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Resistance and tolerance are two complementary host defense mechanisms that increase
fitness in response to low-virulence fungi. Resistance is meant to reduce pathogen bur-
den during infection through innate and adaptive immune mechanisms, whereas toler-
ance mitigates the substantial cost of resistance to host fitness through a multitude of
anti-inflammatory mechanisms, including immunological tolerance. In experimental fun-
gal infections, both defense mechanisms are activated through the delicate equilibrium
betweenTh1/Th17 cells, which provide antifungal resistance, and regulatoryT cells limiting
the consequences of the ensuing inflammatory pathology. Indoleamine 2,3-dioxygenase
(IDO), a rate-limiting enzyme in the tryptophan catabolism, plays a key role in induc-
tion of tolerance against fungi. Both hematopoietic and non-hematopoietic compartments
contribute to the resistance/tolerance balance against Aspergillus fumigatus via the involve-
ment of selected innate receptors converging on IDO. Several genetic polymorphisms in
pattern recognition receptors influence resistance and tolerance to fungal infections in
human hematopoietic transplantation. Thus, tolerance mechanisms may be exploited for
novel diagnostics and therapeutics against fungal infections and diseases.
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INTRODUCTION
Allogeneic hematopoietic stem cell transplantation (allogeneic
HSCT) remains a curative treatment for hematological malignan-
cies resistant to other treatment approaches. The unique post-
transplantation milieu, which is characterized by lymphopenia,
regulatory T (Treg) cell depletion, and the release of growth factors
and cytokines (Matsuoka et al., 2010), provides a unique oppor-
tunity for the occurrence of severe infections. Fungal infections
have historically been, and remain important causes of transplant-
related morbidity in HSCT (Mulanovich and Kontoyiannis, 2011).
The ability to combine antifungal agents may provide new treat-
ment options, but prevention and resolution of these infections
have been difficult to achieve. Several studies have reported the
predominance of aspergillosis occurring in the post-engraftment
rather than the neutropenic period in allogeneic HSCT recip-
ients (Grow et al., 2002; Marr et al., 2002). Clinically, severe
fungal infections occur in patients with immune reconstitution
syndrome (IRS), an entity characterized by local and systemic
reactions that have both beneficial and deleterious effects on
infection (Singh and Perfect, 2007). Intriguingly, IRS responses
are also found in immunocompetent individuals and after rapid
resolution of immunosuppression, indicating that inflammatory
responses can result in quiescent or latent infections manifest-
ing as opportunistic mycoses. These considerations indicate that
host immunity is crucial in eradicating infection, but immunolog-
ical recovery can also be detrimental and may contribute toward

worsening disease in opportunistic and non-opportunistic infec-
tions (Gupta and Singh, 2011). Ultimately, control of infection
depends on the restoration of adequate antifungal immunity, and
thus, strategies to augment immunity against fungal pathogens are
complementary to those targeting the pathogens. As a matter of
fact, part of the antifungal effect of antifungal agents may occur
via immunomodulation (Simitsopoulou et al., 2011).

Current understanding of the pathophysiology underlying fun-
gal infections and diseases highlights the multiple cell populations
and cell-signaling pathways involved in these complex conditions
beyond the dysregulated chaos in which fungal infection and dis-
ease are perceived. Because the immune response is a complex
entity, a systems biology approach that integrates investigations
of immunity at the systems-level is required to generate novel
insights into this complexity (Santamaria et al., 2011). At the pop-
ulation level, single nucleotide polymorphisms (SNPs), by altering
protein-protein interactions or transcriptional regulation, may
add further complexity to the system. Applying systems biology
approaches to these complex processes is required for a bet-
ter appreciation of the intricate cross-talk provided by temporal
changes in mediators, metabolites and cell phenotypes underlining
the coordinated processes.

