM patients is still under
debate. Some studies showed that an elevated percentage of Treg

in primary melanoma and metastasis predicted recurrence and
reduced overall survival (Miracco et al., 2007; Knol et al., 2011),
while others did not found such correlation (Hillen et al., 2008;
Ladanyi et al., 2010).

Treg can be classified in natural Treg (nTreg) and inducible Treg

(iTreg). nTreg, CD4+/CD25+ FOXP3+, are selected by the thymus
and are responsible of maintaining peripheral self-tolerance. They
mediate immunosuppression by cell contact-dependent mecha-
nisms (Raimondi et al., 2007). iTreg, also referred as Tr1, are
induced in the periphery by environmental signals. Their mode
of action is through IL-10 and TGF-beta, so they act in a contact-
independent way (Chattopadhyay et al., 2005) and they may not
express FOXP3. Treg present in cancer patients are predominantly
iTreg (Whiteside, 2012), that mediate stronger suppression and
might use additional suppression mechanisms than nTreg (Strauss
et al., 2007).

Treg and T helper cells can be both stimulated by the same
melanoma-associated Ag (Fourcade et al., 2010). Because of this,
inactivation or depletion of Treg may be useful in combination
with vaccination to obtain a successful immunotherapy response.
Treg depletion therapies include treatment with cyclophosphamide
(Ghiringhelli et al., 2007), anti-CD25 antibodies, and toxins fused
to anti-CD25 antibodies or IL-2 (Powell et al., 2008; Jacobs et al.,
2010), and FOXP3 vaccination (Nair et al., 2007). With the aim of
developing efficient Treg-targeting strategies, it is essential to find
new and more accurate markers to characterize Treg.

CTLA-4 AND ITS ROLE IN DOWN-MODULATING THE
IMMUNE RESPONSE
In order to boost the activity of therapeutic cancer vaccines, it
is important to understand the mechanisms which counter the
building-up of a solid immunity in cancer patients. One of such
mechanisms is the presence in T lymphocytes of the inhibitory
molecule cytotoxic T-lymphocyte antigen-4 (CTLA-4), a type I
transmembrane glycoprotein that presents homology with CD28
(Teft et al., 2006). CTLA-4 is expressed in activated T cells and
constitutively in Treg and, as CD28, it binds to B7.1 (CD80)
and B7.2 (CD86) present in APC, but with greater affinity and
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avidity. CTLA-4 has an inhibitory role in T cell activation, and
its expression and localization are tightly regulated in T cells.
After activation, CTLA-4 expression increases, reaching a maxi-
mum after 2–3 days, and it is translocated to its active localization
at the cell surface (Egen et al., 2002). CTLA-4 function is essential
to the maintenance of immune homeostasis and helps tolerance to
self Ag by downregulating T cell response and proliferation. CTLA-
4-deficient mice die from profound lymphoproliferative disease,
with multiorgan lymphocytic infiltration, and tissue destruction
(Tivol et al., 1995; Waterhouse et al., 1995). However, mixed bone
marrow chimeric mice that have both CTLA-4−/− and normal
T cells do not present the lymphoproliferative disorder observed
in CTLA-4-deficient mice (Bachmann et al., 1999), suggesting that
CTLA-4 function has a non-cell autonomous component acting in
trans. Different possibilities have been proposed to explain CTLA-
4 mechanism of action. In the first place, CTLA-4 competes with
CD28 for its ligands CD80 and CD86. Since both ligands have
higher affinity for CTLA-4, it abolishes CD28 signaling, therefore
mediating an indirect effect. Besides, CTLA-4 sends cell-intrinsic
cis negative signals through its cytoplasmic domain, inhibiting dif-
ferent components of the cell cycle machinery (Greenwald et al.,
2002) and blocking TCR and CD28 signaling (Teft et al., 2006).
CTLA-4 may also function by disrupting the organization of mol-
ecules in the immune synapse (Chambers et al., 2001). Additional
potential CTLA-4 functions include upregulation of indolamine
2,3-dioxygenase (IDO) activity in APCs via CD80 and CD86 and
regulation of T cell adhesion to APCs (Schneider et al., 2005; San-
som and Walker, 2006). Besides, evidence in mice suggests that
CTLA-4 is constitutively expressed in Treg and would mediate Treg

immunosuppression (Takahashi et al., 2000; Wing et al., 2008),
since blocking CTLA-4 in Treg restrain their ability to inhibit T
effector cell proliferation (Peggs et al., 2009). Recently, another
cell extrinsic mechanism for CTLA-4 function was proposed, sug-
gesting that it participates in the removal of costimulatory ligands
via trans-endocytosis (Qureshi et al., 2011).

Two different models have been proposed to integrate the stim-
ulatory signals involved in T cell activation and CTLA-4 function,
the threshold and the attenuation models (Chambers et al., 2001).
According to the threshold model, CTLA-4 would increase the
minimum requirements for T cell activation by setting a threshold
for the quantity and/or quality of TCR signal and/or costimula-
tory signals (Egen et al., 2002). The attenuation model proposes
that CTLA-4 would exert its inhibitory function after T cell stim-
ulation once the cell already entered cycling, and CTLA-4 levels
would depend on strength of TCR signal.

