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Antigen primed T lymphocytes need to expand and persist to promote adaptive immunity.
The growth and survival signals that control this are in large part provided by the NF-κB
pathway in activated or effector/memory T cells. Although several membrane receptors
impact NF-κB activation, signaling from OX40 (CD134, TNFRSF4), a member of the tumor
necrosis factor receptor (TNFR) superfamily, has proven to be important for T cell immu-
nity and a strong contributor to NF-κB activity. PKCθ directs the T cell receptor (TCR) and
CD28-dependent assembly of a CBM complex (CARMA1, BCL10, and MALT1) for efficient
activation of NF-κB, raising the question of whether other membrane bound receptors that
activate NF-κB also require this PKCθ-CBM axis to control TCR-independent T cell activ-
ity. We discuss here our recent data demonstrating that after ligation by OX40L (CD252,
TNFSF4) expressed on antigen-presenting cells, OX40 translocates into detergent-insoluble
membrane lipid microdomains (DIM or lipid rafts) inT cells irrespective ofTCR signals, and
assembles into a signaling complex containing PKCθ, together withTRAF2, RIP1, the CBM
complex, and the IKKα/β/γ complex. PKCθ is required for optimal NF-κB activation mediated
by OX40 and thus works as an essential component of this OX40 signalosome. We also
discuss the likelihood that other TNFR superfamily molecules might complex with PKCθ

in T cells, and whether PKC isoforms may be critical to the function of TNFR molecules in
general.
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INTRODUCTION
Interactions between several members of the tumor necrosis factor
(TNF) superfamily and the TNF receptor (TNFR) superfam-
ily are vital for regulation of T cell activation, differentiation,
and survival (Croft, 2003, 2009). Many TNFR molecules, such
as TNFR2 (TNFRSF1B), OX40 (TNFRSF4), CD27 (TNFRSF7),
CD30 (TNFRSF8), 4-1BB (TNFRSF9), HVEM (TNFRSF14),
GITR (TNFRSF18), and DR3 (TNFRSF25) are constitutively or
inducibly expressed on T cells. They can be viewed as major
sources of nuclear factor κB (NF-κB) signals, through TNF ligand-
dependent recruitment of adaptors (TNF receptor-associated fac-
tors or TRAFs), making them important components of the T
cell signaling machinery (Croft, 2003, 2009, 2010; Sugamura et al.,
2004; Watts, 2005; So et al., 2006; Nocentini et al., 2007; Nolte
et al., 2009; Faustman and Davis, 2010). Although the molecular
machinery through which TNFR1 (TNFRSF1A) regulates signal-
ing has been intensively studied in non-T cells and has become a
framework to understand the classical or canonical NF-κB (NF-
κB1) pathway as well as induction of apoptosis, it is unclear how
other members of the TNFR superfamily organize their signaling
complexes on the membrane, especially in T cells, and whether the
respective complexes are comparable to that recruited by TNFR1.

Activation of NF-κB1 is initiated by signal-dependent phospho-
rylation, ubiquitination, and subsequent degradation of inhibitory
IκB. This allows cytoplasmic NF-κB1/RelA to stably translocate to

the nucleus and activate gene transcription. IκB phosphorylation
is catalyzed by the IκB kinase (IKK) complex that contains two
homologous catalytic subunits, IKKα and IKKβ, and the regula-
tory subunit IKKγ. Activation of IKKβ is essential for NF-κB1
in response to all pro-inflammatory stimuli (Hayden and Ghosh,
2008; Vallabhapurapu and Karin, 2009). Although all stimuli lead-
ing to NF-κB1 activation appear to converge on IKKβ-mediated
IκB phosphorylation, the upstream events controlling activation
of the IKK complex are possibly distinct and specific to the indi-
vidual type of NF-κB-activating stimulus. In T cells, the T cell
receptor (TCR) and the Ig superfamily costimulatory molecule
CD28 are capable of synergizing together and activating NF-κB1.
CARMA1 [caspase-recruitment domain (CARD)-membrane-
associated guanylate kinase (MAGUK) protein 1] has been shown
to control this NF-κB1 activation by forming a complex with B cell
lymphoma 10 (BCL10), and mucosa-associated-lymphoid-tissue
lymphoma-translocation gene 1 (MALT1), termed CBM (Gaide
et al., 2002; Wang et al., 2002; Thome, 2004). Importantly, PKCθ

