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The A2A adenosine receptor (A2AR)-mediated immunosuppression is firmly implicated
in the life-saving down-regulation of collateral tissue damage during the anti-pathogen
immune response and in highly undesirable protection of cancerous tissues during
anti-tumor immune response. Therefore, depending on specific clinical situation there
is a need to either weaken or strengthen the intensity of A2AR signal. While the
A2AR-mediated immunosuppression was shown to be T cell autonomous in studies
of effector T cells, it was not clear how A2AR stimulation affects regulatory T cells
(Treg). Here we show in parallel assays that while A2AR stimulation on T cells
directly inhibits their activation, there is also indirect and longer-lasting T cell inhibitory
effect through modulation of Treg. A2AR stimulation expanded CD4+ CD25hi FoxP3+
cells, which also express CD39, CD73, and CTLA-4. Treg cultured with A2AR agonist
showed increased expression of CTLA-4 and stronger immunosuppressive activity. There
was a significant increase of Treg cell number after A2AR stimulation. The CD4+
FoxP3+ population contained those induced from CD4+ CD25− cells, but CD4+ FoxP3+
cells predominantly derived from CD4+ CD25+ natural Treg. Thus, A2AR stimulation
numerically and functionally enhanced Treg-mediated immunosuppressive mechanism.
These data suggest that the A2AR-mediated stimulation of lymphocytes using A2AR
agonists should be considered in protocols for ex vivo expansion of Treg before the transfer
to patients in different medical applications.

Keywords: regulatory T cells, adenosine, immunosuppression, A2A adenosine receptor, cancer, autoimmune,

transplantation

INTRODUCTION
It is now no longer controversial and it is now widely accepted
that there are professionally immunosuppressive regulatory T
cells (Treg), which have been first identified and characterized by
observations of autoimmunity in mice depleted of CD4+ CD25+
T cell subpopulation (Sakaguchi et al., 1982, 1985). The mecha-
nisms of development and immunoregulatory functions of Treg
have been subjects of extensive investigation (Lu and Rudensky,
2009; Ohkura and Sakaguchi, 2011; Rudensky, 2011; Sakaguchi,
2011). Treg are also of great interest due to their potential to treat
immunological diseases and control physiological and pathologi-
cal immune responses. However, there are still important and yet
to be answered questions about the influence of the microenvi-
ronments in lymphoid and inflamed tissues in the development
and immunoregulatory functions of Treg.

Here we investigated modulation of Treg-dependent immuno-
suppressive activities by the adenosine-A2AR signaling which
was shown to represent the powerful physiological immuno-
suppressive mechanism (Ohta and Sitkovsky, 2001; Lukashev
et al., 2004; Sitkovsky et al., 2004; Belikoff et al., 2011) that
protects both normal (Ohta and Sitkovsky, 2001; Thiel et al.,
2005; Ohta et al., 2007) and cancerous tissues (Ohta et al., 2006)

from inflammatory damage. It is believed that the adenosine-
A2AR pathway has evolved as a negative feed-back immuno-
suppressive mechanism that limits the extent of the collateral
tissue damage by activated immune cells during anti-pathogen
responses (Sitkovsky and Lukashev, 2005; Sitkovsky and Ohta,
2005). This mechanism may regulate the other major, but evolu-
tionary younger immunosuppressive mechanisms including Treg
(Pouliot et al., 2002; Cadieux et al., 2005; Sitkovsky, 2009).

But is there really a relation between Treg and immunosup-
pressive effect of extracellular adenosine? There are several lines
of converging suggestive evidence that Treg activity is mediated
by the accumulation of extracellular adenosine. The extracellu-
lar adenosine was first implicated in Treg activity during the
unbiased screening of differential expression of surface antigens
on Treg revealing that Treg express high levels of the extracel-
lular adenosine-generating enzymes CD73 ecto-enzyme, an 5′-
nucleotidase (Kobie et al., 2006) and the upstream ecto-enzyme
CD39 apyrase (ecto ATPase/ADPase; Deaglio et al., 2007). These
studies suggested that the CD39 and CD73 ecto-enzymes on Treg
play a role in immunosuppressive loops generating extracellu-
lar adenosine that down-regulates T cell activation (Whiteside,
2012).
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However, there is still paucity of data that may firmly implicate
the adenosine and A2AR in functions of Treg. It was suggested
that the A2AR stimulation might promote the induction of adap-
tive regulatory T cells, but this claim is lacking direct evidence.
The ability of A2AR agonist to increase the expression of foxP3
mRNA was studied (Zarek et al., 2008), but effects of A2AR ago-
nist on the number and immunosuppressive activity of Treg are
not known.

