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There is abundant evidence that mast cells are active participants in events that medi-
ate tissue damage in autoimmune disease. Disease-associated increases in mast cell
numbers accompanied by mast cell degranulation and elaboration of numerous mast cell
mediators at sites of inflammation are commonly observed in many human autoimmune
diseases including multiple sclerosis, rheumatoid arthritis, and bullous pemphigoid. In ani-
mal models, treatment with mast cell stabilizing drugs or mast cell ablation can result
in diminished disease. A variety of receptors including those engaged by antibody, com-
plement, pathogens, and intrinsic danger signals are implicated in mast cell activation in
disease. Similar to their role as first responders in infection settings, mast cells likely orches-
trate early recruitment of immune cells, including neutrophils, to the sites of autoimmune
destruction.This co-localization promotes cellular crosstalk and activation and results in the
amplification of the local inflammatory response thereby promoting and sustaining tissue
damage. Despite the evidence, there is still a debate regarding the relative role of mast cells
in these processes. However, by definition, mast cells can only act as accessory cells to the
self-reactiveT and/or antibody driven autoimmune responses.Thus, when evaluating mast
cell involvement using existing and somewhat imperfect animal models of disease, their
importance is sometimes obscured. However, these potent immune cells are undoubt-
edly major contributors to autoimmunity and should be considered as important targets
for therapeutic disease intervention.
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INTRODUCTION
Autoimmune and allergic diseases share fundamentally important
features in that both are the result of “hypersensitive” immune
responses directed toward inherently harmless antigens. It is this
overzealous response that causes the pathology. In fact, as late as
the 1960s many disease models that we now know are autoimmune
were labeled as “experimental allergic” neuritis, encephalomyelitis,
orchitis, uveitis, and glomerulonephritis, reflecting this concept
(Mackay and Anderson, 2010). But this nomenclature has been
largely abandoned and the myriad of common mechanisms that
link allergy and autoimmunity are sometimes forgotten. Mast cells,
clearly implicated in both immediate- and delayed-type allergic
responses, may underlie the relationship between various types of
hypersensitive diseases, yet their role in autoimmunity is still often
questioned. Here we review the data that implicates mast cells in a
variety of autoimmune diseases and address some of the possible
reasons for the controversy. We also discuss how many of the same
mast cell mediated mechanisms that confer protection in infection
settings or mediate allergic responses are pathologic in the face of
a T- or B-cell directed response to a self antigen.

AUTOIMMUNITY: DIRECTED BY THE ADAPTIVE IMMUNE
SYSTEM BUT SUSTAINED BY INNATE IMMUNE CELLS
There is a complex interplay of susceptibility factors that must coa-
lesce in an individual in order for autoimmune disease to develop.
Genetics, hormonal influences and environment play important

roles and some of these factors have been identified (for review
see Kivity et al., 2009; Rubtsov et al., 2010; Rai and Wakeland,
2011; Pennell et al., 2012). However, many of the specific deter-
minants that initiate an autoimmune response and allow it to
be sustained and cause pathology are still enigmatic. By defin-
ition, the “directors” of autoimmune responses are cells of the
adaptive immune system. Thus, an early event in the develop-
ment of autoimmunity is the activation and expansion of T and/or
antibody-producing B cells bearing self molecule-reactive recep-
tors. Naïve autoreactive T or B cells first encounter antigen in
secondary lymphoid organs where they undergo differentiation
and acquire their effector function. These primed CD4+ T helper
cells, CD8+ T cytolytic cells or secreted antibody molecules enter
the blood stream and migrate to sites of inflamed tissues expressing
relevant autoantigens (Figure 1). T cells, through the elaboration
of cytotoxic mediators, and antibodies, through complement fix-
ation or their ability to activate resident accessory cells such as
macrophages and mast cells via Fc receptor engagement, can play
direct roles in tissue destruction at these sites (Lohr et al., 2005).

While the adaptive immune response initiates autoimmune
inflammation, innate immune cells are critical for sustaining the
response that leads to pathology (reviewed in Bach et al., 2004; Ten-
ner, 2004; Marshak-Rothstein and Ohashi, 2007; Pisetsky, 2008;
Chervonsky, 2009; Maciejewska Rodrigues et al., 2009). However,
because autoimmunity is dependent on self-reactive T and/or B
cells, innate immune cells can only play a modifying role at best.
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FIGURE 1 | Mast cells amplify autoimmune responses through

multiple mechanisms. (1) Naïve autoreactive B and T cells are activated
in the secondary lymphoid organs via antigen presentation by APCs. (2)
B and T cells undergo differentiation and proliferation leading to a large
pool of autoreactive effector cells. Plasma cells secrete self-reactive IgG
and/or IgE antibodies. (3) T cells and antibody direct the immune
response to the target tissue by entering the bloodstream and trafficking
to sites of relevant autoantigen expression. (4) Mast cells are activated
early in disease either through TLR/NLR engagement or T cell-mast cell
crosstalk via cell–cell contact or soluble mediators. FcR and C3aR/C5aR

engagement on mast cells may also play a role. The possibility of
activation through cross-talk with other cell types has not been verified.
(5) T cells are reactivated through antigen encounter within the target
tissue or through cross-talk with mast cells and other resident immune
cells. (6) The subsequent release of mediators by mast cells and T cells
results in increased vascular permeability and in the recruitment of other
inflammatory cells, including neutrophils. (7) The resulting increasing
cascade of mediators released by the cells that have co-localized at
target tissue sites contribute to amplified inflammation that can directly
or indirectly sustain tissue damage.

