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Inflammation is a complex reaction to injurious agents and includes vascular responses,
migration, and activation of leukocytes. Inflammation starts with an acute reaction, which
evolves into a chronic phase if allowed to persist unresolved. Acute inflammation is a
rapid process characterized by fluid exudation and emigration of leukocytes, primarily neu-
trophils, whereas chronic inflammation extends over a longer time and is associated with
lymphocyte and macrophage infiltration, blood vessel proliferation, and fibrosis. Inflamma-
tion is terminated when the invader is eliminated, and the secreted mediators are removed;
however, many factors modify the course and morphologic appearance as well as the ter-
mination pattern and duration of inflammation. Chronic inflammatory illnesses such as
diabetes, arthritis, and heart disease are now seen as problems that might have an impact
on the periodontium. Reciprocal effects of periodontal diseases are potential factors mod-
ifying severity in the progression of systemic inflammatory diseases. Macrophages are
key cells for the inflammatory processes as regulators directing inflammation to chronic
pathological changes or resolution with no damage or scar tissue formation. As such,
macrophages are involved in a remarkably diverse array of homeostatic processes of vital
importance to the host. In addition to their critical role in immunity, macrophages are also
widely recognized as ubiquitous mediators of cellular turnover and maintenance of extracel-
lular matrix homeostasis. In this review, our objective is to identify macrophage-mediated
events central to the inflammatory basis of chronic diseases, with an emphasis on how
control of macrophage function can be used to prevent or treat harmful outcomes linked
to uncontrolled inflammation.
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INTRODUCTION
Inflammation is the physiological response of the body to injury.
The inflammatory response can be either acute and of short
duration or chronic, which does not resolve and leads to pathol-
ogy. The major function of innate immune cells most studied
during the inflammatory process is the identification and recog-
nition of the injurious and/or foreign substances promoting the
defense response. Less acknowledged roles played by the innate
immune cells involve the resolution pathways and wound heal-
ing, both of which include repair and regeneration of lost or
damaged tissues. These are now recognized as highly regulated,
active processes rather than passive events (Van Dyke, 2008).
Macrophages are actively involved in all phases of inflammation
and their role as effector and regulatory cells is now widely recog-
nized. Another interesting and important feature of macrophages
is their high level of specialization and tissue specificity. While all
tissue-bound macrophages differentiate from circulating mono-
cytes, they acquire distinct characteristics and functions locally
due to their response profiles. One of the major factors for this
diversity is the complexity of microbial load as well as tissue
architecture. Thus, it is no surprise that some of the most sophis-
ticated interactions between the host and parasites also dictate the
most evolved phenotypic characteristics of the macrophage. Some

examples of this specificity and complexity of macrophage pheno-
type and function are the Kupffer cells of the liver and macrophages
of the lung alveoli where the cells, while similar in appearance, are
involved in distinct responses against different pathogens as well
as non-pathogenic stimuli.

The oral cavity is one of the most ecologically complex
microenvironments in the human body where interactions
between the host and microbes define health and disease (Gem-
mell et al., 1997). The teeth are the only functional hard tissues
extending from inside to outside of the human body crossing a
series of other hard (i.e., bone) and soft (i.e., connective tissue
and epithelia) tissues surrounded by a tight biofilm formed by
the richest collection of bacteria outside the colon. Such archi-
tecture creates several zones, which work in concert during the
inflammatory responses in the mouth. Regulation of immune–
inflammatory mechanisms in oral disease is governed in part by
patient susceptibility and environmental factors (Seymour, 1991;
Seymour and Gemmell, 2001; Uitto et al., 2003). In particular; oral
macrophages address these complex requirements for mounting
a successful inflammatory response as the cell type at the center
of many processes including signaling to resolution of inflamma-
tion, healing, and regeneration. In this review, within the context
of pathogenic mechanisms, possible clinical outcomes will be
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discussed in relation to the inflammatory–immunological changes
throughout the disease process. Since most inflammatory diseases
of the oral cavity involve the tissues of periodontium, the patho-
logical changes in the periodontal structure will be used as a model
to assess the role of the macrophages in oral inflammation and its
resolution.

ACTIVATION OF ORAL INFLAMMATION AND THE ROLE OF
MACROPHAGES
Typically, there are two common diseases affecting the oral tissues
and the health of the supporting structures of a tooth. In the case
of gingivitis, inflammation is limited to the soft tissues, epithelium,
and connective tissue; or in the case of periodontitis, inflammatory
processes extend to the supporting tissues including the alveolar
bone (Page and Schroeder, 1976). In both forms of periodontal
inflammation, the pathological consequences are associated with
the accumulation of bacteria at the tooth surface leading to a host
response generating inflammatory cell infiltration (Socransky and
Haffajee, 2005). Since the soft and hard tissues of the oral cavity
are part of the same functional and physiological organ, separat-
ing the host response to several components is artificial and does
not acknowledge the dynamic relationship between the cells, bac-
teria, and extracellular structures. Likewise, while practical and
instructive, the supposition of a linear shift in lesions from acute
to chronic is not clear. Recent discoveries defining the pathways
of resolution in the inflammatory processes challenge the con-
cepts of compartmentalization and linearity in acute and chronic
responses (Serhan, 2010; Pruss et al., 2011). Nevertheless, this is
the prevailing paradigm, since the tools for analyses of the events
at multiple levels are just being incorporated into oral research
(Singh et al., 2011; Hasturk et al., 2012). Based on the prelim-
inary results of studies that use high-throughput measurements
to generate a systems-biology approach, the complex nature of
host–bacteria interactions in a highly complex environment of
the oral cavity is being redefined (Bakthavatchalu et al., 2011;
Mishima and Sharma, 2011; Singh et al., 2011). To this end, novel
approaches have revealed the orchestrated coupling of activation
and resolution phases as well as tissue healing.

Macrophages are central to the coordinated resolution of
inflammation and return to tissue homeostasis (Zadeh et al.,
1999). During the first step of the inflammatory process directed
against microorganisms, bacteria, and their virulence factors (e.g.,
capsule, lipopolysaccharide, fimbria) trigger receptor-mediated
production of cytokines by epithelial cells with simultaneous
release of neuropeptides, which cause vasodilation of local blood
vessels. Generation of chemoattractant proteins (chemokines) at
this stage results in attraction of the first line of defense, the neu-
trophil, which leave the vessels and migrate to the site of microbial
invasion. This step is critical and plays a pivotal role in genera-
tion of an effective defense system. Neutrophils are followed by
the macrophages. This is the step usually where clinical signs of
oral inflammation including bleeding, swelling, and redness of the
gingiva are detectable. The inflection can either be confined and
cleared by the function of neutrophils and macrophages at this
early stage, or expand to include the other cells and structures
(Page and Schroeder, 1976). Being myeloid cells of hematopoietic
origin (Medzhitov and Janeway, 1997; Janeway and Medzhitov,

2002) the overall role of the macrophages is to limit the patho-
logical changes to the soft tissues or elevate the inflammatory
response to the next level. Major functions of macrophages include
elimination of invading bacteria, recruitment of other cells to the
site of infection, clearance of the excess neutrophils, production
of cytokines and chemokines, and activation of the lymphocyte-
mediated adaptive immune response. The net outcome of these
functions can be either complete resolution with healing, limiting
the infection with resultant fibrosis and healing with scar tissue
formation, or a failure to clear the infection with establishment of
a chronic inflammatory lesion.