In this study, we provide evidence that the engagement of
A2AR results in expansion of Treg and promotes immunoreg-
ulatory activity of Treg. These data support the overall model
of the adenosinergic regulation of Treg functions (Sitkovsky,
2009).

MATERIALS AND METHODS
MICE
C57BL/6 (Thy1.2+) and BALB/c mice were purchased from
Charles River Laboratories (Wilmington, MA). B6.PL-Thy1a/CyJ
mice (Thy1.1+ C57BL/6 mice) were purchased from Jackson
Laboratory. A2AR−/− mice were backcrossed for 12 times to
C57BL/6 mice (Chen et al., 1999). Mice were used at 8–12 weeks
of age. The experiments were approved by the Northeastern
University Institutional Animal Care and Use Committee and
were carried out in accordance with the institutional animal care
guidelines.

MIXED LYMPHOCYTE CULTURE (MLC)
Spleen cells from C57BL/6 mice (responder; H-2b) were stim-
ulated with allogenic spleen cells. As stimulators, spleen cells
from BALB/c mice (H-2d) were pretreated with mitomycin C
(Sigma, St. Louis, MO). Responders (6 × 106 cells) and stim-
ulators (2 × 106 cells) were cultured for 5 days in the pres-
ence or absence of A2AR agonist, 1 μM CGS21680 (CGS) or
1 μM 5′-N-ethylcarboxamidoadenosine (NECA). A2AR antag-
onist ZM241385 (ZM) was added at 1 μM to some samples.
The concentrations of compounds are optimal to stimu-
late or antagonize A2AR according to our previous study
(Ohta et al., 2009). The activated cells were restimulated
with mitomycin C-treated BALB/c spleen cells for 2 more
days in the same condition. NECA was obtained from
Sigma (St. Louis, MO). CGS and ZM were from Tocris
(Ellisville, MO).

FLOWCYTOMETRY
The resulted cells after MLC were analyzed by flowcytome-
try. Following antibodies were used to label surface molecules:
PE-conjugated anti-CD4, anti-CD25, anti-CD39, anti-CD73,
and FITC-conjugated anti-CD8, anti-H-2Kb and allophyco-
cyanin (APC)-conjugated anti-CD4 antibodies. For the analysis
of Treg, the cells were subsequently fixed and permeabilized
using FoxP3 staining buffer set (eBioscience, San Diego, CA),
and were labeled with APC-conjugated anti-FoxP3 and PE-
conjugated anti-CTLA-4 antibodies. All antibodies were from
BD Biosciences (San Diego, CA) except for anti-FoxP3, anti-
CD39 (eBioscience) and anti-CD25 (Miltenyi Biotec, Auburn,
CA) antibodies. The data were acquired using FACSCalibur
(BD Biosciences).

MLC IN THE ABSENCE OF CD8+ CELLS
To enrich Treg after the culture, MLC was set up using CD8+-
depleted C57BL/6 spleen cells. CD8+ cells were labeled with
FITC-conjugated anti-CD8 mAb (BD Biosciences) and anti-FITC
microbeads (Miltenyi Biotech) and removed using AutoMACS
separator (Miltenyi Biotec). These responder cells were cultured
with mitomycin C-treated stimulator cells as described above.

CELL PROLIFERATION ASSAY USING CFSE-LABELED CELLS
The extent of T cell proliferation was monitored by the stepwise
dilution of fluorescence in CFSE-labeled cells. To label with CFSE
(Molecular Probes, Eugene, OR), cells were washed with PBS and
incubated with 1 μM CFSE for 8 min. To remove excess CFSE, the
cells were washed twice with fetal calf serum.

REGULATORY ACTIVITY OF TREG
After MLC using CD8+-depleted responders for 7 days (2 days
after restimulation), the regulatory activity was evaluated accord-
ing to the inhibition of effector T cell proliferation. CD8+-
depleted spleen cells from Thy1.1-expressing C57BL/6 mouse
were labeled with CFSE and used as the source of responder T
cells (Tresp). Tresp (2.5 × 104 CD4+ cells) were co-cultured with
the product of MLC, which contains Treg, so that the ratio of
CD4+ cells in Tresp and CD4+ FoxP3+ cells in the MLC would
be constant between groups. Tresp cell proliferation was induced
with anti-CD3 mAb (0.1 μg/ml 145-2C11; BD Biosciences) for
2 days in a round-bottomed 96-well plate, and the extent of Tresp
proliferation was analyzed after gating for Thy1.1+ CD4+ cells.