It is this secondary, albeit critical, role of innate cells that often
makes it difficult to definitively determine their relative contri-
bution because of the overlaps in immune cell function. The
reliance on inherently imperfect animal models of human disease
to define the interplay between adaptive and innate immune cells
exacerbates this problem. The spontaneous or actively induced
development of disease in animals is rarely physiologic and is often
associated with an overly robust autoreactive B or T cell response,
one that does not recapitulate the gradual inflammatory processes
that characterize the development of most chronic human autoim-
mune illnesses. Thus, the contribution of modulatory cells can be
masked, especially if they exert their critical effects early in dis-
ease. Such limitations have sometimes led to inconsistent results
and controversy in the field about which cells make substantial
contributions to disease pathogenesis. The challenge in convinc-
ingly implicating such accessory cells is perhaps best illustrated by
the studies of mast cells in autoimmunity. Despite a wealth of sup-
portive evidence, the contribution of mast cells to autoimmunity,
particularly to rheumatoid arthritis (RA) and multiple sclerosis
(MS), is still debated.

MAST CELLS: POTENT IMMUNOMODULATORY CELLS
Mast cells are c-kithi, FcεRI+ granular cells of the innate immune
system that reside in most tissues, but do not circulate in a mature
form in the blood. They are most prevalent at sites that inter-
face with the external environment and are often found in close

association with blood vessels and nerves (reviewed in Rao and
Brown, 2008). Depending on the mode of activation, mast cells can
release unique arrays of immune modulating molecules that exist
preformed in granules within minutes. Activation also induces
the new synthesis of cell surface associated and soluble immune
mediators that can exert prolonged effects on a response (Galli
et al., 2005; Metz et al., 2007). Although cross-linking of the high
affinity IgE receptor (FcεRI) is the best studied mode of mast cell
stimulation, the last few years have been transformative in terms
of identifying a range of other mast cell activating receptors that
act in this capacity leading to either protective or pathologic out-
comes. Indeed, there are few infection or disease states in which
these potent immunomodulatory cells have not been directly or
indirectly implicated (Rao and Brown, 2008) and thus it follows
that mast cells are most certainly modifiers of autoimmune disease
as well.

MAST CELLS AS MODIFIERS OF AUTOIMMUNITY I:
CORRELATIVE EVIDENCE
The idea that mast cells are involved in the initiation and sustain-
ing events of autoimmunity is not based on conventional wisdom,
but rather on substantial data from studies of both human disease
and animal models (Benoist and Mathis, 2002; Lee et al., 2002;
Gregory and Brown, 2006; Rao and Brown, 2008; Sayed et al.,
2008; Walker et al., 2011). Here we focus primarily on studies
of RA, bullous pemphigoid (BP), type I diabetes and multiple
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sclerosis (MS), where the evidence for a mast cell contribution is
particularly convincing.

In RA the primary targets of the autoantibody-directed
immune response are the synovial joints (Lee and Weinblatt,
2001; Lee et al., 2002). Although mast cells are normal residents
within the synovium, their numbers are increased in human dis-
ease and this is associated with the local production of several
mast cell-derived mediators (reviewed in Nigrovic and Lee, 2007).
Tryptase, a preformed mast cell-specific protease, is thought to
initiate the inflammatory response by complexing with heparin
to induce the release of neutrophil chemotactic factors such as
TNF, IL-1β, and IL-17, as well as IL-33 by synovial fibroblasts
(Shin et al., 2009; Hueber et al., 2010). IL-33, in turn, acts directly
on mast cells to initiate the expression of additional inflammatory
cytokines and chemokines (Xu et al., 2008, 2010; Verri et al., 2010).
Tryptase can also directly activate synovial fibroblasts through its
interaction with the protease-activated receptor 2 (PAR2) enhanc-
ing their ability to express proteases that degrade cartilage and
bone (Palmer et al., 2007; Sawamukai et al., 2010). In human RA, a
6- to 25-fold expansion of mast cells has been observed in affected
joints when compared to numbers in normal joints (Nigrovic and
Lee, 2007). Mast cell numbers also increase more than threefold
in multiple animal models of RA (Aloe et al., 1993; Kakizoe et al.,
1999; Shin et al., 2006) and it has been postulated that they are
essential for the joint-specific vascular leak phenomenon involving
both histamine and serotonin (Binstadt et al., 2006). In collagen-
induced arthritis, increased mast cell numbers and the associated
neutrophil influx to the joints as well as exacerbated clinical sever-
ity are reduced by treatment with the mast cell stabilizer, sodium
nedocromil (Pimentel et al., 2011).

Bullous pemphigoid is a skin blistering disease that can be
induced in mice by injection of an antibody (anti-BP180) directed
to hemidesmosomes, structures involved in cell–cell adherence
(Kasperkiewicz and Zillikens, 2007). Early events in this model
of disease include massive degranulation of skin mast cells that
precede the characteristic neutrophil influx and blister formation.
Cromolyn sodium, another mast cell stabilizing drug, blocks these
events (Chen et al., 2001; Navi et al., 2007). In human disease,
degranulated mast cells are prominent in lesions where histamine,
tryptase, and several mast cell-associated chemokines are detected
in blister fluid (Baba et al., 1976; Dvorak et al., 1982; Katayama
et al., 1984; D’Auria et al., 2000).

In Type I diabetes, CD8+ T cells are thought to play a pre-
dominant role in the destruction of the insulin-producing islet
cells of the pancreas although CD4+ T cells and antibodies are
also implicated. The resulting loss of blood glucose regulation
can lead to retinopathy, neuropathy, cardiovascular disease, and
nephropathy (Bluestone et al., 2010). Gene expression profiling
of the pancreatic lymph nodes in the spontaneous BB rat model
revealed activated mast cell transcripts that correlate with dis-
ease and treatment with cromolyn sodium, results in a significant
delay in disease onset (Geoffrey et al., 2006). Inhibitors of tyro-
sine kinase can also inhibit and reverse spontaneous disease in the
NOD mouse model of Type I diabetes, however, specific inhibitors
of c-kit, a tyrosine kinase-associated receptor required for mast
cell development, have marginal effects on limiting disease pro-
gression (Louvet et al., 2008). Paradoxically, a protective role for
mast cells in this disease has been proposed based on results of

studies in a model of spontaneous diabetes in NOD mice. Treat-
ment of NOD mice with anti-FcεRI antibodies, which activate
mast cells and basophils to produce IL-4, delays diabetes (Hubner
et al., 2011). It is postulated that in this model system IL-4 is exert-
ing anti-inflammatory effects by skewing CD4+ T helper cells to
a Th2 dominated response.