(protein kinase C θ) is also recruited after cross-linking the TCR
and CD28 (Bi et al., 2001). Phosphorylation of CARMA1 by PKCθ

induces the assembly of the CBM complex that then activates IKKβ

(Matsumoto et al., 2005; Sommer et al., 2005).
The question was then raised as to whether this PKCθ-CBM

module to activate IKKβ was specific to cooperation between the
TCR and CD28 or might be a shared pathway with other molecules,
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either in T cells or non-T cells. Initial studies of CARMA1 sug-
gested the former. TNF binding with TNFR, largely on non-T cells
such as embryonic fibroblasts, has been extensively characterized,
and shown to recruit TRAF2 that links the serine/threonine kinase
RIP1 (receptor interacting protein kinase-1) to activation of IKKβ

(Chen and Goeddel, 2002; Wajant et al., 2003; Muppidi et al., 2004;
Kovalenko and Wallach, 2006). In contrast, TNF was found to
induce NF-κB activation equivalently in CARMA1-deficient T cells
(Gaide et al., 2002; Wang et al., 2002), implying that TNFR super-
family members may not use or require the PKCθ-CBM pathway
for their activities. We have now recently defined a novel signal-
ing complex of OX40, which does contains PKCθ and the CBM
complex, as well as TRAF2, RIP1, and the IKK complex (IKKα,
IKKβ, and IKKγ), but not TCR, CD28, or other TCR-proximal
signaling kinases (So et al., 2011b). Upon OX40L (TNFSF4) stim-
ulation, this signaling module is organized in detergent-insoluble
membrane lipid microdomains (DIM or lipid rafts) and regulates
TCR-independent NF-κB1 activation. This review focuses on these
new findings regarding the OX40 complex and discusses its rele-
vance to other TNFR members in terms of regulation of PKCθ and
other PKC isoforms.

NF-κB1 SIGNALING THROUGH OX40 IS ESSENTIAL FOR
ACTIVATED/EFFECTOR T CELL RESPONSES
The TNF receptor OX40 is induced on activated CD4+ and CD8+
T cells and the TNF ligand OX40L is induced on activated antigen-
presenting cells (APCs; Croft, 2010). Signaling through OX40
dominantly regulates T cell turnover at the peak of the expansion
phase of many immune responses and the subsequent survival
of activated/effector T cells when antigen becomes limiting (Gra-
maglia et al., 2000; Rogers et al., 2001; Bansal-Pakala et al., 2004).
OX40-deficient T cells cannot persist well and exhibit decreased
survival rates, resulting in reduced accumulation of memory cells
with time (Gramaglia et al., 2000; Murata et al., 2000; Humphreys
et al., 2007; Soroosh et al., 2007; Mousavi et al., 2008). The signaling
mechanisms by which OX40 contributes to T cell survival are rea-
sonably well defined in CD4+ T cells. Little has been done in terms
of signaling in CD8 T cells but the targets and molecules involved
are likely similar. One critical pathway that regulates CD4+ T cell
survival mediated by OX40 is NF-κB1 (Song et al., 2008). Phos-
phorylation of IκB, nuclear translocation of NF-κB1/RelA, and
NF-κB1 activities, are impaired in antigen-responding CD4+ T
cells which lack OX40. In accordance with this, OX40-deficient
CD4+ T cells cannot maintain high levels of several anti-apoptotic
Bcl-2 family members that are under the control of NF-κB1.
Correspondingly, retroviral transduction of a constitutively active
form of IKKβ into OX40-deficient CD4+ T cells rescues the poor
survival phenotype and increases the expression of Bcl-2 family
members (Song et al., 2008).