TREG FROM CD4+ CD25− CELLS
To start MLC in the absence of natural Treg, CD25+ cells were
removed from the responder cells prior to the culture. Spleen cells
were labeled with PE-conjugated anti-CD25 and anti-CD8 mAbs,
and the labeled cells were depleted using anti-PE microbeads
(Miltenyi Biotec) and AutoMACS. After 7-days MLC as described
above, the appearance of CD4+ FoxP3+ cells was tested by
flowcytometry.

NATURAL TREG
CD4+ CD25+ cells were purified from spleen cells of Thy1.1-
expressing C57BL/6 mice as described (Nagahama et al., 2007).
CD24+ cells and CD8+ cells were removed from the spleen cells
using FITC-conjugated antibodies and anti-FITC microbeads.
Subsequently, CD25+ cells were retrieved by positive selec-
tion using PE-conjugated anti-CD25 antibody and anti-PE
microbeads. This procedure achieves 95–98% pure CD4+ CD25+
cells. Responder cells of MLC were reconstituted by mixing
Thy1.1+ CD4+ CD25+ cells (6 × 104) with Thy1.2+ spleen cells
depleted of CD8+ and CD25+ cells (3 × 106). After 7-days MLC
as described above, the origin of CD4+ FoxP3+ cells was sepa-
rately analyzed for natural Treg-derived Thy1.1+ cells and CD4+
CD25− cells-derived Thy1.1− cells.

cAMP INDUCTION IN TREG
Purified CD4+ CD25+ cells (1.6 × 105) were incubated with
NECA or CGS for 15 min at 37◦C. The concentration of
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A2AR agonists was 10 μM, and 1 μM for A2AR antago-
nist, ZM241385. cAMP levels were determined by ELISA (GE
Healthcare, Buckinghamshire, UK).

STATISTICS
Data represent mean ± SD. Statistical calculations were per-
formed using Student’s t-test. Statistical significance was accepted
for p values less than 0.05.

RESULTS
Immunosuppressive effects of extracellular adenosine are at least
in part due to the inhibition of T cell activation. We have
shown that stimulation of A2AR inhibits activation of effec-
tor T cells and their effector functions (Ohta et al., 2009). In
agreement with our previous studies, A2AR agonists, CGS21680
(CGS) and NECA, blocked upregulation of CD25 on CD8+
T cells during MLC suggesting impaired activation of the effector
T cells in response to allogenic stimulation (Figure 1 top pan-
els). Interestingly, however, the proportion of CD25+ CD8− cells
was found to rather increase when CGS or NECA was added to
the culture. This prominent increase of CD25+ cells by A2AR

stimulation belonged to CD4+ population (Figure 1 middle pan-
els). Most CD4+ CD25+ cells after treatment with CGS and
NECA were distinct in their higher expression of CD25. Since
A2AR stimulation is generally immunosuppressive, the increase
of CD4+ CD25+ cells was not likely to represent activation of
CD4+ effector T cells. Indeed, massive increase of FoxP3+ cells
suggested that what appeared as CD4+ CD25hi cells after A2AR
stimulation could be regulatory T cells (Figure 1 bottom pan-
els). Statistically significant changes were observed on day 5 of
MLC and became more prominent on day 7 (Figures 2A,B). The
decrease of CD8+ CD25+ cells and the increases of CD25+ and
FoxP3+ proportions in CD4+ cells by the addition of CGS and
NECA were all blocked by A2AR antagonist ZM241385 (Figures 1
and 2). A2AR-dependence of these changes was also confirmed by
experiments using A2AR−/− responder cells in which CGS and
NECA failed to block CD8+ cell activation and to induce CD25
and FoxP3-expressing CD4+ cells (Figure 2C).

We further characterized A2AR-mediated increase of CD4+
CD25+ population. The increased CD4+ cells expressed not only
CD25 and FoxP3 but also CD39, CD73 (Figure 3A) and CTLA-4
(Figure 3B), which are closely relevant to immunoregulatory
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FIGURE 1 | Increase of Treg population by the stimulation of A2AR.