In the case that the inflammatory process is prolonged and
becomes chronic, destruction of soft and hard tissues including
the alveolar bone is observed due to direct tissue destruction medi-
ated by inflammation (McCauley and Nohutcu, 2002; Hasturk
et al., 2006; Taubman et al., 2007; Graves, 2008; Li et al., 2011).
Macrophages together with neutrophils are responsible of phago-
cytosis and digestion of microorganisms and foreign substances
through surface receptors that recognize and bind certain sur-
face molecules of bacteria such as the lipopolysaccharides (LPS;
Medzhitov and Janeway, 1997). These receptors are the key com-
ponents for distinguishing between the host and the invader and
defined as pathogen recognition receptors called toll-like recep-
tors (TLR; Anderson, 2000), which mediate the elimination of the
pathogenic microbes through phagocytosis and killing (Wingrove
et al., 1992). TLRs regulate apoptosis, inflammation, and immune
responses (Anderson, 2000). Evidence supporting a role for TLR-
mediated recognition of macrophage function in resolution of
inflammation is accumulating providing strong support indicat-
ing that this receptor–ligand interaction is key to the homeostatic
restoration of the host defense (Duffield et al., 2006; Schif-Zuck
et al., 2011). Recently, a group of nucleotide-binding oligomeriza-
tion domain proteins (NODs) have been described as potential
regulators of apoptotic events and nuclear factor κB (NF-κb)
activation within the context of pathogen recognition and the
inflammatory responses (Inohara and Nunez, 2003). While it is
not clear how NODs are involved in oral inflammatory diseases,
evidence suggests that they are expressed in gingival cells and may
play role in promotion of oral inflammation (Uehara and Takada,
2007; Tang et al., 2011).

The TLR family is the best-characterized class of pathogen
recognition receptors. TLRs are unique receptors that recognize
molecules, broadly shared by microorganisms, but are distin-
guishable from the host molecules, referred to as “pathogen-
associated molecular patterns (PAMP).” TLRs detect multiple
PAMPs, including LPS, bacterial lipoproteins and lipoteichoic
acids, flagellin, CpG DNA of bacteria and viruses, double-stranded
RNA, and single-stranded viral RNA (Iwasaki and Medzhitov,
2004). To date, 11 different TLRs have been identified (Liu et al.,
2000; Takeda et al., 2003; Krutzik and Modlin, 2004; Quesniaux
et al., 2004). When TLRs bind to antigens, series of intracellular
events are initiated and the process leads to the production of
cytokines, chemokines, and antimicrobial peptides (Donati et al.,
2009). The binding can be through four different adapters. Each
adapter has the potential of producing various cytokines stimu-
lating NF-κB pathway in the nucleus of the cell. Known adapter
proteins of TLRs are MyD88, toll–interleukin-1 receptor domain
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containing adapter protein (TIRAP), toll–interleukin-1 recep-
tor domain containing adapter-inducing interferon-β (TRIF)
and TRIF-related adapter molecule (TRAM). TLRs also uti-
lize interleukin-1 receptor-associated kinase (IRAK), and TNF
receptor-activated factor 6 (TRAF6; Jiang et al., 2000). Different
TLRs induce different responses; for example, in dendritic cells,
the interaction of TLR 4 and LPS results in the production of pro-
inflammatory cytokines such as interleukin-12. TLR-2 and TLR
4 have been shown to be expressed in oral tissue cells. The same
TLR can trigger different responses through different intracellular
adapter proteins (Alexopoulou et al., 2001; Kaisho and Akira, 2002;
Cook et al., 2004; Krutzik and Modlin, 2004; Watters et al., 2007).
TLRs 1, 2, 4, 5, and 6 specialize in the recognition of mainly bacte-
rial products that are unique to bacteria and not made by the host.
This gives them the specificity to differ the invader from the host
(Iwasaki and Medzhitov, 2004). Recognition by the TLR pathway is
a crucial phase in inflammation. After recognition, many cytokines
are released from various cell types including the macrophages
through the NFκB pathway (Uehara and Takada, 2007). After
TLR4 activation, MyD88 is recruited to TLR4 through respective
Toll/IL-1 receptor (TIR)–TIR interactions (Medzhitov et al., 1998;
Muzio et al., 1998; Raschi et al., 2003). MyD88 also contains a death
domain (DD), a highly conserved protein-binding domain that
facilitates its interaction with another DD-containing signaling
molecule, IRAK (Cao et al., 1996). IRAK subsequently under-
goes phosphorylation and dissociates from MyD88, interacts with
TRAF6, and thereby activates several downstream kinases (Cao
et al., 1996; Yamin and Miller, 1997; Aderem and Ulevitch, 2000;
Jiang et al., 2000; Swantek et al., 2000; Raschi et al., 2003). Follow-
ing LPS stimulation, two signaling pathways have been described,
the MyD88-dependent and -independent pathways (Akira et al.,
2000; Kawai et al., 2001; Sato et al., 2002; Yamamoto et al., 2003).
Endotoxin activation of the MyD88-dependent pathway results in
rapid NF-κB activation and release of pro-inflammatory cytokines
such as tumor necrosis factor-alpha (TNF-α) and IL-1β. Endo-
toxin activation of the MyD88-independent pathway results in
rapid activation of interferon regulatory factor 3 (IRF3) leading
to beta interferon (IFN-β) release with delayed NF-κB activation
(Akira et al., 2000; Kawai et al., 2001; Hoebe et al., 2003). The
TLR proteins possess leucine-rich extracellular repeats that rec-
ognize the LPS binding protein (LBP)–CD14 complex (Poltorak
et al., 2000). The TLR intracellular domain resembles the IL-1β

receptor, hence the term TIR homology domain (Medzhitov et al.,
1997; Chaudhary et al., 1998; Rock et al., 1998). The TIR domain
in the cytoplasmic portion of the molecule is considered essen-
tial for triggering activation of mitogen-activated protein kinases
(MAPKs) and the transcription factor NF-κB (Means et al., 2000;
Akira et al., 2001; Sato et al., 2002). While CD14 is the major LBP
on the surface of mononuclear phagocytes, CD14 is not capable
of transducing signals across the membrane. A receptor complex
comprised of CD14, TLR-2, TLR4, and accessory proteins (MD-
2) is necessary for receptor function as well as various kinases,
including the three classes of MAPK: extracellular signal-regulated
kinase (ERK) 1 and ERK2 (Weinstein et al., 1992), p38 MAPK
(Han et al., 1994), and c-Jun N-terminal kinases (JNK; Hamble-
ton et al., 1996). Numerous inflammatory cytokines and mediators
are expressed in LPS stimulated macrophages through activation

of transcription factors including NF-κB and activator protein-
1 (Fujihara et al., 1993; Muroi et al., 1993; Guha and Mackman,
2001). LPS recognition is initiated by LBP, a serum glycoprotein,
that first binds to the lipid A moiety of LPS (Schumann et al., 1990;
Wright et al., 1990; Gegner et al., 1995). The LPS–LBP complex
is then recognized by CD14 (Schumann et al., 1990; Ulevitch and
Tobias, 1995; Haziot et al., 1996). Mice with a targeted deletion of
the gene encoding CD14 are hyporesponsive to LPS and resistant
to the lethal effects of LPS (Haziot et al., 1996). However, mice
lacking CD14 are still able to respond to high concentrations of
LPS (Wurfel et al., 1997). CD14 is a glycosylphosphatidylinositol-
anchored (GPI-anchored) molecule which lacks a cytoplasmic
signaling domain, making it incapable of downstream signaling
(Haziot et al., 1988). It is not fully clear if the TLR-mediated path-
ways are directly involved during the oral inflammatory responses
including resolution.