CTLA-4 AS THERAPEUTIC TARGET
Considering CTLA-4 key role in the regulation of T cell response,
blocking antibodies have been developed in order to poten-
tiate anticancer responses. Ipilimumab, a human IgG1 mono-
clonal antibody (mAb) anti-CTLA-4, and Tremelimumab, another
human IgG2 mAb anti-CTLA-4, were tested in clinical trials in
patients with CM (Ascierto et al., 2011).

By which mechanism CTLA-4 blocking antibodies exert their
function is not completely clear. In murine models, CTLA-4 block-
ade leads to antitumor cytotoxicity, presenting an increased ratio
of CD8:Treg in tumor infiltrates (Quezada et al., 2006). Recently it

has been proposed that CTLA-4 blockade could enhance memory
CD8 T cell response (Pedicord et al., 2011), which could be impor-
tant in cancer therapy to improve tumor-specific memory CD8 T
cells and develop durable anticancer responses. Several early stage
clinical trials demonstrated that CTLA-4 blockade alone or in com-
bination with other therapies, as vaccines or chemotherapy, can
induce tumor regression in a minority of metastatic CM patients
(Hodi et al., 2003; Attia et al., 2005; Ribas et al., 2005, 2009). Hodi
et al. (2008) showed that biopsies of metastatic melanoma lesions
after ipilimumab administration showed dense infiltration of CD8
T cells, and tumor necrosis correlated with the ratio of infiltrating
CD8 T cells/FoxP3+ cells. Blockade of CTLA-4 would promote
T cell proliferation in lymphoid organs that would subsequently
lead to an increased T-cell infiltration in most patients (Ribas
et al., 2010; Huang et al., 2011). However, tumor infiltration by
T cells does not correlate with patient’s clinical response (Huang
et al., 2011), suggesting that resistance to CTLA-4 blockade could
depend on the immunosuppressive mechanisms that the tumor
displays.

Last year, as a result of a phase III clinical trial (Hodi et al.,
2010), USA FDA approved the use of ipilimumab for treatment of
advanced metastatic CM. The antibody therapy, with or without
gp100 peptide vaccine, showed improved overall survival com-
pared to gp100 vaccine alone. Toxicity was found in patients
treated with ipilimumab, including grades 3–4 immune-related
adverse events (irAE) in 10–15% of patients.

Another phase III study of ipilimumab was performed in
patients with previously untreated metastatic CM. In this case,
ipilimumab in combination with dacarbazine was compared
with dacarbazine plus placebo, showing improved overall sur-
vival with the antibody therapy (Robert et al., 2011). Remarkably,
the time of ipilimumab to induce tumor remissions may take
months, pointing to a different mechanism of action than most
chemotherapeutic agents.

OTHER INHIBITORY CORECEPTORS
In addition, diverse targets are also being studied in order to poten-
tiate antitumor immune response. Programmed (cell) death-1
(PD-1; CD279) is an inhibitory coreceptor which can be expressed
in activated T cells, B cells, NK cells, activated monocytes, and
DC (Keir et al., 2008). The ligands for PD-1, PD-L1 (B7-H1;
CD274), and PD-L2 (B7-DC; CD273) are upregulated in response
to inflammation. In fact, the major role of PD-1 is to limit the activ-
ity of T cells in the periphery during an inflammatory response to
infection and autoimmunity (Topalian et al., 2012). The PD-1/PD-
L1 pathway is important in the development of central and periph-
eral tolerance to exogenous Ag at sites of immune privilege, limit-
ing the duration of the normal adaptive immune response (Folkl
and Bienzle, 2010). Physiological functions of the PD pathway are
altered in cancer (Okazaki and Honjo, 2007). Currently, there are
four anti-PD-1 agents in clinical testing for cancer therapy: MDX-
1106/BMS-936558/ONO-4538; CT-011; MK-3475, and AMP-224
(Topalian et al., 2012). MDX-1106 is a fully human IgG4 mAb
that has been tested in a phase I clinical trial on 39 patients with
treatment-refractory solid tumors. This mAb showed antitumor
activity and was well tolerated. Pharmacodynamic studies indi-
cated a sustained mean occupancy of around 70% on circulating
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T cells during 2 months. Approximately 12% of patients suffered
grade ≥3 adverse clinical events (Brahmer et al., 2010). A random-
ized phase II study is currently undergoing to evaluate this mAb in
metastatic renal cell carcinoma. CT-011, a humanized IgG1 mAb,
was tested on 17 patients with advanced hematologic malignan-
cies. This anti-PD-1 agent was generally well tolerated (Berger
et al., 2008). CT-011 is currently undergoing a phase II clinical
trial on metastatic renal cell carcinoma patients.