The TNF ligand OX40L is a type II transmembrane and
homotrimeric protein composed of three TNF homology
domains, whereas OX40 is a type I transmembrane protein
monomer and is trimerized through binding with OX40L, result-
ing in formation of a quaternary organized hexamer complex.
OX40 has four cysteine-rich domains (CRDs) and the first three
CRDs from the N-terminus interact with OX40L in the extra-
cellular space (Compaan and Hymowitz, 2006). OX40 has the

potential to recruit TRAF2, TRAF3, and TRAF5 to a QEE motif
existing in its ∼40 amino acid cytoplasmic tail (Arch and Thomp-
son, 1998; Kawamata et al., 1998; Table 1). However, whether all
TRAFs are recruited in vivo is not clear and the downstream sig-
naling that is controlled by these TRAFs has not been investigated
in detail. To easily visualize and uncover the signaling modules
induced by OX40 ligation, we established an MCC-specific T cell
hybridoma cell from OX40-deficient and TCR transgenic mice,
and introduced cMyc-tagged-OX40 into this T cell (So et al.,
2011b). Although the cMyc-tag is attached to the N-terminus of
OX40, this cMyc-OX40 can interact normally with OX40L and
induce strong NF-κB1 activity in the T cell. Furthermore, the
cMyc-tagged OX40 can be efficiently precipitated from this cell (So
et al.,2011b). After triggering OX40 with membrane bound OX40L
expressed on a fibroblast cell (Gramaglia et al., 1998), we observed
recruitment of the canonical TRAF2, RIP1, and IKK complex,
and also PKCθ and the CBM complex (Table 1). Importantly, this
signalosome did not require TCR signals, and was formed with-
out antigen recognition and in the complete absence of a TCR.
Moreover, an anti-OX40 agonist antibody immobilized on a plate
induced the same signaling complex (So et al., 2011b).

A MOLECULAR FRAMEWORK FOR THE OX40 SIGNALOSOME
An important issue is how OX40 builds the functional signal-
ing complex for NF-κB1 in the absence of TCR signals. In the
TNFR1-NF-κB1 pathway, a pro-survival complex I is formed by
recruitment of TNF receptor-associated death domain (TRADD),
RIP1, TRAF2, cellular inhibitor of apoptosis protein 1 and 2 (cIAP
and cIAP2), and the linear ubiquitin chain assembly complex
(LUBAC; Chen and Goeddel, 2002; Wajant et al., 2003; Mup-
pidi et al., 2004; Kovalenko and Wallach, 2006; Iwai and Toku-
naga, 2009; Vallabhapurapu and Karin, 2009; Walczak, 2011).
RIP1 and TRAF2 are conjugated with non-degradative Lys-63
(K63)-linked polyubiquitin chains, which are thought to be crit-
ical to recruit a transforming-growth-factor-β-activated kinase-1
(TAK1)/TAK1-binding protein (TAB) 2/TAB3 complex and the
IKK complex, leading to IKK activation (Wertz and Dixit, 2008;
Li et al., 2009; Skaug et al., 2009; Napolitano and Karin, 2010).
TRAF2 acts as an adaptor and it may function as part of the
E3 ubiquitin ligase for RIP1 in concert with cIAP1/2 (Ea et al.,
2006). In contrast, OX40 does not have a death domain (DD) to
recruit TRADD but may simply rely on its QEE motif to recruit
TRAFs (Table 1; Figure 1). Short hairpin RNA mediated silencing
of TRAF2 significantly decreased the association between OX40
and the IKK complex and blocked NF-κB1 activation (So et al.,
2011b), showing that TRAF2 is as an essential keystone for the
OX40-NF-κB1 axis. RIP1 was ubiquitinated following OX40 trig-
gering, but the deficiency in TRAF2 did not change the level of
ubiquitination and did not affect recruitment of RIP1 to OX40
(So et al., 2011b). Although RIP1 is thought to play a role in
TNFR1 driven NF-κB signaling as described above, it has been
reported that TNF-induced NF-κB1 activation is normal in some
RIP1-deficient cells, suggesting that the requirement for RIP1 is
cell-type specific (Bertrand and Vandenabeele, 2010). The func-
tional significance of RIP1 in the OX40 complex has yet to be
determined, but it is possible that it is not sufficient for recruit-
ment of the IKK complex or IKK phosphorylation. This may
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Table 1 | Proteins involved in the OX40 signalosomea, b.