Multiple sclerosis is a CD4+ T cell-dependent disease in which
myelinated nerves in the relatively immunologically sequestered
CNS are targeted for destruction leading to variable neurologic
dysfunction (Sospedra and Martin, 2005; Hauser and Oksenberg,
2006). Mast cells are observed in plaques of patients assessed
post-mortem as are transcripts encoding tryptase, histamine,
and FcεRI, identified by microarray analyses (Lock et al., 2002).
Tryptase and histamine are also detected in the cerebral spinal
fluid of some patients (Tuomisto et al., 1983; Rozniecki et al.,
1995). In experimental autoimmune encephalomyelitis (EAE), a
mouse model of MS induced by immunization with myelin pep-
tides in CFA, treatment of mice with proxicromil an inhibitor
of mast cell degranulation, cyproheptadine, a serotonin receptor
antagonist or reserpine, which depletes mast cell granules, inhibits
disease (Dietsch and Hinrichs, 1989; Dimitriadou et al., 2000).

MAST CELLS AS MODIFIERS OF AUTOIMMUNITY II:
CONFOUNDING EVIDENCE FROM IN VIVO STUDIES OF MAST
CELL DEFICIENT MICE
Although compelling, measures of increased mast cell numbers,
mast cell activation profiles, or efficacy of mast cell-inhibitory
drugs are not proof of mast cell involvement. The most definitive
studies implicating mast cells have relied on the use of mast cell
deficient mice, most commonly those with mutations in Kit, the
gene encoding c-kit, the stem cell factor (SCF) receptor (W/Wv,
W−sh mice) or in Kitlg, the gene encoding the c-kit ligand, SCF
(Sl/Sld mice). The differentiation and long term survival of mast
cells is dependent on sustained high level SCF/c-kit signaling and
mice with W/Wv, W−sh/W−sh, or Sl/Sld mutations that compro-
mise this signaling exhibit defects in mast cell development (Galli
and Kitamura, 1987; Grimbaldeston et al., 2005). These mice
are imperfect models because they also bear other hematologic
and non-hematologic defects including neutropenia, anemia, pig-
ment production defects, reduced intestinal mobility and sterility
(W/Wv), or time-dependent loss of mast cells, cardiac abnormal-
ities, and neutrophilia (W−sh/W−sh; Galli and Kitamura, 1987;
Grimbaldeston et al., 2005; Nigrovic et al., 2008). Sl/Sld mice also
develop lymphocytic leukemia at a high rate and have shortened
life spans (Galli and Kitamura, 1987). Systemic or local reconsti-
tution of Kit mutant mice with bone marrow derived mast cells
(BMMC) selectively restores most mast cell populations, although
not always to wild type levels, but does not correct other mutant Kit
related abnormalities. If a wild type phenotype is re-established in
Kit mutant mice by selective repopulation of tissue mast cells, it is
generally accepted that mast cells are implicated.

Several recent reports have described the generation of unique
strains of mast cell deficient mice that do not appear to have
the accompanying profound hematologic defects of Kit mutant
mice, although their characterization is still incomplete (Dudeck
et al., 2011; Feyerabend et al., 2011; Lilla et al., 2011; Otsuka et al.,
2011). These mice provide the promise that a more unequivo-
cal assessment of mast cell contributions in vivo can be achieved.
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Of particular interest to this discussion of autoimmune disease
are the Cpa3Cre/+ mice. Carboxypeptidase 3 (Cpa3) is a mast cell
specific protease expressed early in development and Cpa3Cre/+
mice contain a transgene encoding cre-recombinase under the
control of the carboxypeptidase 3 (Cpa3) promoter (Feyerabend
et al., 2011). It is presumed that the high level expression of Cre-
recombinase in mast cell precursors that express Cpa3 is toxic,
causing genomic instability and the ultimate demise of this cell
lineage at an early stage in development. With the exception of
a small diminution in basophil numbers, no other cell lineages
appear to be affected. Below, we review the controversial evidence
that supports and refutes a role for mast cells in autoimmunity
using mast cell deficient mice.

EVIDENCE FOR MAST CELL INFLUENCE IN AUTOIMMUNITY USING
KIT W/WV MICE
Results in Kit W/Wv mice have provided the most consistent sup-
portive evidence for mast cell involvement in autoimmunity. Of
note, in most autoimmune disease models examined using these
mice, including RA, BP, and EAE, the mast cell-dependent neu-
trophil recruitment discussed above is an important pathogenic
event, one that is absent in Kit W/Wv mice (D’Auria et al., 2000;
Chen et al., 2006; Kasperkiewicz and Zillikens, 2007; Monach et al.,
2010; Sayed et al., 2010; Kaplan, 2011; Walker et al., 2011; Warde,
2011). Despite the inherent neutropenia of Kit W/Wv mice, restora-
tion of mast cells results in normal disease-related neutrophil
influx to inflamed tissues indicating that the few neutrophils
present in these mice are mobilized in a mast cell-dependent
manner. The relationship of mast cells and neutrophils was first
defined in infection settings where mast cells, acting as first respon-
ders, release multiple mediators including histamine, PAF, TNF,
CXCL2, and IL-8 within minutes of activation and initiate the
influx of neutrophils (Zhang et al., 1992; Malaviya et al., 1996a;
Biedermann et al., 2000). As in infection, in autoimmune disease,
neutrophils likely promote disease-associated changes in vascu-
lar permeability, but also contribute directly to self-tissue damage
through the release of proteases, reactive oxygen intermediates,
and chemoattractants that regulate the influx of other inflamma-
tory cells, contributing to a cascade of damaging events (reviewed
in Kumar and Sharma, 2010; Mantovani et al., 2011).