In this review we will discuss how mechanisms that regu-
late both resistance and tolerance to fungi could be success-
fully exploited to elicit antimicrobial immunity and concomitant
tolerance via acquired local immune privilege in HSCT.
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INSIGHT INTO THE MECHANISMS REGULATING IMMUNE
HOMEOSTASIS IN RESPONSE TO FUNGI: THE RESISTANCE
AND TOLERANCE PARADIGM
The immune system protects from infections primarily by detect-
ing and eliminating the invading pathogens; however, the host
organism can also protect itself from infectious diseases by reduc-
ing the negative impact of infections on host fitness (Figure 1).
This ability to tolerate a pathogen’s presence is a distinct host
defense strategy that, in many circumstances, favors the evolution
of protective mechanisms that do not involve pathogen killing
(Medzhitov et al., 2012). This strategy likely occurs in the host-
microbial symbiosis, thus suggesting that the majority of host
defense mechanisms that have arisen during evolution are per-
haps tolerance mechanisms. Little attempt to formally decompose
human or animal health into resistance and tolerance compo-
nents has been done. Resistance is meant to reduce pathogen
burden during infection through innate and adaptive immune
mechanisms, whereas tolerance mitigates the substantial cost to
host fitness of resistance (Read et al., 2008; Schneider and Ayres,
2008). Even in the absence of overt tissue damage, resistance
mechanisms commonly occur at a cost to normal tissue func-
tion, thus causing immunopathology. This means that the optimal
immune response is determined by the balance between efficient
pathogen clearance and an acceptable level of immunopathology.
A plethora of tolerance mechanisms, despite less known rela-
tive to resistance mechanisms, protect the host from immune-
or pathogen-induced damage (Cobbold et al., 2010; Saraiva and
O’Garra, 2010). Therefore, the term tolerance is semantically used
here to refer to the multitude of anti-inflammatory mechanisms,
including immunological tolerance, that is, unresponsiveness to
self-antigens.

It has been argued that a high rate of infection but low-virulence
should select for host tolerance, whereas the opposite should favor
resistance (Restif and Koella, 2004). Thus, it is not surprising that

FIGURE 1 |The resistance and tolerance defense strategies in

infections. Resistance reduces microbial burden during infection through
innate and adaptive immune mechanisms, whereas tolerance mitigates the
damage to host tissues caused by both the resistance mechanisms and
pathogen’s virulence. Both the host and the pathogen can reduce fitness
costs through tolerance mechanisms that reduce both the direct tissue
damage by pathogens as well as immunopathology.

resistance and tolerance are two complementary host defense traits
that increase fitness in response to low-virulence fungi (Romani,
2011). In experimental fungal infections, both defense mecha-
nisms are activated through the delicate equilibrium between
Th1/Th17 cells, which provide antifungal resistance mechanisms,
and Treg cells limiting the consequences of the associated inflam-
matory pathology. Indeed, while some degree of inflammation
is required for protection, particularly at mucosal tissues dur-
ing the transitional response occurring between the rapid innate
and slower adaptive response, progressive inflammation wors-
ens disease, and ultimately prevents pathogen eradication. Recent
observations highlight a truly bipolar nature of the inflamma-
tory process against fungi (Romani and Puccetti, 2007; Romani
et al., 2008a). The conceptual principle highlighting a truly bipolar
nature of the inflammatory process in infection is best exempli-
fied by the occurrence of severe fungal infections and diseases
in patients with IRS (Gupta and Singh, 2011) and in the hyper-
IgE syndrome in which increased levels of pro-inflammatory
gene transcripts have recently been described (Holland et al.,
2007). For A. fumigatus, the association of persistent inflamma-
tion with intractable infection is common in non-neutropenic
patients after allogeneic HSCT (Ortega et al., 2006) as well as
in allergic fungal diseases (Schubert, 2006). A main implication
of these findings is that, at least in specific clinical settings, it is
an exaggerated inflammatory response that likely compromises
a patient’s ability to eradicate infection, and not an “intrinsic”
susceptibility to infection that determines a state of chronic or
intractable disease. The above findings may serve to accommo-
date fungi within the host immune system and at the same time
explain why, despite the fact that human beings are constantly
exposed to fungi, fungal diseases are relatively rare. Should a
degree of coexistence had occurred between fungi and their mam-
malian hosts, this would implicate the possible, underestimated,
contribution of fungi to the plasticity of the immune system. Evi-
dence suggest that the continued integration of pro-inflammatory
and anti-inflammatory stimuli in response to fungi is critical for
a proper control of infection and T cell homeostasis (Romani,
2011).