aProtein name abbreviations: TRAF, tumor necrosis factor receptor-associated factor; IKK, inhibitor of NF-κB (IκB) kinase; NEMO, NF-κB essential modulator; RIP,

receptor interacting protein kinase; CARMA, caspase-recruitment domain (CARD)-membrane-associated guanylate kinase (MAGUK) protein 1; BCL, B cell lymphoma;

MALT, mucosa-associated-lymphoid-tissue lymphoma-translocation gene; PKC, protein kinase C; PKB, protein kinase B; PDK, 3-phosphoinositide-dependent protein

kinase; PI3K, phosphoinositide 3-kinase;TAK, transforming-growth-factor-β-activated kinase;TAB,TAK1-binding protein; GLK, germinal center kinase-like kinase; CBM,

CARMA1, BCL10, and MALT1. bDomain name abbreviations: CRD, cysteine-rich domain;TM, transmembrane; QEE, a motif containing three amino acids, glutamine-

glutamic acid-glutamic acid; RING, really interesting new gene; Zn, zinc finger; CC, coiled coil; TRAF-C, C-terminal TRAF domain; ULD, ubiquitin-like domain; SDD,

scaffolding and dimerization domain; NBD, NEMO-binding domain; LZ, leucine zipper; RHIM, RIP homotypic interaction motif; DD, death domain; CARD, caspase-

recruitment domain; PDZ, PSD95, DLGA and ZO1 homology; SH3, src homology 3; GUK, guanylate kinase; Ig, immunoglobulin-like domain; C2, calcium binding

domain in PKC; C1, phosphatidylserine- and diacylglycerol-binding domain in PKC; PH, pleckstrin homology; SH2, src homology 2; Rho GAP, Rho GTPase-ativating

protein.

explain our finding that PKCθ and the CBM complex associate
with OX40.

PKCθ is highly expressed in T cells and the importance for
mature T cell activation is well recognized (Sun et al., 2000; Isakov
and Altman, 2002). We had previously observed in one in vivo
system that OX40 signaling could not compensate for defective
activation of PKCθ-deficient CD4+ T cells even though OX40
was expressed (Salek-Ardakani et al., 2005). This implied that
PKCθ was a possible mediator of OX40 signals. Although TRAF2,
RIP1, CARMA1, and the IKK complex were pulled down with
OX40 under conditions of immunoprecipitation with a stringent
buffer (RIPA), the PKCθ-CBM complex was only pulled down
using a milder buffer containing n-dodecyl-β-maltoside, a deter-
gent that preserves membrane protein structure. This shows that

the PKCθ-CBM compartment of the OX40 complex is weaker in
association and may require additional intermediates, and that the
membrane environment is required to organize the compartment.