Mixed lymphocyte culture (MLC) was set up in the presence of A2AR
agonist, CGS21680 (1 μM), or NECA (1 μM). After 5 days, the cultured cells
were restimulated with the same allogenic stimulator cells for 2 more days in
the same condition. A2AR stimulation inhibited CD25 expression in CD8+
cells (top row), whereas the population of CD4+ CD25+ cells was rather

increased in the same culture (middle row). The change in CD4+ CD25+ cells
correlated well with an increase of FoxP3-expressing CD4+ cells (bottom
row). The addition of A2AR antagonist ZM241385 (1 μM) reversed the
changes. Numbers in the panels represent percentages in each quadrant.
The data shown here represent four separate experiments with similar
results.
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FIGURE 2 | Time-dependent changes of Treg increase during MLC with

A2AR agonist. Cell culture was done as described in Figure 1. Spleen cells
from wild-type (A,B) and A2AR−/− mice (C) were used as responder cells.
Cells were analyzed by flowcytometry on day 5 (A), and day 7 (B,C). A2AR

agonists inhibited CD8+ T cell activation and enhanced CD25/FoxP3
expression in CD4+ cells from wild-type mice, but not A2AR−/− mice. Data
represent average ± SD of 3–4 separate experiments. ∗P < 0.05; ∗∗P < 0.01;
∗∗∗P < 0.001 vs. control MLC.

activity of Treg (Kobie et al., 2006; Deaglio et al., 2007; Sakaguchi
et al., 2009). These results further implied that the emerging
CD4+ CD25+ cells in the culture with A2AR agonists were Treg.
Moreover, MLC in the presence of CGS or NECA upregulated
CTLA-4 levels in CD4+ FoxP3+ cells (Figures 3C,D). CTLA-4 is
constitutively expressed in Treg and plays an important role in
the regulatory activity (Wing et al., 2008; Sakaguchi et al., 2009;
Pandiyan et al., 2011). Therefore, it was also speculated that A2AR
stimulation might induce CD4+ cells having enhanced regulatory
activity.

Accordingly, we sought to examine regulatory activity of these
cells. Since activated CD8+ T cells are predominant in regular
MLC, which is inconvenient as the source of Treg in the assay
of regulatory activity, we set up MLC after depletion of CD8+
responder cells. In this CD4+ MLC, the proportion of FoxP3+
cells was confirmed to increase by A2AR agonists (Figure 4
top panels). Immunoregulatory activity of these CD4+ FoxP3+
cells was evaluated by the inhibitory effect on T cell prolifer-
ation. The assay was normalized so that the same number of
CD4+ FoxP3+ cells would be added to the constant number
of CFSE-labeled CD4+ T cells. Comparing to the uninhibited
control (Tresp alone), the addition of CD4+ FoxP3+ cells dose-
dependently inhibited T cell proliferation. When the product of
control MLC was added at 2:1 (Tresp: Treg), these Treg caused
modest decrease of responder T cell proliferation (Figure 4 left).

Such degree of T cell inhibition, however, was observed when
the product of CGS or NECA-treated MLC was added at 8:1
(Figure 4 middle and right, Figure 5). Similarly, a larger num-
ber of control Treg (1:1) caused more significant reduction of
proliferation, while this pattern corresponded to the result with
CGS or NECA-treated MLC at 4:1 (Figures 4 and 5). A higher
number of CGS or NECA-treated MLC product (2:1 and 1:1)
inhibited T cell proliferation even stronger. This result confirmed
that A2AR stimulation resulted in emergence of Treg and their
regulatory activity was approximately 4-times stronger than that
of control Treg.

A2AR stimulation enhanced not only regulatory activity of
Treg but also the number of Treg. While flowcytometric analysis
showed the increased proportion of Treg in cultures treated with
A2AR agonist, it does not necessarily indicate a numerical increase
of Treg, especially because A2AR agonists can suppress activation
of effector T cells. Total cell number in the culture was counted,
and the numbers of CD4+ FoxP3+ and CD4+ FoxP3− cells were
calculated from their proportions in the flowcytometric analysis.
The result showed a massive increase of CD4+ FoxP3+ cells and a
statistically insignificant decrease of CD4+ FoxP3− cells by A2AR
agonists (Figure 6).