INDOLEAMINE 2,3-DIOXYGENASE IS A CRITICAL REGULATOR
OF TOLERANCE TO FUNGI
IDO is an interferon-gamma-inducible intracellular enzyme
which catalyzes the catabolism of tryptophan (Puccetti and
Grohmann, 2007; Mellor and Munn, 2008). Work has demon-
strated a complex and crucial role for tryptophan catabolism
in modulating inflammatory processes and T cell tolerance after
HSCT (Hainz et al., 2007; Brandacher et al., 2008). The effects of
IDO activity are tryptophan deficiency, excess tryptophan break-
down products (kynurenines) and consumption of reactive oxygen
species. In transplantation, increased IDO activity in transplanted
cells has been demonstrated to have anti-rejection properties both
in vitro and in vivo (Hainz et al., 2007). Overall, the available
data suggest a potential role of IDO in governing transplanta-
tion tolerance through mechanistic pathways possibly involving
IDO induction by reverse signaling through costimulatory recep-
tors (Puccetti and Grohmann,2007) and IDO-mediated long-term
tolerance (Pallotta et al., 2011).
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IDO and kynurenines serve many roles in fungal infections;
most relevant, the induction of CD4+CD25+ Treg cells via IDO+
dendritic cells (DCs; Montagnoli et al., 2006). In experimental
aspergillosis, IDO blockade greatly exacerbated infections and
allergy to the fungus, as a result of deregulated innate and adaptive
immune responses caused by the impaired activation and func-
tioning of suppressor CD4+CD25+ Tregs producing IL-10 (Mon-
tagnoli et al., 2006). A number of studies have established that
the proper control of the infection and associated inflammatory
reactions require IDO induction and consequent production of
tryptophan metabolites with immune-regulatory activities, con-
tributing to the maintenance of the Treg/Th17 balance (Romani
et al., 2008b). As clearly shown in susceptible mice, Treg and Th17
cells mediate antagonizing roles in aspergillosis, where increasing
levels of IL-17-driven inflammation occurred alongside decreased
anti-inflammatory Treg responses, resulting in inflammatory over-
reactions (Romani et al., 2008b). A reciprocal antagonistic rela-
tionship was also found between IDO and the Th17 pathway,
with IDO restraining Th17 responses and IL-17A inhibiting IDO
(Zelante et al., 2007). Further adding to the complexity, a recent
study has revealed the ability of IL-17A to increase survival and
virulence of fungi (Zelante et al., 2012).

Evidence indicates that the non-hematopoietic compartment
also contributes to tolerance to fungi (Cunha et al., 2010; de Luca
et al., 2010). Epithelial cells (ECs) are known to determine the
balance between a state of “mucosal homeostasis,” required for
optimal organ function, and “mucosal injury,” leading to mucosal
inflammation and barrier breakdown. However, recent evidence
has also indicated ECs as key players in tolerance to respiratory
pathogens via an IFN-γ/IDO axis culminating in the inhibition
of Th17 cell responses (Desvignes and Ernst, 2009; de Luca et al.,
2010). IDO over-expression in airway ECs was found to restrain
CD4+ T cell activation to the fungus, an activity that was never-
theless dispensable in the presence of IDO-expressing tolerogenic
DCs. However, IDO induction in ECs could compensate for the
lack of IDO on hematopoietic cells (Paveglio et al., 2011). The
expression of IDO on ECs occurred through the TLR3/TRIF-
dependent pathway, a finding consistent with the abundant expres-
sion of TLR3 both intracellularly and on the cell surface of ECs.
The failure to activate IDO likely accounted for the lack of toler-
ance to the fungus observed in experimental HSCT in condition in
which either the recipient or the donor, or even more when both,
were TRIF- or TLR3-deficient (de Luca et al., 2010). Overall, these
data shed light on pathways of immune resistance and tolerance
to the fungus that likely take place in a hematopoietic transplan-
tation setting. It appears that protective tolerance to the fungus
is achieved through a TLR3/TRIF-dependent pathway activating
Th1/Treg cells via IDO expressed on both the hematopoietic/non-
hematopoietic compartments. In contrast, the MyD88 pathway
provided antifungal resistance, i.e., the ability to restrict the fungal
growth through defensins and likely, other effector mechanisms
(de Luca et al., 2010). However, the ability of mice to clear the
fungus in the relative absence of the MyD88 pathway (Bretz et al.,
2008) clearly indicates redundancies and hierarchy in antifungal
mechanisms of resistance. Ultimately, the finding that both Can-
dida albicans (De Luca et al., 2007) and A. fumigatus (de Luca
et al., 2010), two major human fungal pathogens, exploit the

TRIF-dependent pathway at the interface with the mammalian
hosts, indicates that the exploitation of tolerance mechanisms is
an advantageous option.