It has been demonstrated that PKCθ specifically interacts with
lipids or protein components in DIM (Bi et al., 2001; Melowic
et al., 2007; Kong et al., 2011). Phosphoinositide 3-kinase (PI3K)
participates in the selective membrane recruitment of PKCθ (Vil-
lalba et al., 2002). Protein kinase B (PKB or Akt; Bauer et al., 2001)
and 3-phosphoinositide-dependent protein kinase-1 (PDK1; Park
et al., 2009) interact with PKCθ, and can also control NF-κB1
activity. The interaction between PKB and CARMA1 additionally
may play an important role for NF-κB1 (Narayan et al., 2006).
In our experiments, OX40 translocated into DIM after interac-
tion with OX40L and although we found that the interaction
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FIGURE 1 | A model of the OX40 complex cascade leading to IKK

activation. OX40L binding to OX40 on T cells results in trimerization of
OX40 monomers and recruitment of TNFR-associated factor 2 (TRAF2) to
the cytoplasmic QEE motif in OX40. The IκB kinase (IKK) complex (IKKα,
IKKβ, and IKKγ) is then recruited to the OX40-TRAF2 module, but this
event is not sufficient for IKK activation. The OX40-OX40L hexamer
complex translocates into detergent-insoluble membrane lipid
microdomains (DIM). This organizes the higher ordered multimolecular
receptor-ligand architecture that is required for IKK activation in a T cell
receptor (TCR)-independent manner. Phosphoinositide 3-kinase (PI3K),
3-phosphoinositide-dependent protein kinase-1 (PDK1), and protein kinase
B (PKB) are recruited to OX40 in the DIM. Although not yet determined,
germinal center kinase-like kinase (GLK) is possibly incorporated into the
OX40 signalosome through TRAF2. Protein kinase C θ (PKCθ) translocates

to the DIM resident OX40, likely through the activities of PDK1, PKB, or
GLK, and may be activated by either PDK1 or GLK. Caspase-recruitment
domain (CARD)-membrane-associated guanylate kinase (MAGUK) protein
1 (CARMA1) also associates with OX40 in DIM, possibly through PKB.
Activated PKCθ phosphorylates CARMA1, and this subsequently induces
the CBM complex [CARMA1, B cell lymphoma 10 (BCL10), and
mucosa-associated-lymphoid-tissue lymphoma-translocation gene 1
(MALT1)]. Receptor interacting protein 1 (RIP1) is also incorporated into
the OX40 complex in DIM in a TRAF2-independent manner. OX40, TRAF2,
and RIP1 are highly polyubiquitinated in the OX40 complex, and thus the
transforming-growth-factor-β-activated kinase-1 (TAK1) complex might be
recruited through these polyubiquitin chains. The IKK complex activated in
the OX40 complex phosphorylates and degrades IκB, and then this
facilitates entry of NF-κB1/RelA into the nucleus.

between OX40 and the TRAF2-IKK compartment was indepen-
dent of DIM, depletion of cholesterol or suppression of synthesis
of sphingolipid/cholesterol strongly inhibited OX40-dependent
NF-κB1 activation (So et al., 2011b). This showed that addi-
tional molecular events in the DIM are required for activation
of the IKK complex by OX40. In accordance, we observed that
PKCθ associated with OX40 in DIM and this association was
dependent on TRAF2 (So et al., 2011b). PI3K and PKB, and
to a minor extent PDK1, were also inducibly recruited into the
OX40 complex (So et al., 2011a). PI3K was phosphorylated in this
complex (So et al., 2011a) and thus is probably important for con-
version of phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2)
into phosphatidylinositol-3,4,5-triphosphate (PtdIns(3,4,5)P3) in
the neighboring membrane where OX40 translocates in the