Mast cell dependence has been demonstrated in models of RA
(K/BxN serum transfer-induced and antigen-induced RA) using
(WB xC57BL/6)F1 (WBB6) Kit W/Wv mice where, as in human
RA, neutrophils are the dominant lineage in synovial effusions
(Nigrovic and Lee, 2007). K/BxN mice exhibit an early and spon-
taneous onset of RA-like symptoms due to the presence of glucose-
6-phosphate reactive autoantibodies and transfer of K/BxN serum
into wild type but not WBB6 Kit W/Wv mice, induces disease (Corr
and Crain, 2002; Lee et al., 2002). Disease susceptibility is restored
to Kit mutant mice by BMMC reconstitution. Mast cell reconsti-
tution with IL-1β−/− BMMCs fails to restore disease susceptibility
in the K/BxN serum transfer model, indicating that disease patho-
genesis is mediated by mast cell-derived IL-1β (Nigrovic et al.,
2007). Mast cells also directly modulate access of arthritogenic
antibodies to the joint in the hyperacute phase of K/BxN serum
transfer arthritis, a feature likely directly or indirectly related to the
effects of mast cells on vascular permeability. Labeled antibodies

were specifically deposited in the joint of wild type mice within
minutes after transfer, while deposition was delayed and reduced
in W/Wv animals (Wipke et al., 2002, 2004). In antigen-induced
arthritis, a chronic arthritis model induced by the direct injection
of methylated bovine serum albumen into the joint, there is little
difference in early disease severity in wild type and Kit W/Wv mice,
but mast cell deficient mice develop significantly reduced cartilage
damage over time, a phenotype reversed by BMMC reconstitution
(van den Broek et al., 1988). However, in the collagen-induced
arthritis model, there are no clinical disease differences leading the
authors to suggest that either this model is mast cell-independent
or that mast cells have a minor role (Pitman et al., 2011).

In the BP model, WBB6 Kit W/Wv mice exhibit reduced neu-
trophil accumulation in the skin and diminished skin blistering
upon transfer of serum autoantibodies compared to wild type
mice, whereas a wild type-like disease with associated neutrophil
influx is restored upon mast cell reconstitution (Chen et al., 2002).
Notably, administration of IL-8, a neutrophil chemoattractant, can
overcome the mast cell-deficiency (Chen et al., 2001).

Evidence of mast cell involvement in EAE pathogenesis using
Kit W/Wv mice has been less consistent. EAE is induced by immu-
nization of mice with myelin peptide in CFA (Mix et al., 2010).
Original studies of WBB6 Kit W/Wv mice and their wild type
littermates in a chronic model of MS induced by myelin oligo-
dendrocyte glycoprotein35–55 peptide (MOG)35–55 immunization
revealed that the absence of mast cells does not abolish disease, but
there is significantly reduced severity (Secor et al., 2000). This sus-
ceptibility is restored to wild type levels by BMMC reconstitution,
a procedure that does not correct the c-kit-related anemia in these
mice. Mast cells that normally reside in the meninges are essen-
tial for this fulminant disease and act to regulate BBB integrity
and inflammatory cell entry into the CNS (Sayed et al., 2010).
Neutrophils are among the first cells to enter the CNS in EAE and
their requirement for disease pathogenesis was confirmed by stud-
ies of mice lacking the chemokine receptor, CXCR2, expressed on
neutrophils. CXCR2−/− mice cannot mobilize neutrophils from
the bone marrow in response to inflammatory signals and fail to
develop EAE (Carlson et al., 2008). Mast cells and mast cell-derived
TNF are required for neutrophil influx into the CNS (Sayed et al.,
2010). Despite the convincing data in mouse models, neutrophil
involvement in MS is still controversial. Neutrophils are short-
lived cells and likely exert effects during the initiation of disease
or in flares associated with relapsing-remitting disease. These cells
are not detected in post-mortem assessment of the meninges or
CNS as expected, leading many to dismiss them as participants in
MS pathogenesis.

Severe PLP131–159-induced disease in SJL mice is also mast
cell-dependent. This model is considered by some to be more rele-
vant because it mimics the most commonly presenting relapsing-
remitting form of human disease, one observed in at least 85% of
patients. SJL Kit W/Wv mice exhibit a significantly reduced disease
course that corresponds to decreased infiltration of inflammatory
cells to the CNS and mast cell reconstitution restores wild type
disease susceptibility (Sayed et al., 2011). While there has been
independent corroboration that mast cells are important in dis-
ease by other groups using Kit W/Wv mice (Stelekati et al., 2009;
Piconese et al., 2011), other studies report no disease differences
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(Bennett et al., 2009). The basis of this disparity is still not clear,
but there are several potential explanations including age-related
differences in susceptibility, the use of distinct disease induction
protocols that result in overwhelming T cell responses and unique
housing- or diet-related gut microbiota that alter the general
immune responsiveness of the mice.

STUDIES USING KIT W−SH/W−SH MICE FAIL TO REVEAL A MAST CELL
INFLUENCE IN RA AND EAE
C57BL/6 Kit W−sh/W−sh mice were originally touted as better sub-
jects for in vivo studies of mast cell-dependent events because they
are on a pure C57BL/6 background and are fertile (Grimbalde-
ston et al., 2005). However, contradicting the results of studies
in Kit W/Wv mice, there is no decrease in EAE or RA disease
severity in Kit W−sh/W−sh suggesting mast cells are not impor-
tant (Zhou et al., 2007; Piconese et al., 2011). These results may
be explained by the fact that unlike neutropenic Kit W/Wv mice,
Kit W−sh/W−sh mice have a baseline pro-inflammatory phenotype
that includes neutrophilia, splenomegaly, and increased mast cell
precursors in the spleen. Thus, their pre-existing inflammatory
state, particularly the neutrophilia, likely obviates the need for
the mast cell-dependent neutrophil recruitment that affects early
disease-promoting events.