METABOLIC REGULATION OF TOLERANCE TO FUNGI
The activation of distinct signaling pathways in DCs translates
recognition of fungi into distinct inflammatory and adaptive
immune responses (Bonifazi et al., 2009, 2010). The screening of
signaling pathways in DCs through a systems biology approach was
exploited for the development of therapeutics to attenuate inflam-
mation in experimental fungal infections and diseases. In vivo tar-
geting inflammatory [PI3K/Akt/mammalian target of rapamycin
(mTOR)] or anti-inflammatory (STAT3/IDO) DC pathways by
intranasally delivered small interfering RNA (siRNA) modified
resistance and tolerance to infection. Thus, the screening of sig-
naling pathways in DCs through a systems biology approach may
be exploited for the development of siRNA therapeutics to atten-
uate inflammation in respiratory fungal infections and diseases
(Bonifazi et al., 2010). It is of interest that the mTOR pathway has
emerged as a key player in sensing nutritional/energetic signals
and integrating signals controlling metabolism and cellular fate.
The mTOR pathway has been shown to play an important role in
determining the differentiation of CD4+ T cells into inflammatory
and regulatory subsets, the induction of anergy, the development
of CD8+ memory T cells, and the regulation of T cell trafficking
(Araki et al., 2009; Delgoffe et al., 2009; Cobbold et al., 2010; Peter
et al., 2010). The inhibition of mTOR promoted immune tolerance
in mouse models of transplantation, by favoring the expansion
of Treg cells over effector T cells (Zuber et al., 2011). However,
recent data have shed light on the unexpected pro-inflammatory
burst observed in some transplant recipients treated with mTOR
inhibitors (Saemann et al., 2009). Therefore, the potential thera-
peutic utility of mTOR modulation in tolerance to fungi in HSCT
awaits clarification.

EXPLOITING PATHOGEN-INDUCED TOLERANCE IN
EXPERIMENTAL HSCT THROUGH DENDRITIC CELLS
The potential use of tolerogenic DCs as negative cellular vaccines
to induce experimental transplantation tolerance has been sug-
gested (Turnquist and Thomson, 2008). Plasmacytoid DCs may
contribute to the T cell repertoire reconstitution, facilitate engraft-
ment (Fugier-Vivier et al., 2005), and prevent graft-versus-host
disease in HSCT (Arpinati et al., 2003). As DC function is impaired
during the immediate post-transplantation period (Reddy et al.,
2004), the administration of donor DCs may have beneficial effects
in immune recovering in the early HSCT. Over recent years experi-
mental models have shown that it is possible to exploit the mecha-
nisms that normally maintain immune homeostasis and tolerance
to self-antigens to induce tolerance to alloantigens (Waldmann and
Cobbold, 2004; Martinic and von Herrath, 2006). Like natural tol-
erance, transplantation tolerance is achieved through control of
T cell reactivity by central and peripheral mechanisms of toler-
ance. We have recently found that this goal is achievable by the
adoptive cellular therapy of fungus-pulsed or RNA-transfected
IDO+DCs that could induce antifungal resistance within a reg-
ulatory environment (Bozza et al., 2003; Romani et al., 2006). In
experimental HSCT, a model in which allogeneic reconstitution
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of host stem cells is greatly reduced to the benefit of a long-term,
donor type chimerism in more than 95% of the mice and low inci-
dence of graft-versus-host disease (Bozza et al., 2003), protection
was associated with myeloid and T cell recovery, the activation of
CD4+ Th1 lymphocytes, and the concomitant IL-10-driven Treg

cells. Distinct DC subsets activated specialized antifungal effector
and regulatory functions upon adoptive transfer in experimental
HSCT. FLT3-ligand derived DCs (mainly B220+IDO+pDCs) ful-
filled the requirement for Th1/Treg antifungal priming. In contrast,
conventional CD11c+DCs contributed to inflammatory pathol-
ogy via the activation of Th1/Th17 responses (Romani et al.,
2006; Bonifazi et al., 2010). Thus, IDO+DCs proved to be piv-
otal in the generation of some form of dominant regulation that
ultimately controlled inflammation, pathogen immunity and tol-
erance in transplant recipients eventually leading to prevention of
graft-versus-host reaction and reduction of aspergillosis incidence
rates.