We have previously identified moesin as a participant in LPS
binding and signal transduction (Tohme et al., 1999). Many physi-
ological and pathophysiological conditions are attributable in part
to cytoskeletal regulation of cellular responses to signals. Moesin is
an ERM (ezrin, radixin, and moesin) family member and was iden-
tified as part of a protein cluster. Moesin was found to be necessary
for the detection of LPS, and homozygous moesin knockout mice
exhibited a threefold reduction in neutrophil infiltration into LPS
injected sites when compared to wild type controls (Amar et al.,
2001). Anti-moesin antibody inhibited the release of TNF-α by
LPS stimulated monocytes (Tohme et al., 1999), and moesin was
also found to be expressed on the surface of differentiated THP-1
cells and primary peripheral blood monocytes. LPS stimulation
increased the surface expression of moesin as well as its total pro-
tein levels when analyzed by FACS and Western blotting, respec-
tively. Furthermore, moesin was found to co-immunoprecipitate
with TLR4 after LPS stimulation (Iontcheva et al., 2004). In moesin
mRNA knockdown experiments using antisense mRNA, THP-1
cells no longer responded to LPS (Iontcheva et al., 2004), suggest-
ing a role for moesin in LPS signaling. Using differentiated THP-1
cells, co-immunoprecipitation experiments revealed that moesin
and CD14 were associated in the cell membrane in both resting
and LPS stimulated cells. TLR4 and MD-2 became associated with
moesin and CD14 only after LPS stimulation. These experiments
also demonstrated that there was a direct binding between moesin
and LPS. Moesin was phosphorylated and mRNA levels of moesin
increased significantly after LPS stimulation. During the TLR4-
mediated response to LPS, moesin stimulates the NF-κB, p38, and
p44/42 MAPK activation (Iontcheva et al., 2004; Zawawi et al.,
2010). Figure 1 shows a model for recognition of LPS involving
the dynamic association of multiple molecules, including moesin,
forming a cluster that functions as the LPS receptor and an impor-
tant role in the macrophage-mediated innate immune response
and TLR4-mediated pattern recognition in oral inflammatory
diseases.

Cytokines and other products of macrophages can also mod-
ulate the action, differentiation, and survival of cells outside
the immune system, such as the nervous system. The interac-
tion between macrophages and the nervous system relies on
the receptor-sensitizing characteristics of cytokines (Opree and
Kress, 2000) linked to the discovery of protease-activated receptors
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FIGURE 1 | Lipopolysaccharides (LPS) recognition and signaling in

macrophages. CD14 and moesin are expressed on the cell membrane in
macrophages. LPS stimulation results in phosphorylation of moesin, binding

to the TLR4 and MD-2 activating the MyD88. Signaling through this
mechanism leads to the production of pro-inflammatory cytokines (Zawawi
et al., 2010).

(PARs). Research into the functionality of these receptors has
shown that PAR-2 has a particularly important role in disease states
associated with chronic inflammation (Vergnolle, 1999). Identi-
fication of neuropeptide receptors on immune cells indicates a
communication between the immune and neurological systems
that possibly results in the modulation of inflammatory response
through G-protein-coupled receptors located on the cell mem-
branes or the vanilloid receptor-1 (also named TRPV1), which is
shown to be up-regulated in inflammatory bowel disease. These
findings suggest a possible role for this receptor in chronic inflam-
mation (McGillis et al., 1991; Yiangou et al., 2001; Tracey, 2002;
Lundy and Linden, 2004). Cytokines have been shown to regulate
substance P expression and response to LPS (Kessler and Freidin,
1993; Hua et al., 1996). Substance P limits the production of TGF-
β by macrophages and induces synthesis of IL-6 (Lieb et al., 1996;
Marriott and Bost, 1998). Macrophages can produce substance
P when activated with LPS in vitro (Lambrecht et al., 1999). The
precise mechanism through which these receptor-mediated events
might regulate the macrophage response in the oral cavity is not
clear; future research is needed to understand their role.

ROLE OF MACROPHAGES IN GINGIVAL INFLAMMATION AND
BONE RESORPTION
Macrophages efficiently ingest particulate antigen, express MHC
class II molecules and have co-stimulatory activity on T cells.
Macrophages can be phenotypically polarized by the microenvi-
ronment. The classically activated macrophages (M1) are activated
by IFN-γ and LPS, and alternatively activated macrophages (M2)
produced in response to IL-4 or IL-13 (Martinez et al., 2009).
M2 macrophages have been shown to play role in resolution
of inflammation with a reduced capacity to produce cytokines
(Bhatavadekar and Williams, 2009). Cytokine and chemokine pro-
duction by macrophages is a key step in immune response and
the inflammation process. Cytokines interact between each other,

amplify signaling, modulate cell surface receptors, and perform
synergistic or antagonistic interactions on cell function (Balkwill
and Burke, 1989). It is not only the presence of one cytokine
that regulates the response, but the concentration of the same
mediator can also affect the outcome of a response (Gemmell
et al., 1997). Their secretion is dependent on the NF-κB in the
nucleus of many immune system cells (Baldwin, 1996; Hanada
and Yoshimura, 2002). In addition to macrophages, cytokines can
be produced by both resident cells such as epithelial cells, fibrob-
lasts and other phagocytes such as neutrophils in the periodontal
tissues (Ara et al., 2009). After microbial recognition, cytokines
in innate response such as TNF-α, IL-1, and IL-6 are the first to
start communication in disease pathogenesis (Garlet, 2010). IL-1β

and IL-6 are the signature innate cytokines and have been char-
acteristically associated with inflammatory cell migration, highly
produced by the macrophages and involved in osteoclastogenesis
processes (Graves et al., 2008; Fonseca et al., 2009). TNF-α is a
multi-role cytokine, that has many functions from cell migration
to tissue destruction. It induces the up-regulation of adhesion mol-
ecules, stimulates the production of chemokines, and is involved in
cell migration to infected and inflamed sites (Peschon et al., 1998;
Dinarello, 2000; Wajant et al., 2003; Kindle et al., 2006). TNF-α
up-regulates the production of other signature pro-inflammatory
innate immunity cytokines, such as IL-1β and IL-6 (Okada et al.,
1997; Dinarello, 2000; Wajant et al., 2003; Kwan Tat et al., 2004;
Garlet et al., 2007; Graves et al., 2008; Musacchio et al., 2009). TNF-
α is also correlated with extracellular matrix (ECM) degradation
and bone resorption through its positive correlation with matrix
metalloproteinases (MMPs) and RANKL expression (Graves and
Cochran, 2003; Garlet et al., 2004; Graves et al., 2008). Experi-
mental periodontitis in TNF-α p55 receptor deficient mice was
characterized by a significant decrease in MMPs and RANKL
expression (Garlet et al., 2007). Thus, in addition to direct actions
in bone resorption, macrophage-derived cytokines also interfere
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with the coupled bone formation process (Behl et al., 2008). IL-
13 is another potent modulator of human monocyte/macrophage
function. Monocyte/macrophage cell surface markers, MHC class
II and several integrin molecules are up-regulated by IL- 13 (de
Waal Malefyt et al., 1993). The monocyte/macrophage related pro-
duction of the cytokines IL-1α, IL-1β, 1L-6, IL-8, and TNF-α is also
inhibited by IL- 13. On the other hand, IL-1 receptor antagonist
secretion is enhanced (de Waal Malefyt et al., 1993; Zurawski and
de Vries, 1994). Therefore, IL-13, along with IL-4 and IL-10, would
appear to have potential anti-inflammatory activity (Zurawski and
de Vries, 1994).