STUDIES USING Cpa3 CRE+/− MICE FAIL TO IMPLICATE MAST CELLS IN
RA AND EAE
A recent study by Feyerabend et al. (2011) using the newly
described Cpa3cre+/− mice also fails to corroborate a role for mast
cells in EAE and RA. Cpa3cre+/− mice are refractory to induction
of anaphylaxis and fail to exhibit the normal protective expansion
of intestinal mast cells associated with N. Brasiliensis infection
supporting the validity of using these mice in models in which
IgE-activated mast cells are the major effector cells. Yet Cpa3cre/+
mice are susceptible to RA induction by transfer of K/BxN serum,
in contrast to Kit W/Wv mice. In addition, no diminution of EAE
disease severity was observed in either Cpa3cre/+ or Kit W/Wv mice
when compared to their wild type littermate controls. Two con-
clusions were made based on these results: (1) mast cells are
dispensable in both models of RA and MS (EAE) and, (2) other
c-kit-regulated events influence the susceptibility of mice to RA.
A corollary to these conclusions is that mast cells are only relevant
in IgE-dependent allergic disease (Katz and Austen, 2011).

Yet these conclusions may be premature for a number of rea-
sons. For example, mast cells express a myriad of other activating
receptors that have been documented to play important physio-
logic roles in many inflammatory responses outside allergy (Rao
and Brown, 2008; Sayed et al., 2008). In addition, as discussed
earlier mast cells are not the major effector cells in T and/or B cell-
dependent autoimmune responses as they are in IgE-dependent
responses, thus they are relegated to accessory roles. The strong
disease induction conditions used in the EAE experiments in this
study (corroborated by high morbidity in all groups Feyerabend
et al., 2011) make it likely that a vigorous T cell response masks
the mast cell contribution. There is abundant evidence support-
ing mast cell contributions to autoimmune inflammation and it is
important to delineate the underlying reasons for this conflicting
data.

POTENTIAL MECHANISMS OF MAST CELL ACTIVATION IN
AUTOIMMUNE DISEASE
There are a multitude of receptors expressed on mast cells
that are candidates for involvement in autoimmune modulation
(Figure 2). As discussed below, many of these receptors and their
ligands have been implicated in autoimmune disease, but whether
they are acting to activate mast cells in the context of disease is still
in question.

PATHOGEN- AND DANGER-ASSOCIATED MOLECULAR PATTERN
MOLECULES IN INFECTION-ASSOCIATED AUTOIMMUNITY:
OVERCOMING TOLERANCE
It is well established that the activation and expansion of self-
reactive T and B cells can occur only under defined conditions:
either the normal mechanisms of negative selection fail to delete
particular self-reactive clones during development, there is a fail-
ure of normal peripheral mechanisms that maintain tolerance to
self, the normal sequestration of antigens that prevent lympho-
cyte access to self antigens is breached or infection with certain
pathogens elicits an adaptive immune response that cross-reacts
with self antigens, a phenomenon termed molecular mimicry
(Nurieva et al., 2011; Pillai et al., 2011).

Although not definitively established in humans, the develop-
ment of several autoimmune diseases has been linked to exposure
to infectious agents (Kivity et al., 2009). For example, prior EBV
infections are postulated to increase the predisposition to Systemic
lupus erythematosus (SLE), RA, MS, Sjogren’s syndrome, and pol-
yarteritis nodosa (Barzilai et al., 2007), while autoimmune diabetes
susceptibility is associated with enterovirus infections (Richardson
et al., 2009). Bacterial infections including H. pylori are implicated
in susceptibility to autoimmune gastritis and Sjorgrens syndrome
(Annibale et al., 2001; D’Elios et al., 2004). In addition to elicit-
ing a cross-reactive pathogen-specific adaptive immune response,
infectious agents can engage a class of pathogen- and danger-
associated receptors on both adaptive and innate immune cells,
including mast cells. These receptors, including Toll-like receptors
(TLRs) and Nacht-LRRs (NLRs), are expressed either within the
plasma membrane or in endosomal compartments and recognize
conserved components of bacteria, viruses, and protozoa (such
as lipopolysaccharide, LPS), double stranded RNA, flagellin, and
non-methylated CpG DNA, collectively termed pathogen asso-
ciated molecular patterns (PAMPs; reviewed in Kawai and Akira,
2011). Activation of immune cells through TLRs and NLRs induces
the expression of multiple inflammatory mediators that can ulti-
mately result in local tissue damage causing the release of nor-
mally sequestered tissue antigen. Subsequent recognition of these
antigens by T or B cells will induce activation and initiate autoim-
munity. Alternatively, infection-induced activation of accessory
immune cells, including mast cells, macrophages, and neutrophils,
can boost inflammation and transform a relatively modest autore-
active response into one that causes detectable pathology.

Toll-like receptors/NLRs are also highly effective at sensing and
responding to tissue injury, such as that induced in autoimmu-
nity (Zhang et al., 2010; Kufer and Sansonetti, 2011). Just as
pathogens are detected by virtue of “Stranger” signals, damaged
cells release “Danger” signals, designated as alarmins or Damage
Associated Molecular Patterns (DAMPs) that are also sensed by
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FIGURE 2 | Mast cell activation and response in autoimmunity. (A) Mast
cells express a variety of activating receptors that may play a role in modifying
autoimmune disease. These include IgG receptors FcγR1, FcγRIIB, and
FcγRIII; the high affinity IgE receptor, FcεR1; complement receptors C3R and
C5aR; TLRs and NLRs that sense pathogen and intrinsic danger signals; as
well as LTβR and ICAM-1 which can engage with LTβR-ligand and LFA-1,
respectively, on T cells. (B) Mast cells, through expression of cell surface
interaction molecules or mast cell-derived mediators, engage in critical

cross-talk with many cells of the innate and adaptive immune system.
Demonstrated effects of mast cells include elicitation of dendritic cell (DC)
and neutrophil (PMN) maturation and recruitment. Mast cells interact directly
with B cells to affect activation, proliferation and differentiation. Mast cells can
affect the development of CD4+ T helper cells, can act as antigen presenting
cells and express mediators and cell surface molecules that co-stimulate and
activate T cells. Mast cells can also inhibit or support T regulatory cell function,
depending on the setting.