The ability of Aspergillus-induced Treg cells to inhibit allore-
activity while sparing responsiveness to pathogen, suggests that
pathogen-induced Treg cells may be associated with minimal
bystander suppression. From a mechanistic perspective, this
implies that the function of Treg cells in transplantation can be
controlled by the specificity of the T cell receptor expressed on
Treg cells (Albert et al., 2006) and is in line with the observation
of a positive effect on post-transplant immunity of antigen expo-
sure at the time of transplantation (Mori et al., 2005). Several
studies have addressed the effect that infections have on trans-
plantation tolerance, and the overall view is that both prior and
concurrent exposure to pathogens can prevent tolerance induc-
tion. However, much less attention has been paid to the effect
that pathogen-directed tolerance based on active T cell regula-
tion might have on tolerance to donor antigens. Because of the
cross-reactivity in the T cell repertoire between antimicrobial,
environmental, and transplantation antigens (Mason, 1998), our
results raise the intriguing possibility that pathogen-conditioned
DCs could be potential reagents to promote donor-specific trans-
plantation tolerance through the induction of CD4+CD25+ Treg

cells with indirect anti-donor allospecificity. Strategies to gener-
ate human CD4+CD25+ T cell lines with indirect allospecificity
for therapeutic use for the induction of donor-specific transplan-
tation tolerance have recently been described (Jiang and Lom-
bardi, 2006). Thus, transplantation tolerance and concomitant
pathogen clearance could be achieved through the therapeutic
induction of antigen-specific Tregs via instructive immunotherapy
with pathogen-conditioned donor DCs.

EXPLOITING PATHOGEN-INDUCED TOLERANCE IN
EXPERIMENTAL HSCT THROUGH PAMP/DAMP/PRR
SIGNALING
Although allograft rejection is mainly a T cell-mediated process,
the innate immune system can participate in the immune response
to organ transplantation (Larosa et al., 2007). Toll-like receptors
(TLRs) and others innate pattern recognition receptors (PRRs;
Romani, 2011) are critical innate immune receptors expressed on
a variety of cells that sense not only pathogen-associated molecular
patterns (PAMPs) but also damaged host cell components, collec-
tively known as damage-associated molecular patterns (DAMPs;

Bianchi, 2007). This suggests that PRR signaling participates in
inflammation that may occur in the absence of overt infection
and promotes acute allograft rejection and prevention of trans-
plantation tolerance (Alegre et al., 2008). Strategies to prevent
innate immunity-mediated rejection have already been described
(Land, 2007). However, although signaling through TLRs can pre-
vent tolerance induction and promote graft rejection (Chen et al.,
2006), TLR signaling also promotes the induction of Treg cells
(Kabelitz et al., 2006). This implies that selected TLR ligands can
be useful candidate adjuvants for Treg induction/maintenance in
transplantation. This appears to be the case for thymosin α1 (Tα1),
a naturally occurring thymic peptide (Goldstein and Badamchian,
2004), that promoted maturation of and cytokine production
by human and murine DCs (Romani et al., 2006). By signal-
ing through TLR9, Tα1 induced IDO expression and kynurenin
production by murine DCs, promoted pDC-mediated generation
of CD4+CD25+ Treg cells and created tolerance in the inflam-
matory milieu of HSCT (Romani et al., 2006). Tα1 acted as a
fine regulator of peripheral inflammation via tolerance induc-
tion through Treg cell expansion. In addition, by taming inflam-
matory DCs, Tα1 successfully primed for antifungal Th1/Treg

cells devoid of alloreactivity in hematopoietic transplantation.
Thus, Tα1 is a unique immunoregulatory molecule capable of
fine-tuning and controlling the quality of the immune response,
which may result in the control of inflammation and restoration
of protective antimicrobial immunity in the relative absence of
immunopathology.

Despite the identification of specific signaling pathways that
negatively regulate responses to PAMPs or DAMPs (Bianchi, 2007),
the unexpected convergence of molecular pathways responsible for
recognition of PAMPs and DAMPs raised the question of whether
and how the host discriminates between the two molecular pat-
terns and the relative contribution of either one to inflammation,
immune homeostasis, and mechanisms of repair during infec-
tion. A mechanism that discriminates between pathogen- and
danger-induced immune responses via the spatiotemporal inte-
gration of signals from TLRs and the receptor for advanced
glycation end-products (RAGE) has recently been described in
mice and a genetically determined hyperfunction of the DAMP
signaling was associated with invasive aspergillosis in human
HSCT (Cunha et al., 2011b; Sorci et al., 2011). The mechanism
exploits a previously unrecognized role for the S100B/RAGE axis
that, in sensing danger, plays a critical and unanticipated role
as a fine modulator of inflammation in Aspergillus pneumonia.
Thus, the cross-talk between RAGE and TLRs details an evolving
braking circuit whereby an endogenous danger protects the host
against pathogen-induced inflammation and a pathogen-sensing
mechanism terminates danger-induced inflammation.