LOW-DOSE CYCLOPHOSPHAMIDE
Another way of countering immune suppression is to use low doses
of the alkylating agent cyclophosphamide (CTX). Already Berd
and Mastrangelo (1988b) utilized low-dose CTX (300 mg/sq m)
to diminish immune suppression in CM patients. This immune-
enhancing effect of CTX was afterward analyzed in several exper-
imental systems and using different CTX doses. The results
obtained, although positive, point to different mechanisms of
action. Thus, Ghiringhelli et al. (2004) working on a rat colon car-
cinoma, demonstrated that a single injection of CTX (30 mg/kg)
determined tumor rejection, and the authors attributed this effect
to lymphodepletion of CD4+/CD25+ Treg. In the C57Bl/6J
mice/B16 melanoma cells model, Nakahara et al. (2010) found
that a single injection of CTX (150 mg/kg) induced a selective and
profound depletion of resident CD8+ DC, and that such depletion
diminished the activity of Treg and restored concommitant anti-
tumor immunity. Pointing in the same direction, Radojcic et al.
(2010) demonstrated that a single injection of CTX (200 mg/kg)
in mice bearing CT26 colon carcinoma would enhance antitumor
immunity by resetting DC homeostasis.

Clinical trials using CTX to enhance antitumor immunity are
scarce. Ghiringhelli et al. (2007) used iterative low doses of CTX
in advanced cancer patients and demonstrated a strong reduction
of circulating Treg However, Ellebaek et al. (2012) in a phase II
trial with CM patients using metronomic CTX, did not find any
reduction in circulating Treg. Further clinical trials addressing the
role of CTX to enhance antitumor immunity should be examined
in carefully designed clinical trials.

WHICH SLEEPING LYMPHOCYTES NEED TO BE AWAKEN TO
EXERT ANTITUMOR EFFECT?
After the observed induction by anti-CTLA-4 mAb of immune
responses against tumors, as well as of autoimmune reactions, the
question may be posed if such effects are due to the emergence of
effector T lymphocytes induced de novo by the derepression of Treg

on APC, or, alternatively, if CD4 and CD8 effector lymphocytes
which are blocked in cis by CTLA-4 are already in the circulation
and relieved from this suppression by ipilimumab. Besides, there
is yet another question that remains to be answered: CD4 and CD8
cells generated by vaccination absolutely need to have high affinity
or avidity toward tumor cells to be active? In this sense, it is impor-
tant to note that Dutoit et al. (2002) have shown that in preimmune
HLA-A2 individuals, up to 1/1.000 CD8 lymphocytes recognized

MART-1 peptides with low avidity (nM range), as compared to
high affinities found for TCR directed to viral Ag (pM range),
and that most of the CD8 clones exhibited cross-reactivity toward
self-peptides (TCR polyspecificity; Dutoit et al., 2002). However,
expansion of the naïve anti-MART-1 CD8 pool does not appear
to play a role in tumor regressions induced by ipilimumab, since
the outcome of HLA-A2-positive and -negative patients is similar
(Wolchok et al., 2010). The polyspecificity of TCR has been stud-
ied in more detail in autoimmunity, in which several experimental
models are available. In multiple sclerosis and Type 1 Diabetes,
polyspecificity of the TCR, characterized by the ability of a single
TCR to recognize diverse MHC-peptides, appears to be an intrinsic
property of TCR (Liblau et al., 2011).

In the case of cancer, it is not yet known which are the TCR
best suited to eliminate tumors in the long range: those with high
affinity for a single HLA–peptide complex or those with medium
affinity but directed against a variety of targets.

Another question that may be posed is the effective ability of
CD8 T cells to lyse tumor cells. In this sense, the different contexts
in which tumor cells and T lymphocytes may encounter should
be differentiated. In the simplest case, that is, when cytotoxic lym-
phocytes (CTL) are confronted in vitro to tumor cells, we have
shown that clonogenic melanoma cells are effectively lysed by
anti-MART-1 and/or anti-gp100 CTL (Aris et al., 2012). How-
ever, if such activity is maintained in vivo has not been answered.
Large tumors (>2 cm) are presently considered as an organ, in
which complex interactions between the tumor and stroma are
established, and in which genomic instability and inflammation
play substantial roles in favoring tumor progression. A complex
array of immunosuppressive factors is released by tumor cells,
building an immunoresistant superstructure (Hanahan and Wein-
berg, 2000). It is our view that large tumors display a setting in
which vaccination has a limited role; the most amenable clin-
ical context to assay antitumor vaccination, would be patients
in which the existence of micrometastasis is highly probable.
Under such circumstances, the tumor “fortress” building has not
been completed, and the immune system has fewer obstacles
to surmount. CM patients with stages II and III of the dis-
ease could benefit from such therapy. The use of agents which
counter immunosuppression, such as ipilimumab, in combina-
tion with cancer vaccines, could lead to additive or synergistic
responses.
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