TLRs and NLRs (reviewed in Bianchi, 2007; Piccinini and Mid-
wood, 2010; Marek and Kagan, 2012). In mammals, TLR3, TLR7,
and TLR9 detect microbial nucleic acids, as well as those released
from necrotic cells. For example, damaged cells release heat shock
proteins such as Hsp60, Hsp70, and alpha-β crystalline that are rec-
ognized by TLR2 and TLR4 as well as endogenous cellular products
such as uric acid crystals and aggregated peptides that activate
NLRs. ATP release from damaged cells acts through purinergic
receptor-regulated channels to cause cytosolic ion fluxes that are
detected by NLRs. The resulting signals generated through such
cell injury can activate immune cells, contributing to the persis-
tence of the inflammatory response and promoting more tissue
destruction.

There is emerging evidence that TLRs/NLRs are important
receptors in autoimmune diseases (Fischer and Ehlers, 2008;
Mills, 2011). Activation through TLR2, 3, 4, and 9 is associ-
ated with disease in animal models of RA (Ronaghy et al.,
2002; Abdollahi-Roodsaz et al., 2008; Hoffmann et al., 2011; Goh
and Midwood, 2012) and TLR4 engagement can overcome the
requirement for IL-1β in the serum transfer model of this dis-
ease (Choe et al., 2003). Similarly, TLR1, 2, 3, and 7 signals
mediate islet inflammation in rat and mouse models of type I
diabetes (Lien and Zipris, 2009). TLR1, 2, 3, and 4 are expressed
in the salivary glands of patients with Sjogren’s syndrome and

when engaged can trigger the expression of a number of activa-
tion molecules, including CD40 and ICAM-1, on salivary gland
epithelial cells (Spachidou et al., 2007). TLR2 ligation specifi-
cally activates Th17 cytokine production in the peripheral blood
mononuclear cells of Sjogren’s syndrome patients (Kwok et al.,
2012). Based on studies in MS models where TLR2, 4, 7, and
9 have been implicated in exacerbated disease (Marta et al.,
2009) and TLR3 is protective (Touil et al., 2006), the targeting of
these molecules for therapy has been proposed (Gambuzza et al.,
2011).

With the exception of TLR5, there is evidence that most other
TLRs are expressed on mast cells and are functional (Marshall
et al., 2003a,b; Marshall, 2004). For example, activation of mature
mast cells through TLR2 results in their production of several
pro-inflammatory cytokines critical in autoimmunity including
IL-17, IFNγ, TNF, and IL-1β (Mrabet-Dahbi et al., 2009). Mast
cells also express the NLR, NLRP3, and activation of this intracel-
lular receptor activates the inflammasome, a multiprotein complex
that regulates the processing and secretion of the IL-1 family of
cytokines including IL-1β and IL-18 through the activation of cas-
pase 1 (Nakamura et al., 2009). Mast cells clearly are capable of
responding to PAMP and DAMP signals and it will be critical
to determine whether this is an important mode of activation in
autoimmune disease.
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FcεRI AND FcγR ACTIVATION OF MAST CELLS: COMMON
MECHANISMS LINKING AUTOIMMUNITY AND ALLERGY
The connection between IgE- and IgG-mediated mast cell
responses and autoimmunity is still a tenuous one and is just
beginning to gain some traction (Valenta et al., 2009). As dis-
cussed earlier, allergy and autoimmunity are both considered
hypersensitive diseases that result from inappropriate responses
to innocuous antigens. However, it is notable that self-reactive
IgG and IgE antibodies are commonly detected in both aller-
gic and autoimmune diseases including atopic dermatitis, RA,
systemic lupus erythematosis, Hashimoto’s thyroiditis, Graves’dis-
ease, BP and MS, and their animal models (Permin and Wiik, 1978;
Bartholomew et al., 1991; Valenta et al., 1991; Cooper et al., 1993;
Ghohestani et al., 1998; Pedotti et al., 2001; Metcalfe et al., 2002;
Concha et al., 2004; Smith et al., 2005; Fairley et al., 2007). In
atopy, these autoreactive antibodies are primarily detected in those
individuals with severe and chronic diseases such as atopic der-
matitis, but not in patients with mild respiratory allergies (Valenta
et al., 1991). Many of the self antigens that react with IgE are
homologs of environmental antigens, including the actin bind-
ing protein, profilin, serum albumin, collagen and desmoplakin,
and responses to these are thought to result from cross-reactivity
(Patterson et al., 1986; Bartholomew et al., 1991; Valenta et al.,
1991; Cooper et al., 1993; Spitzauer et al., 1994; Ghohestani
et al., 1998). Alternatively there is speculation that inflammation
associated with IgE-dependent mast cell responses to environ-
mental allergens induces tissue damage and in a Th2 dominated
immune environment these self antigens, no longer sequestered
from the immune system, elicit an IgE response (Valenta et al.,
2009).

Mast cells also express multiple IgG Fc receptors. Important
participants in protective immune responses to pathogens, IgG
receptor cross-linking elicits mast cell activation in allergy and
also plays critical roles in autoimmunity. In fact, IgG autoan-
tibodies are hallmarks of many autoimmune diseases and have
been detected in BP, RA, SLE, and MS (reviewed in Sayed et al.,
2008). IgG-specific Fc receptors include both the activating forms,
FcγRI and FcγRIII, as well as the inhibitory FcγRIIB. FcγRIIB
engagement down regulates both FcγRIII- and FcεRI-induced
mast cell mediator release (Miyajima et al., 1997) and the loss
of this inhibitory receptor renders mice susceptible to induced
autoimmune arthritis and spontaneous SLE and leads to exacer-
bated EAE (Abdul-Majid et al., 2002; Lock et al., 2002; Pedotti
et al., 2003; Robbie-Ryan et al., 2003). Kit W/Wv mice reconstituted
with either FcRγ−/− mast cells (which lack functional FcγRIII,
FcεRI, and FcγRI) or with mast cells lacking only FcγRIII exhibit
a reduced and delayed EAE disease course, suggesting that acti-
vation of mast cells through these receptors modulates disease
(Robbie-Ryan et al., 2003). Mast cell-derived IL-1β, which is neces-
sary for disease in the K/BxN model, is produced after stimulation
through autoantibody engagement of FcγRIII (Nigrovic et al.,
2007).