In addition to their cell trafficking role, chemokines provide
messages leading to other biological processes, such as angiogene-
sis, cell proliferation, apoptosis, tumor metastasis, and host defense
(Rossi and Zlotnik, 2000; Zlotnik and Yoshie, 2000; Moser et al.,
2004; Rot and von Andrian, 2004; Esche et al., 2005). Chemokines
are classified into four subfamilies according to the configura-
tion of cysteine residues near the N-terminus. Chemokines engage
their receptors. This binding initiates integrin-dependent adhe-
sion, as well as the binding and detachment of cells from their
substrate. Chemokines target all types of leukocytes of the innate
immune system, as well as lymphocytes of the adaptive immune
system (Terricabras et al., 2004). IL-8/CXCL8 is the first cytokine
identified to have chemotactic activity. It can be produced by
macrophages as well as fibroblasts, epithelial cells, and endothe-
lial cells (Takashiba et al., 1992; Takigawa et al., 1994; Yumoto
et al., 1999). IL-8 is a neutrophil chemoattractant. It is detectable
in healthy and diseased periodontal tissues and has been associ-
ated with subclinical inflammation (Yoshimura et al., 1987; Payne
et al., 1993; Mathur et al., 1996). It has direct action on osteoclast
differentiation and activity by signaling through the specific recep-
tor, CXCR1 (Bendre et al., 2003). Another crucial chemokine for
macrophage function is MCP-1/CCL2, which mediates the recruit-
ment of monocytes/macrophages (Hanazawa et al., 1993; Oka-
matsu et al., 2004). Together with RANTES/CCL5, MIP-1α/CCL3
may also be involved in the migration of macrophages to oral tis-
sues (Gemmell et al., 2001; Kabashima et al., 2002). CXCR3 and
its ligand IP-10/CXCL10 are also expressed in diseased periodon-
tal tissues and associated with higher levels of IFN-γ during the
inflammation process (Kabashima et al., 2002; Garlet et al., 2003).
CCR4 is found expressed at higher levels in chronic periodontitis
and it is associated with higher levels of IL-4 and IL-10 messages
in the periodontium (Garlet et al., 2003, 2004).

In addition to recruitment of cells, chemokines are crucial in
guiding adaptive immunity cells with a role in bone metabo-
lism. MDC/CCL22, TARC/CCL17, and I- 309/CCL1 have been
shown to attract Th2 and Treg cells via binding their CXCR 4
and CXCR 8 receptors (D’Ambrosio et al., 1998; Sallusto et al.,
1998; Gu et al., 2000). Chemokines have been recognized as
essential signals for the trafficking of osteoblast and osteoclast
precursors, and consequently as potential modulators of bone
homeostasis (Bendre et al., 2003; Wright et al., 2005). Chemokines
are capable of regulating bone metabolism via CCR1, CCR2,
CXCR3, and CXCR4 receptors expressed on osteoclast precursors,
mature osteoclasts, and osteoblasts. These receptors have the abil-
ity to bind many different chemokines such as SDF-1/CXCL12,
MIP-1α/CCL3, RANTES/CCL5, MIP-1γ/CCL9, MCP- 1β/CCL2,

MCP-3/CCL7, MIG/CXCL9, and CKβ8/CCL23 (Votta et al., 2000;
Lean et al., 2002; Okamatsu et al., 2004; Yu et al., 2004; Kwak et al.,
2005; Wright et al., 2005; Kim et al., 2006a,b; Yang et al., 2006).
IP-10/CXCL10 induces osteoblast proliferation through receptor
CCR3 (Grassi et al., 2003; Lisignoli et al., 2004), while SDF-
1α/CXCL12 and BCA-1/CXCL13 induce both proliferation and
collagen type I mRNA expression in osteoblasts through receptors
CCR4 and CCR5 (Lisignoli et al., 2006). In addition to its role in
osteoclastogenesis, chemokines also affect osteoclast functions. It
has been reported that SDF-1α/CXCL12 increases MMP-9 activity
in human osteoclasts, resulting in increased bone resorption activ-
ity (Grassi et al., 2004). There is evidence that RANTES/CCL5 can
also act on osteoblasts, resulting in chemotaxis and promoting cell
survival (Yano et al., 2005). RANKL also induces the production of
MCP-1/CCL2, MIP-1_/CCL3, RANTES/CCL5, and MIG/CXCL9
by osteoclasts, suggesting a coupling role, which could contribute
to bone resorption (Kim et al., 2006a). Taken together, these stud-
ies suggest that macrophage-produced chemokines can effectively
contribute to the bone remodeling process by driving osteoblast
migration and activation during periodontal wound healing.

An important key mediator of macrophage function is the
prostaglandins, which are derived from hydrolysis of membrane
phospholipids. Phospholipase A2, cleaves arachidonic acid, a pre-
cursor of a group of small lipids known as eicosanoids, from
membrane phospholipids. Eicosanoids generally act as inflam-
matory agents (Lewis, 1990). Arachidonic acid is metabolized
via two enzymatic pathways. The first is the action of lipoxyge-
nases that results in the formation of the hydroxyeicosatetraenoic
acids (HETE) and leukotrienes (LT). Alternatively, cyclooxyge-
nases (COX) catalyze the conversion of arachidonic acid into
prostaglandins, prostacyclins, and thromboxanes. Prostaglandins
have 10 sub-classes, of which D, E, F G, H, and I are the most
important (Gemmell et al., 1997). Inflamed oral tissues synthe-
size significantly large amounts of prostaglandins (Mendieta et al.,
1985). Prostaglandin E2 is the most potent stimulator of alveo-
lar bone resorption (Goodson et al., 1974; Dietrich et al., 1975).
Within oral lesions, prostaglandin E2 is mainly localized within
macrophage-like cells and secreted when stimulated with bacteria
LPS (Loning et al., 1980). Periodontal ligament cells also produce
prostaglandin E2 even at rest. This secretion is enhanced by IL-
1β, TNF-α, and parathyroid hormone (Richards and Rutherford,
1988; Saito et al., 1990a,b). Prostaglandin E2 has a biphasic action
on cells; in high doses, it decreases IgG levels but in low doses has
the potential to increase them. When combined with IL-4, low
doses of prostaglandin E2 induce a synergistic rise in IgG produc-
tion, suggesting an immune-regulatory role for prostaglandin E2