immune synapse. The localization of PtdIns(3,4,5)P3 at the inner
leaflet of the plasma membrane is known to recruit pleckstrin
homology (PH) domain containing signaling proteins, such as
PDK1 and PKB. Activated PDK1 can phosphorylate PKCθ (Park
et al., 2009) and PKB may link PKCθ and CARMA1 (Bauer et al.,
2001; Narayan et al., 2006), which in turn could lead to activa-
tion of CARMA1 and induction of the CBM complex (Matsumoto
et al., 2005; Sommer et al., 2005). Furthermore, PKB can directly or
indirectly lead to phosphorylation of IKKα and IKKβ (Ozes et al.,
1999; Romashkova and Makarov, 1999). Therefore, it is likely that
PKCθ may be recruited to OX40 through PDK1 and/or PKB allow-
ing PKCθ to phosphorylate CARMA1 and providing the maximal
stimuli necessary to phosphorylate the IKK complex (Table 1;
Figure 1). Consistent with this, PKCθ- or CARMA1-deficient
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primary CD4+ T cells displayed severely reduced activation of
NF-κB1 when stimulated by OX40L in spite of normal expression
of OX40 (So et al., 2011b).

It is also possible that the cross-talk between OX40 and PKCθ

is mediated through the germinal center kinases (GCKs). Four
of the mammalian group I GCKs, GCK, GCK-related (GCKR),
GCK-like kinase (GLK), and hematopoietic progenitor kinase-1
(HPK1), have a conserved carboxyl terminal regulatory domain
that was suggested to target TRAF proteins (Kyriakis, 1999) and
thus these four kinases may be recruited to members of the TNFR
superfamily. Both GCK and GCKR can physically associate with
TRAF2 (Yuasa et al., 1998; Chin et al., 1999; Shi et al., 1999; Shi and
Kehrl, 2003) although the stimuli that may induce this are unclear.
Most interestingly, GLK was recently found to directly phospho-
rylate and activate PKCθ in T cells (Chuang et al., 2011). These
data then suggest that OX40 might activate PKCθ through the
TRAF2-mediated recruitment of GLK (Figure 1). Whether GCKs
are recruited to OX40 and function to control PKCθ activity needs
to be addressed in the future.

The OX40 complex is likely to be tightly controlled by polyu-
biquitin chains. A polyubiquitin chain is formed when one of the
eight amino groups within ubiquitin (seven ε-amino groups of
internal lysines and one α-amino group of N-terminal methio-
nine) is linked to the C-terminal glycine of another ubiquitin.
The best characterized linkages utilize ubiquitin K48 and K63.
K48-linked polyubiquitination usually targets substrates for pro-
teosomal degradation, whereas K63-linked polyubiquitin chains
can function as scaffolds to assemble signaling complexes, such as
the TAK1/TAB2/TAB3 and the IKK complexes (Wertz and Dixit,
2008; Skaug et al., 2009). The cytoplasmic tail of OX40 contains
three lysine residues, which might be targets for ubiquitination.
Indeed, upon triggering with OX40L, OX40 is highly ubiquiti-
nated and the protein level of OX40 is transiently decreased (So
et al., 2011a,b). Disruption of DIM decreases the level of polyu-
biquitin chains, correlating with reduced complex formation and
weak NF-κB1 activity induced by OX40 (So et al., 2011a,b). This
suggests that DIM works as a platform to attach polyubiquitin
chains to OX40 and that this event plays an essential role for IKK
activation. At the present, we do not know how many K48- and
K63-linked polyubiquitin chains are conjugated to OX40, but we
think that both types of polyubiquitin chains should be critical for
regulation of the OX40-NF-κB1 axis. Whether ubiquitination of
OX40 will affect recruitment of PKCθ remains to be seen.

Blocking interactions between OX40L and OX40 concomi-
tantly block survival of pathogenic effector T cells and promote
clonal expansion and suppressive function of Foxp3+ regulatory
T cells. OX40 is therefore a promising drug target for T cell-
mediated inflammatory diseases. Mice treated with anti-OX40L
blocking mAb or OX40- and OX40L-deficient mice have revealed
significantly attenuated inflammation in murine models of colitis,
asthma, diabetes, multiple sclerosis, rheumatoid arthritis, ath-
erosclerosis, graft-versus-host disease, sepsis, and uveitis (Croft,
2009, 2010). PKCθ also has a similar dual role in effector and
regulatory T cells, i.e., inhibition of PKCθ decreases inflamma-
tion mediated by effector T cells, whereas it promotes suppressive
functions of regulatory T cells (Zanin-Zhorov et al., 2011). This
suggests that inhibitors that target the molecular machinery of

OX40 (Table 1; Figure 1) also have a great therapeutic potential
with inflammatory and autoimmune diseases.