Clearly such findings, particularly the presence of self-reactive
IgE antibodies in both allergy and autoimmunity, blur the distinc-
tion between these classes of disease and suggest that allergy and
autoimmunity share similar antibody-dependent mechanisms to
activate mast cells and elicit tissue damage in disease.

Complement
The complement system, named for its ability to complement
the action of antibodies and phagocytes in an immune response,
consists of several proteins synthesized by the liver that exist as
inactive pro-proteins. Under inflammatory conditions, a prote-
olytic cascade is initiated that results in the cleavage and generation
of active components, some of which act as direct chemoattrac-
tants or bind to specific G protein-coupled receptors on cells
and stimulate their activation (reviewed in Ricklin et al., 2010).
Complement activation is triggered by the direct binding of com-
plement proteins to microbial surfaces (alternative pathway) or via
complement binding to complement-fixing antibody isotypes that
have been cross-linked by antigen (classical pathway). A mannose
binding lectin-induced pathway also exists (lectin pathway) and
these processes of complement fixation, chemoattraction, and cell
activation are essential for protection from infection.

Mast cells have an intimate relationship with complement in
that they can activate complement components, but they also
express surface receptors that directly bind the breakdown prod-
ucts of this proteolytic cascade. It has been speculated that mast
cell degranulation induces release of chemoattractants (e.g., LTβ4),
vasoactive amines (e.g., histamine), and proteases (e.g., tryptase;
(Dawicki and Marshall, 2007). C3 and C5 complement proteins are
recruited through the permeable local vasculature to sites of mast
cell residence and are cleaved through the action of mast cell pro-
teases to C3a and C5a (Schwartz et al., 1983; Fukuoka et al., 2008).
These byproducts can activate mast cells through the engagement
of complement receptors expressed on mast cells, C3aR and C5aR,
leading to further chemokine/cytokine production and release
(Wyatt et al., 1979; Biesecker et al., 1981; Falk et al., 1983).

Not unexpectedly, the best evidence of complement activation
in autoimmunity comes from studies of antibody-mediated dis-
eases such as RA, BP, and SLE. Mice depleted of complement are
refractory to collagen-induced arthritis (Backlund et al., 2002).
Antibodies specific for double stranded DNA form immune com-
plexes and their deposition in the glomeruli of patients with
SLE activates complement, generating C3a and C5a (Wyatt et al.,
1979; Biesecker et al., 1981; Falk et al., 1983). Although com-
plement activation normally promotes immune complex clear-
ance, the deposition of complement activation products also
contributes to inflammation and local tissue injury (Rothfield
and Stollar, 1967; Couser, 1985; Couser et al., 1985; Perkinson
et al., 1985; Mackworth-Young et al., 1986). In BP, COL17-specific
autoantibodies target human type XVII collagen (Robson et al.,
2003). Access of these antibodies to the basement membrane elicits
an inflammatory cascade that includes complement activation,
infiltration of neutrophils and eosinophils, and degranulation of
dermal mast cells (Oikarinen et al., 1983; Stahle-Backdahl et al.,
1994; Chen et al., 2001; Robson et al., 2003; Liu et al., 2008). In
a mouse model of BP induced by administration of anti-hCOL17
antibody, altering the capacity of the antibody to fix comple-
ment abrogates its disease-causing ability (Li et al., 2010). In SLE,
complement activation deposition of complement at sites of tis-
sue damage is often observed, however, deficiencies in the early
components of the complement cascade are strongly associated
with disease. In animal models of disease, the lack of C1q or C4
results in loss of apoptotic cell clearance, increasing the supply of
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autoantigens that are targets of the immune response and promot-
ing a predisposition to SLE-like disease (Cook and Botto, 2006). In
EAE, complement acts in concert with autoantibody to promote
demyelination (Urich et al., 2006). However, while C3, but not C5,
is required for disease, the deletion of both C3aR and C5aR has
no effect on disease severity, perhaps illustrating another instance
where immune redundancy or strong induction of disease in this
experimental setting obscures the role for these molecules (Reiman
et al., 2002; Boos et al., 2004; Morgan et al., 2004; Ramos et al.,
2009).

There is only limited data demonstrating a direct link between
complement-activated mast cells and autoimmune disease. For
example, in the K/BxN model, C5aR expression on mast cells
is necessary for neutrophil recruitment and subsequent disease
development (Nigrovic et al., 2010). The development of BP
in mice requires the expression of C5aR on mast cells, which
is required for their degranulation (Heimbach et al., 2011). In
EAE, the data are equivocal. Targeted deletion of receptors for
C3a and C5a does not protect mice from disease, yet deletion of
C3 convertase regulator complement receptor 1-related protein y
(Crry) exacerbates disease (Reiman et al., 2002; Ramos et al., 2009;
Ramaglia et al., 2012). There is also evidence that C5 may actually
promote remyelination and prevent gliosis in the CNS (Weerth
et al., 2003).