(Harrell and Stein, 1995).
Disruption of the balance between osteoblast and osteoclast

activities by bacterial products and inflammatory cytokines con-
stitutes the main underlying causes of inflammation-induced bone
loss (Liu et al., 2000). It is shown that LPS of bacteria either
directly or through its action on the macrophages is capable of
stimulating bone resorption when added to osteoclast precur-
sor cultures containing osteoblasts and/or stromal cells (Iino and
Hopps, 1984). In addition to this, TLR and inflammation-induced
osteoclastogenesis pathway is the most common pathway related
to bone loss (The American Academy of Periodontology Academy
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Report, 1999; Pihlstrom et al., 2005). Inflammation-induced and
macrophage-mediated bone loss in oral infection involves complex
inflammatory signals and cytokine networks regulating osteoclas-
togenesis, such as RANKL, interleukin-1, interleukin-6, tumor
necrosis factor-α, and prostaglandin E2 have been reported to be
significantly associated with this type of tissue destruction (Hen-
derson et al., 2003). Before the discovery of receptor activator of
NKκB (RANK), its ligand (RANKL), and its antagonist osteoprote-
gerin (OPG), the development and formation of osteoclasts were
attributed to factors produced by osteoblasts and bone marrow
stromal cells (Rodan and Martin, 1981; Martin and Sims, 2005).
It is now clear that RANKL, RANK, OPG are the key regulators of
bone remodeling, directly involved in the differentiation, activa-
tion, and survival of osteoclasts and osteoclast precursors (Ander-
son et al., 1997; Lacey et al., 1998; Yasuda et al., 1998). RANKL
is expressed by osteoblasts, stromal cells, chondrocytes, and other
mesenchymal cells. Activated T and B cells can also express RANKL
(Theill et al., 2002; Mahamed et al., 2005; Kawai et al., 2006). RANK
is expressed by osteoclast progenitors, mature osteoclasts, chon-
drocytes, monocytes/macrophages, and dendritic cells (Anderson
et al., 1997; Hsu et al., 1999). Their decoy receptor OPG is known
to be expressed by periodontal tissue cells like fibroblasts and peri-
odontal ligament cells (Liu et al., 2000). Blocking RANKL activity
with OPG significantly inhibits bone loss in rheumatoid arthritis,
osteoporosis, cancer-related bone metastasis, and diabetes associ-
ated alveolar bone destruction (Mizuno et al., 1998; Kong et al.,
1999; Honore et al., 2000; Brown et al., 2004; Hofbauer and Schop-
pet, 2004; Mahamed et al., 2005), confirming the critical role of the
RANKL, RANK, OPG triad in osteoclastogenesis. Osteoclastogen-
esis via RANK, RANKL pathway depends on Macrophage-Colony
Stimulating Factor (M-CSF; Tanaka et al., 1993; MacDonald et al.,
2005). Pathogens, stress, or pathology influence the production of
M-CSF via pro-inflammatory cytokines and have a significant role
on the subsequent osteoclast activity where TLR-2 activation up-
regulates the expression of M-CSF (Song et al., 2009). LPS from
different pathogens can stimulate bone resorption in vitro and
in animal models as in primary mouse calvarial osteoblasts, the
activation of TLR-2 and TLR-6 by LPS causes enhanced expres-
sion of RANKL through a MyD88-dependent mechanism (Sato
et al., 2004). In mouse calvarial osteoblasts, expression of TLR 4
and TLR-9 results in the activation of NFκB and related to that
the increased secretion of TNF-α and M-CSF (Morse et al., 2008).
LPS-induced interleukin-1 production through TLR pathway can
up-regulate RANKL and inhibit osteoprotegerin expression by
osteoblasts resulting in osteoclast formation in a prostaglandin E2-
dependent manner. TLR-2 substantially decreases the responses to
LPS (Song et al., 2009). LPS directly, or via TLR pathway by stimu-
lating different cell types is capable of inducing osteoclast develop-
ment and activity. Thus, TLRs could influence the inflammatory
response in the bone microenvironment, and may play a critical
role in modulating inflammation-induced osteoclastogenesis and
bone loss.

Another mechanism underlying macrophage involvement in
oral tissue pathologies is the destruction of ECM. Collage-
nases, along with other MMPs, play an important role in this
process. MMPs are a family of structurally related but geneti-
cally distinct enzymes that degrade ECM and basement membrane

components. Twenty-three enzymes have been classified into
collagenases, gelatinases, stromelysins, membrane-type MMPs,
and other MMPs, mainly based on the substrate specificity and
molecular structure. MMPs are involved in physiological processes
such as tissue development, remodeling,and wound healing. MMP
activity is controlled by changes in the delicate balance between
the expression and synthesis of MMPs and their major endoge-
nous inhibitors, tissue inhibitors of MMPs (TIMPs). It is clear
that MMPs are up-regulated in periodontal as well as other types
of oral inflammation (Ebert et al., 2005). MMP activation involves
tissue and plasma proteinases and bacterial proteinases together
with oxidative stress (Henry et al., 2002; Rot and von Andrian,
2004). It is now clear that a broad range of cell types present in
the normal and diseased human periodontium such as gingival
sulcular epithelial cells, fibroblasts and endothelial cells, mono-
cytes/macrophages, neutrophils, and plasma cells has the ability to
express distinct MMPs (Sorsa et al., 1995; Takagi et al., 1995; Kiili
et al., 2002; Wahlgren et al., 2002).

Matrix metalloproteinases gene transcription is very low in the
healthy periodontal tissue; their secretion is stimulated or down-
regulated by various cytokines. The main stimulatory cytokines
for MMPs are TNF-α, IL-1, and IL-6. Activated MMPs are capable
of activating other MMPs (Visse and Nagase, 2003). There is a close
interaction between MMP activation and cytokine function. IL-1β

and TNF-α can stimulate MMP-3, MMP-8, and MMP-9 secre-
tions from gingival fibroblasts and MMP-13 in osteoblasts. TGF-βa
suppresses MMP-1, MMP-3, and MMP-8 gene transcription but
induces MMP-2 and MMP-13 in keratinocytes (Birkedal-Hansen,
1993; Kahari and Saarialho-Kere, 1999; Konttinen et al., 1999).
MMP-1 (collagenase-1) has a wide range of substrates. It can
digest interstitial collagen, ECM components, and soluble non-
matrix mediators (Sorsa et al., 2006). MMP-9 (gelatinase B) is
a gelatinolytic enzyme degrading several ECM proteins, includ-
ing basement membrane-type IV collagen (Lee et al., 1995; Sume
et al., 2010; Kantarci et al., 2011). MMP-9 is found to be expressed
in epithelial cells; its production can be stimulated by several
cytokines such as TNF-α, growth factors such as epidermal growth
factor, and by some bacterial products such as LPS (Putnins et al.,
1996; Firth et al., 1997). Although MMP-1, MMP-8, and MMP-
9 are the main enzymes that are involved in the ECM and base
membrane breakdown, other MMPs and their tissue inhibitors
(TIMPs) have also been linked to periodontal diseases. MMP-2
(gelatinase A) has been shown to be strongly expressed in inflamed
pocket epithelium and to be important in epithelial cell migration
(Makela et al., 1999). MMP-13 (collagenase-3) is expressed by
the basal cells of the gingival pocket epithelium able to degrade
collagens type I, III, and IV as well as fibronectin, tenascin, and
some proteoglycans (Kahari and Saarialho-Kere, 1997; Knauper
et al., 1997; Uitto et al., 1998). MMP-13 plays an important role
in the ability of pocket epithelium to invade periodontal connec-
tive tissue. Some oral bacterial species, especially Fusobacterium
nucleatum were found to induce MMP-13 (Uitto et al., 2003).