EXPLOITING PATHOGEN-INDUCED TOLERANCE IN HUMAN
HSCT THROUGH FUNCTIONAL GENOMICS
It is now clear that genetic variants of molecules involved in innate
recognition of fungi may account, in part, for the inherited differ-
ences in human susceptibility to fungal infections (Carvalho et al.,
2009; Mezger et al., 2010). Although the dissection of the genetic
traits modulating susceptibility to fungal infections is complex,
the contribution of host genetics may hold the key to elucidate
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genetic markers for fungal diseases occurring in high-risk patients.
Understanding which patients are at highest risk of developing a
life-threatening infection is at present a major unmet need, and
genetic markers will probably assist in risk assessment. Figure 2
summarizes known association of SNPs in human immune genes
and susceptibility to fungal infections and diseases.

A number of polymorphisms in several PRRs, mostly TLRs and
C-type lectin receptors (CLRs), has been shown to affect, through
distinct intracellular signaling pathways, resistance and tolerance
to fungi in HSCT (Cunha et al., 2011a). The association of the
TLR4 polymorphism D299G with colonization by A. fumigatus,
but not invasive disease, in a cohort of T cell depleted transplant
recipients from related donors, was meant to signify impaired fun-
gal recognition, but also protection from excessive inflammation

leading to immunopathology (Carvalho et al., 2009). Thus, and
although further validation studies are ultimately required, by
limiting an exacerbated inflammatory response to the fungus, the
D299G polymorphism could contribute to tolerance in aspergillo-
sis. More recently, a polymorphism affecting the CLR dectin-1,
Y238X, has also been shown to affect tolerance, besides resistance,
to A. fumigatus (Cunha et al., 2010). Although dectin-1 has been
regarded as one major innate receptor leading to Th17 activation
in response to A. fumigatus (Werner et al., 2009), and the Y238X
polymorphism was associated with impaired IL-17 production in
response to C. albicans or β-glucan (Rosentul et al., 2011), IFN-
γ, and IL-10 production by human mononuclear cells carrying
the Y238X polymorphism were also defective upon β-glucan or
conidia stimulation. Thus, these findings point to a previously

FIGURE 2 | Single nucleotide polymorphisms of human immune

genes associated with susceptibility to fungal infections and

diseases. The SNPs specifically addressed in this review are among those
most notoriously associated with impaired PAMP/DAMP/PRR signaling
and consequent susceptibility to fungal disease in HSCT recipients. In
particular, we discuss the relevance of TLR4 D299G (a non-synonymous
mutation demonstrated to increase the risk for fungal colonization or
disease, likely depending on the type of transplant and associated clinical

variables), DECTIN1 Y238X (an early stop codon mutation affecting
dectin-1 function and that has been revealed to modulate susceptibility to
mucosal candidiasis, as well as Candida colonization and invasive
aspergillosis) and RAGE −374T >A and S100B +427C >T (SNPs
compromising their transcriptional regulation and demonstrated to
underlie an hyperfunctional RAGE-mediated DAMP signaling and
consequent susceptibility to aspergillosis). For further details on these and
other SNPs and relevant references, see Romani (2011).
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unsuspected role for dectin-1 in modulating the resistance and
tolerance balance in antifungal responses. The contribution of
recipient dectin-1 deficiency to the high-risk of infection in these
patients also highlights the distinct, yet complementary, mech-
anisms of immune resistance and tolerance that are dependent
on the hematopoietic/non-hematopoietic compartmentalization
(Carvalho et al., 2009).

CONCLUSION
The past decades have brought important progress in the devel-
opment of more effective and safe antifungal agents. However,
medical treatments that increase host resistance, such as antibi-
otics, place selective pressures on pathogens, ultimately resulting
in the generation of a bewildering array of immuno-evasive or
immuno-suppressive strategies (Read et al., 2008). Thus, targeting
mechanisms of resistance only may not always work. As toler-
ance mechanisms are not expected to have the same selective
pressure on pathogens, new drugs that target tolerance will pro-
vide therapies to which pathogens will not develop resistance.
The distinction between failed resistance and failed tolerance

is important because it can dictate the choice of therapeutic
approaches. In the case of failed tolerance, boosting immu-
nity, and reducing fungal burden with antifungals may be inef-
fective, whereas enhancing tolerance may have salutary effects.
Targeting disease tolerance mechanisms may thus provide new
approaches for patient stratification, donor selection, and thera-
peutic management in HSCT. In this regard, the immunogenetic
approach will help design tailored therapies and immunothera-
pies in high-risk patients and to move beyond hand-me-down
data.
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