Immune cell crosstalk
The concept that cell–cell interactions result in cross-activation
has now become a prevailing paradigm in immunology. There are
many examples of mast cell interactions with T cells, DCs, and neu-
trophils, although the consequences of most of these interactions
have not yet been ascribed to autoimmune disease pathogenesis.
Mast cell activation is likely to be an early and initiating event
that triggers cell co-localization and facilitates such interactions,
given that many mast cell mediators released early in a response
act to recruit cells to sites of inflammation. As alluded to above,
mast cell derived TNF, CXCL2, and LTβ4, for example, recruit
neutrophils to inflamed tissues (Ramos et al., 1991, 1994; Zhang
et al., 1992, 1995; Mercer-Jones et al., 1999; Biedermann et al.,
2000; Wang and Thorlacius, 2005; Nakamura et al., 2009). Sim-
ilarly, mast dependent neutrophil recruitment to affected tissues
has been demonstrated in animal models of autoimmunity includ-
ing the synovium in RA, the skin in BP, and the meninges in EAE
(Chen et al., 2001, 2002; Sayed et al., 2010; Pimentel et al., 2011).
A subset of these same mediators, particularly TNF and LTβ4 also
recruit DCs and T cells while IL-16, lymphotactin (MIP-1α), and
MIP-1β are chemotactic for CD4+ and CD8+ T cells (reviewed
in Mekori and Metcalfe, 1999). In a model of cutaneous contact
hypersensitivity, mast cell activation is essential for DC migration
to the skin and histamine and PGE2, both produced by mast cells,
induce the expression of Th2-recruiting cytokines by DCs (McIl-
roy et al., 2006). Mast cells also affect DC function in a skin allograft
model where mast cell derived GM-CSF sustains the DC popula-
tion that is required for tolerance at the graft site (de Vries et al.,
2011). Here we will focus on mast cell interactions with effector T
cells and regulatory T cells, as these are arguably the best-described
interactions and also the mostly likely to play a significant role in
autoimmunity.

There is an abundance of evidence that mast cells affect the
activation state and functionality of T cells. Included among the
many tissue sites where mast cells reside are the secondary lym-
phoid organs and a number of studies have demonstrated that
their numbers increase in the lymph nodes and spleen in response
to some inflammatory signals (Tanzola et al., 2003; Kashiwakura
et al., 2004; Sayed et al., 2010). At these sites of T cell priming as
well as other tissue sites where T cells are reactivated, bystander
mast cells can potentially influence the differentiation phenotype
of T cells through their ability to express a myriad of T cell polariz-
ing cytokines including IL-4 and histamine (Mekori and Metcalfe,
1999). Mast cell-derived TNF, in concert with OX40L, enhances
T cell activation and proliferation and also contributes to the
polarization of Th2 cells in a model of airway hyperreactivity
(Nakae et al., 2006, 2007a,b). Mast cells express MHC Class I and
inducible MHC Class II molecules and thus have the potential to
act as antigen presenting cells (APCs) and there are several reports
that substantiate mast cell APC function both in vitro and in vivo
(Frandji et al., 1993, 1995; Fox et al., 1994; Malaviya et al., 1996b;
Kambayashi et al., 2008, 2009). However, if mast cells serve in this
capacity, it is likely that they are more relevant in recall responses
and not in the priming of naïve T cells. Given the emerging appre-
ciation of superantigens in allergic pathogenesis, particularly those
derived from Staphylococcus (Barnes, 2011), it is tempting to spec-
ulate that mast cells “present” superantigens to T cells and initiate
their activation. The ability of mast cells to present staphylococ-
cal enterotoxin B to CD8+ T cells supports this idea (Frandji
et al., 1996). Through the expression of co-stimulatory molecules
such as CD80, CD86, CD40, CD40L, GITR, and 4-1BB as well as
the inhibitory molecules PD-L1, PD-L2, and Fas, mast cells can
alter T cell effector function (Nakae et al., 2005, 2007c; Lu et al.,
2006; Stelekati et al., 2007, 2009; Piconese et al., 2009; Hershko and
Rivera, 2010).

A newer concept is that T cells can activate and alter mast cell
function. Many of the studies to support this idea have been per-
formed in vitro using membranes isolated from activated T cells
and mechanisms that underlie T cell mediated mast cell activa-
tion have not been extensively explored. However, activated T
cells induce human mast cells to release MMP-9, an event that
is blocked by inhibiting TNF (Baram et al., 2001). Human mast
cells also produce the neutrophil chemoattract IL-8 upon interac-
tion with activated, but not resting, T cells (Salamon et al., 2005).
Oncostatin M, a multifunctional cytokine of the IL-6 family, is
released by human mast cells after interaction with activated T
cells, but not after cross-linking through the IgE receptor (Sala-
mon et al., 2008). Two receptor-ligand interactions have been
implicated in T cell-driven mast cell activation. Upon engagement
of the lymphotoxin-β receptor (LTβR), expressed on mast cells,
with its ligand, expressed on activated T cells, mast cells release
pro-inflammatory cytokines including IL-4, IL-6, TNF, MIP-2, and
RANTES (Stopfer et al., 2004). Interaction of LFA-1, expressed on
activated T cells, and ICAM-1, expressed on mast cells, induces
MC degranulation (Inamura et al., 1998).

Mast cells have a paradoxical relationship with T regulatory
(Treg) cells. Most studies that have investigated mast cell-T regu-
latory cell crosstalk were done using a skin allograft model. In this
model Treg cell-derived IL-9 recruits and activates mast cells to the
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site of the allograft and mast cell presence within the graft is neces-
sary for long term allograft survival (Lu et al., 2006). Treg cells can
also inhibit mast cell degranulation via OX40/OX40L interaction
and thus help to maintain tolerance, as shown in both allograft
transplant and allergic disease models (Gri et al., 2008; Piconese
et al., 2009). In contrast, in in vitro studies, mast cell-derived
histamine can block Treg cell mediated suppression through H1
receptors (Forward et al., 2009).

FUTURE QUESTIONS
Despite the advances in our understanding of these enigmatic cells,
there is still much to be learned about how mast cells impact
autoimmunity. Mast cell actions in autoimmune responses are

often strikingly similar to their roles in infection and allergic
disease suggesting that we may gain more mechanistic insight
by concentrating on these commonalities. However, in each
individual disease there is likely to be variability in the response of
mast cells based on the tissue site(s) they are derived from, their
mode of activation and the interacting cells that are in play. In
addition, it is probable that as in mice, human mast cells exhibit
unique and genetically determined responses to activation that
may contribute to the severity of or susceptibility to a particular
autoimmune disease. Thus, the challenge in ultimately targeting
these cells in therapy will be to understand how they contribute to
initiating disease and to promoting chronicity and what dictates
the quality and magnitude of a particular mast cell response.
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