RESOLUTION OF ORAL INFLAMMATION AND THE ROLE OF
MACROPHAGES
Oral inflammatory diseases can be considered as an adverse out-
come of the protection efforts of the host against the invading
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pathogens. Inflammation should resolve in a timely manner to
prevent tissue injury, and maintain health. The rapid and com-
plete elimination of invading leukocytes from a lesion is the ideal
outcome following an inflammatory event (Schwab et al., 2007).
Inadequate resolution and failure to return tissue to homeostasis
results in neutrophil-mediated destruction and chronic inflam-
mation (Van Dyke and Serhan, 2003). If the host is unable to
neutralize the pathogens, then acute inflammation would become
chronic with consequences such as destruction of ECM and bone,
scarring, and fibrosis (Van Dyke, 2008). Controlling the inva-
sion of the neutrophils can impact the conversion of an acute
gingivitis to chronic periodontitis. Scarring and fibrosis in peri-
odontitis prevents the return to homeostasis (Van Dyke, 2007).
When tissue injury is mild, necrotic cells will be replaced by
new cells by regeneration process. If tissue damage is extensive,
the process of healing is repair. When repair takes place, fib-
rin is not cleared rapidly and efficiently after the acute phase of
inflammation and granulation tissue is formed from surrounding
tissue compartments. Later phases of repair involve fibroblast-
mediated collagen deposition, disappearance of vascular tissues
and replacement of these areas by avascular and fibrotic scar tissue
(Kumar et al., 2005). The efforts to control inflammation process
has been mainly with the use of pharmacologic agents, which
act as antagonists for some of the mediators of inflammation
(Serhan et al., 2007). The resolution of inflammation previously
thought to be a passive event, but greater understanding of the
pathways and processes underlying resolution of inflammation
has led to the recognition of an active progress where the acti-
vation of pro-resolving molecules are needed to neutralize and
eliminate inflammatory leukocytes, and thereby prevent pathol-
ogy (Van Dyke and Serhan, 2003; Van Dyke, 2007; Serhan et al.,
2008). Restoration of tissue homeostasis is initiated following
an acute inflammatory response that generates lipid mediators
of inflammation (Van Dyke, 2008). Various lipid mediators such
as eicosanoids, prostanoids, and prostacyclins are produced upon
agonist stimulation of G-protein receptors on the cell membrane.
Arachidonic acid (AA) plays key role in this process (Kantarci
and Van Dyke, 2003) and is metabolized either by a cyclooxyge-
nase (COX)-1 or COX-2-dependent pathway that results in the
generation of prostanoids or a 5-lipoxygenase (5-LO)-dependent
pathway that results in leukotriene (LT) production.

There is a high concentration of cells containing lipoxygenases,
and corresponding pro-inflammatory products, a “class switch”
may occur within neutrophils (Levy et al., 2001; Van Dyke, 2007).
This class switch gives rise to the synthesis of pro-resolving mole-
cules. One of the active resolution molecules is lipoxins, which are
generated late in inflammation when a second lipoxygenase inter-
acts with a lipoxygenase product generated earlier by a different cell
(Serhan, 2004). These molecules are synthesized through a series
of enzymatic reactions starting with the oxidation of AA by 15
LO through the process of transcellular biosynthesis, resulting in
15-S-hyroxy-(p)-eicosatetraenoic acid [15-S-H(p)ETE]. Accord-
ingly, 15-S-H(p)ETE is further acted on by 5-LO to induce the
synthesis of lipoxins, such as lipoxins A4 (LXA4) and B4 (LXB4;
Kantarci and Van Dyke, 2003; Van Dyke and Serhan, 2003). The
lipoxins produced act as agonists to stimulate the resolution of
inflammation and promote the restoration of tissue homeostasis

through a number of mechanisms. These include limiting PMN
migration into sites of inflammation, activating monocytes with-
out the generation of a superoxide anion, and stimulating the
uptake of apoptotic PMN by macrophages (Serhan et al., 1993;
Maddox and Serhan, 1996; Maddox et al., 1997). When the lipoxin
pathway is activated and aspirin is present during this synthesis,
acetylation of the COX-2 enzyme occurs to inhibit further produc-
tion of prostanoids from AA metabolism. This alternative pathway
will lead to the synthesis of 15-R-H(p)ETE transforming to 5(6)-
epoxytetraene with the help of 5-LO activity. The next step is the
synthesis of 15-epi-LXs or aspirin-triggered lipoxins (ATLs) from
5(6)-epoxytetraene (Van Dyke and Serhan, 2003). 15-epi-LX is a
form of native lipoxin and possesses potent pro-resolving proper-
ties (Serhan et al., 1995; Claria et al., 1996; Van Dyke and Serhan,
2003).

In addition to the omega-6 derived pro-resolving molecules,
resolvins, and protectins are derived from the omega-3 polyun-
saturated fatty acids (PUFAs), eicosapentaenoic acid (EPA), and
docosahexaenoic acid (DHA; Van Dyke, 2007; Serhan and Chiang,
2008). They are able to stimulate anti-inflammatory and pro-
resolving pathways similar to the lipoxins, but their binding sites
on inflammatory cells differ from each other (Serhan et al., 2004;
Van Dyke, 2007; Serhan and Chiang, 2008). Resolvins stimulate the
resolution of inflammation through multiple mechanisms, includ-
ing preventing neutrophil penetration, phagocytosing apoptotic
neutrophils to clear the lesion, and enhancing clearance of inflam-
mation within the lesion to promote tissue regeneration (Ban-
nenberg et al., 2005; Hasturk et al., 2007; Schwab et al., 2007).
The classic inflammatory eicosanoids (i.e., prostaglandins and
leukotrienes), in addition to activating and amplifying the car-
dinal signs of inflammation, are also responsible for inducing
the production of mediators that have both anti-inflammatory
and pro-resolution activities, such as the lipoxins, resolvins, and
protectins, reinforcing the active nature of the resolution process
(Serhan et al., 2008). In humans, the aspirin-tolerant subjects
generated both LXA4 and ATL, but aspirin-intolerant patients
proved to have a diminished capacity to generate ATL and LX
upon aspirin challenge (Sanak et al., 2000). In an experimental
periodontitis rabbit model, animals are protected by LXA4 and
transgenic (TG) rabbits over expressing 15 LO generate enhanced
levels of LX, exhibit a reduced inflammatory phenotype, and are
protected from bone loss in periodontal disease (Serhan et al.,
2003). The treatment with Resolvin-E1 (RvE1) prevented and
completely eliminated the signs of inflammation. In the RvE1
treated group, inflammation was completely eliminated; pocket
depth was returned to normal and soft tissues returned to healthy
levels and appearance (Figure 2). Regeneration of new cementum
and bone with an organized periodontal ligament was observed
(Hasturk et al., 2007). Restoration of crestal bone height, elimi-
nation of infrabony defects, and regeneration of new cementum,
connective tissue, and bone with an organized periodontal liga-
ment were signs of complete regeneration of tissues to pre-disease
levels (Hasturk et al., 2007). Periodontitis was also shown to have
a systemic impact elevating the levels of IL-1β and C-reactive
protein (CRP) in all animals. Oral topical RvE1 therapy reduced
systemic IL-1β and CRP levels. Rabbits treated with RvE1 showed
an essentially complete recovery without any signs of local and
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FIGURE 2 | Regulation of inflammation by resolvin-E1 in

experimental periodontitis. (A) Periodontal disease was induced by
ligature and Porphyromonas gingivalis application over 6 weeks in
rabbits. Classical characteristic of periodontal disease including tissue
and bone loss were observed. (B) Sites were treated either with RvE1
(1 mg/ml) or vehicle (ethanol) for an additional 6 weeks. RvE1 treatment
did not only stop the disease progression but also reversed the tissue
and bone loss and allowed the tissues to reach to a completely healthy

state. Vehicle treatment did not have any impact on controlling the
disease, conversely the disease continued to progress. (C) Histological
evaluations confirmed the clinical observations where RvE1 treated sites
showed no bone loss and no or minimal inflammatory cell activity. (D)