Thus, A2AR stimulation was found to enhance immunoreg-
ulation by Treg in both qualitative and quantitative means.
The quantitative change, a numerical increase of Treg, could
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FIGURE 3 | Increase of CD4+ cells expressing CD39, CD73, and CTLA-4

when cultured in the presence of A2AR agonist. MLC was done as
described in Figure 1. (A) CD39 and CD73 expression in CD4+ FoxP3+ cells.
The data was gated for H-2Kb+ CD4+ cells. (B) CTLA-4 expression was
analyzed by intracellular staining together with FoxP3. The data was gated for
H-2Kb+ CD4+ cells. Numbers in the panels represent percentages in each

quadrant. (C) Histogram plots of CTLA-4 intensity in CD4+ FoxP3+ cells.
Numbers represent mean fluorescence intensity (MFI) of CTLA-4. The data
shown here represent five separate experiments with similar results. (D)

Statistically significant increase of CTLA-4 levels by treatment with A2AR
agonists. Data represent average ± SD of five separate experiments.
∗P < 0.05 vs. control MLC.

result from the proliferation of preexisting natural Treg (nTreg)
and/or the induction of new Treg. A2AR agonist was previ-
ously shown to upregulate FoxP3 mRNA in activated T cells
(Zarek et al., 2008). Therefore, to monitor the appearance of
new Treg, we started MLC with responder cells depleted of
nTreg. The depletion of CD25+ cells got rid of most FoxP3+

cells from the culture (Figure 7A). Some CD25− CD4+ FoxP3+
cells remained in the culture, but these cells accounted for
only 0.5–0.6% of CD4+ cells. Control MLC using such respon-
der cells resulted in the induction of CD4+ FoxP3+ cells
to 4.5% of CD4+ cells (Figure 7B). A2AR agonists gave rise
to further induction of CD4+ FoxP3+ cells to approximately
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FIGURE 4 | A2AR stimulation promoted regulatory activity of Treg. To
enrich Treg in MLC, CD8+ cells were depleted from responder cells prior to
the culture. It was confirmed that the treatment with CGS and NECA
increased Treg population in this culture condition (top panels). The regulatory
activity on T cell proliferation was determined by CFSE assay. CD8+-depleted
spleen cells from Thy1.1-expressing C57BL/6 mouse were labeled with CFSE
and used as responder cells (Tresp). Tresp containing 2.5 × 104 CD4+ cells

were co-cultured with the product of MLC, which contains Treg. Tresp:Treg in
the figure is the ratio of CD4+ cells in Tresp to CD4+ FoxP3+ cells in the
MLC. The extent of CD4+ Tresp cell proliferation was analyzed 2 days after
the stimulation with anti-CD3 mAb. The histograms were gated for
Thy1.1+ CD4+ cells. Broken lines indicate the same peak (peak 3). The
data shown here represent three separate experiments with similar
results.

12% of CD4+ cells. It was also confirmed that the increase
of CD4+ FoxP3+ proportion accompanied significant increase
in the absolute number of CD4+ FoxP3+ cells (Figure 7C).
This result suggested that Treg could be derived from CD4+

CD25− cells during MLC, and A2AR stimulation promoted this
increase.

Next, we compared contribution from nTreg and CD4+
CD25− cell-derived Treg in the A2AR-mediated increase of
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CD4+ FoxP3+ cells. To distinguish preexisting nTreg from CD4+
CD25− cell-derived Treg produced during culture, CD4+ CD25+
cells were purified from Thy1.1+ mice. In the purified cells,
CD4+ CD25+ cells were 95–98% and FoxP3-expressing cells were
up to 96% of the purified cells (Figure 8A). Purified Treg pro-
duced cAMP in response to CGS and NECA, and the increase
was blocked by the addition of ZM suggesting functional expres-
sion of A2AR on Treg (Figure 8B). These Thy1.1-expressing
nTreg were added to CD8+, CD25+-depleted Thy1.2+ spleen
cells, which were prepared as in Figure 7A, in order to reconsti-
tute MLC responders. MLC of these responder cells in normal
condition yielded CD4+ cells predominant with FoxP3− effec-
tors (Figure 8C). These CD4+ FoxP3− cells were mostly from
Thy1.1− cells as expected, while most of CD4+ FoxP3+ cells were
Thy1.1+. There were also some Thy1.1− CD4+ FoxP3+ cells,
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FIGURE 5 | Statistically significant enhancement of T cell inhibitory

activity of Treg cultured with A2AR agonists. The data of CFSE assay
was presented as proportion of cells which entered into extensive
proliferation. Numbers represent combined percentages of peaks 3 and 4
in Figure 4. Data represent average ± SD of three separate experiments.
∗P < 0.01; ∗∗P < 0.001 for both control vs. CGS and control vs. NECA.