REGULATION OF PKC ISOFORMS BY OTHER MEMBERS OF
THE TNFR SUPERFAMILY
Of the TNFR family members most closely related to OX40
(TNFR2, HVEM, 4-1BB, CD30, GITR, CD27, DR3), only 4-1BB
has been assessed in terms of potentially modulating or requiring
PKCθ. Ligation of 4-1BB in activated CD8+ T cells was found to
induce translocation of PKCθ into lipid raft domains augment-
ing PKCθ accumulation in the contact area between a T cell and
an APC (Nam et al., 2005). The signaling complex of 4-1BB has
not been visualized, but this data implies 4-1BB may recruit a sig-
nalosome that is closely related to that recruited by OX40. 4-1BB
also binds TRAF2, and given our finding that TRAF2 knockdown
inhibited PKCθ association with OX40, it is likely that any TNFR
molecule that binds TRAF2 might have the capacity to engage
PKCθ. TRAF2 can bind TNFR2, HVEM, CD30, GITR, CD27,
and DR3 in transient transfection systems, implying this mol-
ecule may be central to the activities of all of these molecules.
This remains to be determined, but in this regard, induction of a
monocyte inflammatory mediator, TGF-β-inducible gene h3 (βig-
h3), by cross-linking DR3 was blocked by several PKC inhibitors
that might target PKCθ, although no direct data was provided (Lee
et al., 2010).

As discussed above, current ideas suggest that PKCθ is not
required for the activity of TNF through TNFR1, however other
PKC isoforms may be involved in TNFR family signaling in some
situations. It is well known that activation of PKC by phorbol
ester can antagonize death (apoptosis) induced by DD containing
TNFR members, such as TNFR1, FAS (TNFRSF6), and TRAIL-
R1/2 (TNFRSF10A/B; Ruiz-Ruiz et al., 1997; Gomez-Angelats
et al., 2000; Meng et al., 2002; Harper et al., 2003). Pretreat-
ment of HeLa cells with phorbol ester inhibits recruitment of key
obligatory DD-containing adaptor proteins to the death-inducing
signaling complex (DISC) organized by TRAIL-R and TNFR1
(Harper et al., 2003). In the TNFR1 complex, RIP1 may recruit
atypical PKCs (PKCζ and λ or ι) through p62 (Sanz et al., 1999).
In human neutrophils, TNFR1 was found to recruit PKCδ to the
complex and this counteracted apoptotic signaling mediated by
the DISC through activation of NF-κB1 (Kilpatrick et al., 2004).
Furthermore, in the TNFR1 complex of mouse embryonic fibrob-
last, PKCδ and PKCε were recently shown to be responsible for
phosphorylation of TRAF2, controlling the introduction of K63-
linked polyubiquitin chains into TRAF2, and recruitment of the
TAK1/TAB2/TAB3 complex and activation of the IKK complex
(Li et al., 2009). In another example, in human peripheral blood
lymphocytes and leukemic T cell lines, FAS upon stimulation with
FASL (TNFSF6) induced rapid localization of stromal interaction
molecule 1 (STIM1) and Orai1 into the membrane receptor clus-
ter and this led to Ca2+ entry and recruitment of PKCβ2 into
the DISC. PKCβ2 in turn also delayed DISC formation and pre-
vented induction of the apoptotic pathway (Khadra et al., 2011).
Thus, in the apoptosis-inducing members of the TNFR superfam-
ily, PKC recruitment may primarily limit cell death, or function
to help molecules like TNFR1 to switch their signaling toward the
pro-inflammatory NF-κB pathway (Figure 2).
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In other TNFR members that do not contain DD, such as
CD40 (TNFRSF5), BAFF-R (TNFRSF13C), RANK (TNFRSF11A),
NGFR (TNFRSF16), and GITR, alternate PKC isoforms also
appear to play roles in cellular functions. In peritoneal
macrophages, strong or weak engagement of CD40 reciprocally
regulated PKC isoforms, resulting in differential cellular respon-
siveness to Leishmania major infection. A higher concentration
of anti-CD40 induced phosphorylation and membrane translo-
cation of PKCα, β1, β2, and ε, which favored Th1-type protective
immunity effective for the parasite elimination, whereas a lower
concentration induced phosphorylation and membrane translo-
cation of PKCδ and ζ/λ, which favored Th2-type immunity and
thus permitted parasite growth (Sudan et al., 2012). In mature B
cells, triggering of BAFF-R with BAFF (TNFSF13B) also induced
membrane translocation of PKCβ which controlled B cell sur-
vival through PKB activation (Patke et al., 2006). Stimulation
of RANK with RANKL (TNFSF11), in a pre-osteoclast cell line
RAW264.7 and in primary bone marrow-derived macrophages,
led to recruitment of atypical PKCs through a RANK-TRAF6-
p62-PKC linkage. This activated NF-κB1/NFATc1 and played a
critical role for osteoclastogenesis (Duran et al., 2004). Moreover,
in P12 cells, a rat pheochromocytoma cell line, NGFR stimula-
tion with NGF induced a receptor complex that contained K63-
polyubiquitinated TRAF6, p62, IKKβ, and PKCι, which induced
NF-κB1 and was involved in neuronal survival (Wooten et al.,
2005). Lastly, stimulation of a macrophage cell line with soluble
GITR induced recruitment of PKCδ to the cell membrane fraction
(Lee et al., 2004). These data then collectively imply that overall