Histomorphometric evaluations quantified the bone level changes during
these treatments over 6 weeks. While RvE1 treatment resulted in bone
gain, vehicle treatment showed worsening and lost more bone as a
result of disease progression.

systemic inflammation (Hasturk et al., 2007) suggesting a com-
plete return to tissue homeostasis. This mechanism is most likely
regulated through an orchestrated series of events where in addi-
tion to neutrophils and lymphocytes, macrophages play the pivotal
role.

MACROPHAGES AS A POSSIBLE LINK BETWEEN ORAL AND
SYSTEMIC INFLAMMATION
The critical role of the macrophages in inflammatory diseases has
been studied extensively in various organ systems in the human
body. While the debate over the direction and cross-reactivity of
local and systemic inflammation continues regarding which of
the local specialized tissues are affected by systemic inflammatory
changes and how the specific inflammatory processes in any part
of the body have a generalized impact distant to the affected site, it
is thought that the relationship is bidirectional (Offenbacher and
Salvi, 1999; Amar et al., 2007; Ebersole et al., 2010; Hajishengal-
lis, 2010). Such a dynamic response requires an intricate network
of cellular and non-cellular components where macrophages are
at the epicenter due to their extensive functional interactions with
other cells and processes of inflammation. To this end, research has

provided evidence of an oral and systemic connection in several
diseases such as diabetes, cardiovascular diseases, and pathological
conditions such as pre-term birth (Paquette et al., 1999; Nassar
et al., 2007; Offenbacher et al., 2009).

We have previously studied macrophages and their role in
the aggravation of inflammation in diabetics and identified crit-
ical markers of regulation at cellular signal transduction. These
series of studies have demonstrated that oxidative stress plays
a substantial role in the pathogenesis of diabetic complications.
Superoxide anion is the first molecule generated during the res-
piratory burst of phagocytes, including macrophages, by NADPH
oxidase. Either at rest or after stimulation with PMA or opsonized
zymosan (OPZ), monocytes from people with diabetes produced
significantly more anion than those from healthy individuals.
The increased anion generation was found to be correlated with
glycemic control (HbA1c) of patients. To clarify the impact of
hyperglycemia on superoxide generation, normal human mono-
cytes were then treated with receptor for advanced glycation end
products (RAGE) ligands (advanced glycation end product, AGE
protein and S100B) or high glucose media before stimulation.
Both RAGE ligands and high glucose concentration increased
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FIGURE 3 | Local periodontal inflammation as a modifier of

atherosclerotic changes in aortas of high cholesterol-fed rabbits.

(A) Atherosclerosis was induced by high cholesterol diet (0.5%) in rabbits
over 13 weeks. Simultaneously, periodontal disease was also induced as
explained above over a 6-weeks period. At 13 weeks, the aortas dissected
en face and stained with Sudan IV for detection of lipid depositions. As a
result of high cholesterol diet, rabbits developed early fatty streaks as
indicated by Sudan IV stained lipid depositions mainly limited at the aortic
arch and thoracic aorta. Rabbits challenged with P. gingivalis showed

dramatically more and extended level of lipid depositions covering almost
entire surfaces of thoracic and abdominal aortas. (B) Quantification of lipid
covered area clearly showed that local periodontal inflammation
significantly increases the atherosclerotic changes induced by cholesterol
diet. (C) Periodontal disease was also more dramatic in those rabbits
received high cholesterol diet suggesting a reciprocal relationship between
local and systemic inflammations. (D) The severity of bone loss was
positively correlated with degree of the fatty streaks (lipid depositions;
r 2 = 0.9501).

anion generation from human macrophages. Notably,high glucose
was associated with correspondingly increased osmotic pressure.
This study demonstrated that RAGE ligands can significantly con-
tribute to the hyper-responsive phenotype of diabetic monocytes
and macrophages, which might be reversible by blocking RAGE or
reducing RAGE ligands by controlling hyperglycemia (Ding et al.,
2007a).

Hyperglycemic episodes in diabetes are closely associated with
increased oxidative and nitrosative stress, which can trigger the
development of diabetic complications. Hyperglycemia stimu-
lates the production of advanced glycosylated end products,
activates protein kinase C, and enhances the polyol pathway
leading to increased superoxide anion formation. Superoxide
anion interacts with nitric oxide, forming the potent cytotoxin
peroxynitrite, which attacks various biomolecules in the vas-
cular endothelium, vascular smooth muscle, and myocardium,
leading to cardiovascular dysfunction (Pacher et al., 2005). High
concentrations of hydrogen peroxide activate insulin signaling
and induce typical metabolic actions of Czech et al. (1974).
The pathogenetic role of nitrosative stress and peroxynitrite,
and downstream mechanisms including poly(ADP-ribose) poly-
merase (PARP) activation. PARP activation can also up-regulate
various pro-inflammatory pathways which leads to pathological

modifications in adhesion molecule expression, angiogenesis, and
other processes (Virag and Szabo, 2002).

In order to identify the specific signaling pathway through
which the RAGE-mediated functional changes are effected in
macrophages in diabetic people, we focused on the enzyme sys-
tems, which regulate the oxidative burst in macrophages. To this
end, our research has shown that an alteration in the protein kinase
C (PKC) family of intracellular enzymes, which plays a crucial role
in signaling for a variety of cellular responses of mononuclear
phagocytes including phagocytosis, oxidative burst, and secretion,
are directly involved in the pathogenesis of the complications of
diabetes. The consequences of PKC activation were evaluated by
endogenous phosphorylation of PKC substrates with a phospho-
specific PKC substrate antibody [pPKC(s)]. Phosphorylation of a
40-kDa protein was significantly increased in mononuclear phago-
cytes from diabetics as a downstream marker of PKC activation,
and its phosphorylated form was found to be associated with
the membrane. Through a wide range of techniques including
the mass spectrometry, immunoprecipitation, and immunoblot-
ting, we have identified this protein as pleckstrin. Phosphorylation
and translocation of pleckstrin in response to the activation of
RAGE suggested that pleckstrin was involved in RAGE signal-
ing and AGE-elicited macrophage dysfunction. Suppression of
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FIGURE 4 | Lipoxin A4, a resolution phase agonist, conferred similar

actions with RvE1 on periodontal tissues challenged by P. gingivalis and

ligature. (A) Periodontal inflammation was induced in transgenic and
non-transgenic rabbits as described elsewhere for 6 weeks. Simultaneously,
topical LXA4 (5–6 μg/site) was applied to the ligated sites in some
non-transgenic animals. At 6 weeks, similar to RvE1, Lipoxin A4 resulted in
significant reduction of tissue inflammation as a result of disease initiation. 15
LO overexpressing transgenic rabbits (15 LO-TG) exhibited no inflammation or
tissue destruction and were completely protected from periodontal
inflammatory changes. (B) The defleshed specimens clearly showed the

amount of bone loss as a result of the periodontal disease induced by the
human oral microorganism, P. gingivalis (left panel). LXA4 was capable of
preventing from these inflammatory changes and bone loss (middle panel),
while the 15 LO-TG rabbits were not affected by disease induction, and were
completely resistant to the disease (right panel). (C) Histological evaluations
have confirmed the clinical observations and once again showed a complete
protection in 15 LO-TG rabbits from inflammatory changes demonstrated by
an unaffected healthy bony architecture (right panel). Topical LXA4 application
protected from the destructive effects of periodontal disease as indicated by
histological evaluations (middle panel).