but these accounted for only a minor portion (20%) of total
CD4+ FoxP3+ cells (Figure 8C). Treatment with A2AR agonists
strongly reduced proportion of FoxP3− effectors and increased
CD4+ FoxP3+ cells. CD4+ CD25− cell-derived Treg emerged
from Thy1.1− cells were found to increase by A2AR stimulation
(FoxP3+ within Thy1.1− cells: 7% in control, 29% in CGS and
16% in NECA); however, induction of iTreg had a limited con-
tribution to the increase of total CD4+ FoxP3+ cells (Figure 8C).
The CD4+ FoxP3+ population after A2AR stimulation was again
mostly Thy1.1+ cells, which accounted for almost 90% of total
CD4+ FoxP3+ cells. These data suggest that A2AR stimulation
may promote CD4+ CD25− cell-derived Treg and expansion of
nTreg, but the latter mechanism may play a major role in the
numerical increase of Treg.

We further analyzed proliferation of nTreg using CFSE-labeled
Thy1.1+ CD4+ CD25+ cells. In the reconstituted MLC, nTreg
were found to enter massive proliferation (Figure 8D). CD4+
CD25+ cells proliferated well even in the presence of CGS and
NECA, but these A2AR agonists did not further promote pro-
liferation. Interestingly, a large proportion of nTreg lost FoxP3
expression in control MLC, while nTreg with A2AR agonists
maintained FoxP3 expression better (Figure 8D). These results
suggest that A2AR stimulation can, at least in part, increase the
number of Treg by preventing down-regulation of FoxP3.

DISCUSSION
Adenine, and by extension adenosine, may have been one of the
oldest organic compounds on the earth whose appearance pre-
ceded the first life form by many 100 million years according to
interpretation of life origin experiments (Miller, 1953; Miller and
Urey, 1959; Oró and Kimball, 1961). Maybe utilization of adeno-
sine belongs to the oldest and most ancient group of mechanisms
regulating immune system in organisms.

Immune cells express A2AR at high levels, and stimulation
of A2AR strongly suppresses various immune functions (Ohta
and Sitkovsky, 2001; Lukashev et al., 2004; Sitkovsky et al., 2004;
Thiel et al., 2005; Belikoff et al., 2011). Interaction of A2AR
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FIGURE 6 | Numerical increase of Treg after T cell activation in the

presence of A2AR agonists. MLC was set up in the absence of
CD8+ cells. Two days after restimulation (7 days after initial stimulation),
total live cells were enumerated under a microscope. Numbers of
H-2Kb+ CD4+ FoxP3+ and H-2Kb+ CD4+ FoxP3− cells were estimated

from the result of flowcytometric analysis. The number of H-2Kb+ CD4+
cells in the beginning of MLC was approximately 1 × 106 cells including
approximately 1 × 105 H-2Kb+ CD4+ FoxP3+ cells. Data represent
average ± SD of three separate experiments. ∗P < 0.01 vs.
control MLC.
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FIGURE 7 | A2AR stimulation can enhance the induction of CD4+ FoxP3+
cells from CD4+ CD25− cells. (A) MLC responder cells after the depletion of
CD25+ cells. The numbers indicate percentages of CD4+ CD25+ and CD4+
FoxP3+ cells. The percentage of CD4+ cells was approximately 30%
because of co-depletion of CD8+ cells. (B) Induction of CD4+ FoxP3+ cells
from the cells in (A). After 5 (primary stimulation) plus 2 (restimulation) days
of MLC, the increase of CD4+ FoxP3+ cells in control was further enhanced

in the presence of A2AR agonists. The data were gated for CD4+ cells. The
numbers represent percentages of FoxP3+ cells in CD4+ population. The
data shown here represent three separate experiments with similar results.
(C) Numerical increase of CD4+ FoxP3+ cells derived from CD4+ CD25−
cells. Total live cells were enumerated after 7 days, and numbers of H-2Kb+
CD4+ FoxP3+ cells were calculated as in Figure 6. Data represent average ±
SD of three separate experiments. ∗P < 0.05 vs. control.

with endogenously produced adenosine serves as a self-limiting
mechanism of inflammation. Immunosuppression through the
adenosine-A2AR pathway seems to be critical in maintaining
inflammation to proper levels. This is because the lack of A2AR
led to exaggeration of proinflammatory responses and subsequent
inflammatory tissue damage (Ohta and Sitkovsky, 2001; Thiel
et al., 2005; Ohta et al., 2006).