usage of PKC isoforms by members of the TNFR superfamily is
likely to be widespread. It is tempting to speculate that the TNFR-
PKC axis may be critical for life and death decisions in many
different types of cells by inducing NF-κB1 activation or activities
of other signaling pathways (Figure 2).

CONCLUSIONS
Based on results obtained in our biochemical studies, we present an
original model that can explain how PKCθ contributes to the NF-
κB1 pathway mediated by the OX40 stimulatory receptor in T cells
(Figure 1). Upon interaction with membrane OX40L, OX40 moves
into the DIM of T cells and builds a multimolecular complex irre-
spective of antigen/TCR engagement. This complex provides the
molecular machinery that controls IKKβ through PKCθ. PKCθ is
recruited to the OX40-TRAF2 compartment, activates CARMA1,
and then induces the CBM complex to augment IKK activities.
This OX40 complex, which contains several upstream kinases
for IKK, is an important source of NF-κB1 in T cells and con-
trols longevity of T cells through induction of pro-survival genes.
Although OX40 can provide classical costimulatory signals to T
cells in concert with those from antigen and CD28, OX40 also
sustains signals initiated by the TCR and CD28 while functioning
as an independent signaling unit. PKC is central to signal trans-
duction pathways involved in T cell activation, differentiation, and
survival. Our data suggests that PKCθ is an integral component of
the complex that allows OX40 to function in this regard, and we
speculate that an equivalent signaling complex containing PKCθ

is likely to be found in complexes formed by other members of the

FIGURE 2 | PKC isoforms control life and death induced byTNFRSF. The TNFR-PKC axis activates NF-κB1 or other signaling pathways, which concomitantly
promotes cell growth/survival and inhibits cell death.
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TNFR superfamily. This may explain the global requirement for
many of these molecules in driving T cell responses. It will be very
important to compare the molecular mechanisms by which TNFR
members control T cell activity in the future and to determine if
one or several PKC isoforms are central regulators of TNFR family
molecule action.
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