pleckstrin expression with RNAi silencing revealed that phospho-
rylation of pleckstrin is an important intermediate in the secretion
and activation pathways of pro-inflammatory cytokines (TNF-α
and IL-1β) induced by RAGE activation. Thus, phosphorylation of
pleckstrin up-regulated in diabetic mononuclear phagocytes was
in part due to the activation of PKC through RAGE binding, and
pleckstrin was a critical molecule for pro-inflammatory cytokine
secretion in response to elevated AGE in diabetes in macrophages
(Ding et al., 2007b).

Cardiovascular diseases and oral inflammation is also linked
through the pivotal role of the macrophages. Epidemiologi-
cal and recent clinical studies have implicated periodontitis as
a risk factor for cardiovascular disease. Leukocytes can affect
the vascular endothelial lining and can cause oxidation of low-
density lipoprotein (LDL). Monocytes are induced to become
macrophages, which take up modified lipoproteins and become
lipid-laden “foam cells” (Paigen et al., 1987a,b). The local inflam-
mation is sustained by secreting chemical mediators. Activated
macrophages in the atherogenic plaque produce inflammatory
cytokines (interferon, interleukin-1, and TNF-α), which induce

the production of substantial amounts of interleukin-6. These
cytokines are also produced in various tissues in response to
infection and in the adipose tissue of patients with metabolic
syndrome (Hansson, 2005). Interleukin-6, in turn, stimulates the
production of large amounts of acute phase reactants, including
CRP, serum amyloid A, and fibrinogen, by the liver (Ridker et al.,
2000). CRP, the well-accepted marker of atherosclerotic disease,
is shown to activate complement and accounts for LDL uptake
by macrophages (Zwaka et al., 2001). The atherosclerotic lesion
begins to bulge within the luminal wall and as the lesion pro-
gresses; the ECM is degraded by proteolytic enzymes and becomes
susceptible to rupture. Thromboses can occur, occluding blood
flow to the heart, which may eventually lead to infarction.

While macrophages play a central role in the development of
atherosclerosis, specifically in the initial accumulation of choles-
terol in the arterial wall (Ross, 1993), it has been suggested that
infection and chronic inflammatory conditions such as periodon-
titis may influence the atherosclerosis process (Haraszthy et al.,
2000). P. gingivalis, one of the major pathogens involved in peri-
odontitis, has been detected in human atheromas (Deshpande
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et al., 1998; Dorn et al., 2000) suggesting that P. gingivalis infection
may be associated with atherosclerosis. It has been proposed that
bacteria or viruses may infect atherosclerotic lesions contribut-
ing to the inflammatory process. Distant infections may increase
systemic inflammation through the release of toxins (i.e., bacter-
ial LPS) or the leakage of chemical mediators into the circulation
(Qi et al., 2003). Although multiple cross-sectional studies have
supported these hypotheses by demonstrating a higher incidence
of atherosclerotic complications in patients with periodontal dis-
ease (Mattila et al., 1989; Arbes et al., 1999) and suggest a
strong link between periodontal inflammation and atherosclero-
sis (DeStefano et al., 1993), these observational studies are far
from proving causation as proposed. Experimental animal mod-
els where periodontitis and atherosclerosis were developed in the
same animal have been recently used to address this challenge. The
ApoE-null mouse periodontal disease model was able to demon-
strate that experimental induction of periodontal disease by ser-
ial inoculations of P. gingivalis exacerbated early atherosclerotic
lesions (fatty streaks) within 4 months (Lalla et al., 2003). In addi-
tion, serum IL-6, aortic VCAM-1, and tissue factor antigen levels
were increased in mice with P. gingivalis infection. In parallel, our
group has shown that P. gingivalis induced periodontitis in rabbits
dramatically increased lipid deposition in the aortas of cholesterol-
fed rabbits compared to high cholesterol diet alone within 13 weeks
(Jain et al., 2003). Animals with experimentally induced peri-
odontitis had more extensive accumulations of lipids in the aorta
compared to non-periodontitis animals (P < 0.05), and there was
a positive correlation between the severity of periodontal dis-
ease and the extent of lipid deposition (r2 = 0.9501; Figure 3).
In this study, P. gingivalis 16S ribosomal RNA were not found in
atheromatous plaques supporting the concept that rather than the
bacteria itself, P. gingivalis cells or its vesicles released from peri-
odontal lesions into the circulation may deliver virulence factor(s)
such as LPS to the arterial wall to initiate or promote foam cell for-
mation by macrophages and contribute to atheroma development
(Qi et al., 2003). In a subsequent study, transgenic rabbits over-
expressing 15-lipoxygenases and their response to inflammatory

challenge were examined. Periodontal disease was initiated by top-
ical P. gingivalis application. 15 LO-TG rabbits exhibited markedly
reduced bone loss and local inflammation compared to non-
transgenic rabbits where a significant amount of tissue destruction
was observed (Figure 4). Further, application of topical aspirin-
triggered lipoxin (LXA4) to the gingival site dampened the PMN-
mediated tissue breakdown and bone loss suggesting that regula-
tion of inflammation can provide an enhanced anti-inflammation
status, which results in prevention of periodontal inflammation
(Serhan et al., 2003). Overexpression of 15-lipoxygenase type I in
transgenic rabbits increases the levels of endogenous lipoxin A4,
which leads to prevention of periodontal inflammation as well as
reduction of accelerated inflammatory events that contribute to
atherosclerotic changes (Shen et al., 1996; Serhan et al., 2008).

CONCLUSION
Oral inflammatory processes involve microbial etiologic factors
induce a series of host responses that mediate an inflammatory
cascade of events in an attempt to protect and/or heal the tissues.
It is becoming clear that the phenotype of the macrophage is cen-
tral to determining the fate of the lesion; resolving; or chronic.
Since the response of the macrophage is essential to health and
disease, it is important to achieve a more complete understand-
ing of the molecular events in this complex system. It is now
becoming apparent that innate immune system cells are the deter-
minants of the fate of the tissues and organs and are more than
just transient, and their role is not limited to engulfing the invad-
ing microbes. Neutrophils and monocyte/macrophages are the
key cells of the host response where their role go beyond the
“defense” and is involved in the entire armamentarium of tissue
homeostasis where protection, healing-repair, and regeneration
are encoded.
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