Activation of CD4+ and CD8+ T cells is under control of
the adenosine-A2AR pathway. Our previous results have shown

A2AR-mediated inhibition of T cell activities such as prolifera-
tion, cytokines production and cytotoxicity (Huang et al., 1997;
Ohta et al., 2009). This inhibitory effect of adenosine and its
analogs is based on a direct action via A2AR expressed on T cells.
It is consistent with the interruption of T cell receptor signal-
ing by cAMP increase after A2AR stimulation (Vang et al., 2001;
Linnemann et al., 2009). In addition to the inhibitory effect on
T cell priming, A2AR stimulation produced activated T cells
with impaired effector function. Indeed, T cells activated in the
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mostly due to the proliferation of preexisting nTreg. (A) Purified CD4+
CD25+ cells represent nTreg. The numbers indicate percentages of CD4+
CD25+ and CD25+ FoxP3+ population in the purified cells. These CD4+
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control. (C) A large part of A2AR-mediated increase of Treg was derived from
nTreg. On day 7, the MLC was analyzed for the expression of FoxP3. The data
were gated for CD4+ cells. The numbers represent percentages of each
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beginning of culture, respectively. (D) Active proliferation of nTreg in MLC and
well-maintained FoxP3 expression by treatment with A2AR agonist. MLC
responders were reconstituted as in (C) except that CD4+ CD25+ cells from
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fluorescence and FoxP3 expression in Thy1.1+ cells on day 4. The data
shown here represent three separate experiments with similar results.
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presence of A2AR agonist showed persistently lower cytokine-
producing activity even after the removal of A2AR agonist (Zarek
et al., 2008; Ohta et al., 2009).

In our studies on CTL development, we noticed the unique-
ness of MLC, where massive expansion of Teff and increase of
Treg were observed in the same culture. This may mimic immune
responses in vivo: i.e., promotion of proinflammatory activi-
ties and compensatory anti-inflammatory responses to prevent
excessive tissue destruction. Such responses were not observed
in artificial stimulation of T cells with anti-CD3 mAb as Teff
strongly overwhelm the culture. The current study revealed that
A2AR stimulation inhibited activation of effector T cells and,
at the same time, increased the number of Treg (Figures 1, 2,
and 6). CD4+FoxP3+ cells from the MLC system express CD25,
CTLA-4, CD39, and CD73 at high levels and have immunoreg-
ulatory activities as it has known for Treg induced by other
methods (Figures 3–5). Our data suggests that A2AR not only
directly inhibits T cell activation but also produces immuno-
suppressive cellular environment by inducing massive increase
of Treg. Therefore, immunosuppressive concentration of extra-
cellular adenosine may provide a long-lasting immunoregulatory
effect even after the disappearance of adenosine.

The A2AR-mediated numerical change of Treg was due to
increase of both nTreg and CD4+ CD25− cell-derived Treg.
MLC after the depletion of nTreg showed development of Treg
from CD4+ CD25− cells and its enhancement by A2AR stim-
ulation (Figure 7). The increase of CD4+ CD25− cell-derived
Treg in normal MLC, in the presence of nTreg, required dis-
tinction for the origin of CD4+ FoxP3+ cells in the prod-
uct. Reconstitution of MLC responders using Thy1.1-expressing
nTreg made this distinction possible, and the A2AR-mediated
increase of CD4+ CD25− cell-derived Treg was confirmed in
regular MLC (Figure 8). The increase of new Treg is consis-
tent with a previous paper reporting mRNA upregulation of
FoxP3 and LAG-3 in CGS-treated T cell culture (Zarek et al.,
2008). Although the increase of Treg from CD4+ CD25− cells
was significant, these Treg accounted for only a minor portion
of A2AR-mediated increase of Treg. Most of Treg after MLC
was found to derive from nTreg (Figure 8). Purified nTreg was
reported to proliferate when cultured with allogenic dendritic
cells and IL-2 (Yamazaki et al., 2006). IL-2 was not added in our
culture system, but activated CD4+ cells might have produced
IL-2 and supported proliferation of Treg. Indeed, massive prolif-
eration of nTreg was observed in the current study (Figure 8D).
Other possible reasons for A2AR-mediated enhancement of
nTreg include prevention of FoxP3 down-regulation and cell
death, which have been observed during Treg culture (Strauss
et al., 2007; Hoffmann et al., 2009). In the current study,
a number of nTreg were found to lose their FoxP3 expres-
sion after activation, while A2AR stimulation considerably pre-
vented FoxP3 loss (Figure 8D). This mechanism may be partly
responsible for the increase of CD4+ FoxP3+ cells treated with
A2AR agonists. In addition, A2AR agonists are known to block
activation-induced cell death of CD4+ T cells (Himer et al.,
2010).

Not only A2AR agonist increased the number of Treg, it also
enhanced their immunoregulatory activity. T cell suppression

assay showed that the same number of Treg from CGS/NECA-
treated MLC had 4-times stronger regulatory activity than that
from control MLC (Figure 3). The mechanism how Treg suppress
T cell activation is still unclear, but CTLA-4 and CD25 represent
important candidates. Pathogenesis of autoimmune disorders
in mice with Treg-specific CTLA-4 deficiency demonstrated the
importance of CTLA-4 in their regulatory activity (Wing et al.,
2008; Sakaguchi et al., 2009). CD25 expression on Treg at high
levels is considered to withdraw IL-2 from the microenviron-
ment and induce effector cell death because of IL-2 deprivation
(Pandiyan et al., 2007, 2011). The A2AR-mediated upregulation
of CTLA-4 and CD25 on Treg (Figures 1–3) may support the
enhancement of regulatory activity.

We assumed that it would be very effective immunosup-
pression if the activities of Treg were additive to or synergistic
with other immunosuppressive mechanisms in the microenvi-
ronment. Accordingly, it was hypothesized that the immuno-
suppressive cytokines and molecules such as CTLA-4 would be
increased on Treg by the same mechanism that mediates the
hypoxia-adenosinergic immunosuppression (Sitkovsky, 2009).
The detailed studies of hypoxia response element (HRE)/hypoxia-
inducible factor-1α (HIF-1α) and cAMP response element
(CRE)/cAMP response element binding protein (CREB) have
been implicated in Treg activities only by circumstantial set of
data (Sitkovsky, 2009) and the direct studies of CRE and HRE in
Treg are still to be performed.

Tumors contain high levels of extracellular adenosine (Blay
et al., 1997; Ohta et al., 2006). Adenosine in tumor microen-
vironment may be one of the important immunosuppressive
mechanisms, which discourage anti-tumor immune responses,
because A2AR-deficient mice could efficiently eradicate tumors,
while wild-type mice could not (Ohta et al., 2006). One impor-
tant reason for adenosine-mediated inactivation of anti-tumor
immune responses would be a direct action at A2AR on T
cells. However, the present data also suggest that the adenosine-
A2AR signaling may enhance Treg in tumors. Tumors con-
tain overwhelming number of Treg to suppress effector T
cells (Turk et al., 2004; Antony et al., 2005; Sitkovsky et al.,
2008; Facciabene et al., 2011). There might be a contribu-
tion from intratumoral high concentration of adenosine to the
increase of Treg. Moreover, A2AR stimulation may enhance
the regulatory activity of Treg in tumors and further inac-
tivate anti-tumor immune responses. Physiological control of
Treg activity in vivo by extracellular adenosine is yet to be
determined.

While Treg is a target to be discouraged for the improvement
of tumor immunotherapy, transfusion of Treg is a promising
approach for the treatment of autoimmune diseases and allo-
genic reaction after transplantation (Riley et al., 2009; Matsuoka
et al., 2010). Because large doses of Treg are necessary to suppress
GVHD, Treg require massive expansion ex vivo before transfer,
but the expansion of Treg is somewhat challenging. It is difficult
to start the expansion from a large number of Treg because of
low frequency of Treg in peripheral blood. In addition, since both
Treg and activated effector T cells share CD4+ CD25+ phenotype,
polyclonal activation of T cell could result in considerable con-
tamination by effector T cells (Riley et al., 2009). Treatment with
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A2AR agonist induces expansion of Treg, while it suppresses acti-
vation of effector T cells. Such a culture condition favoring Treg
outgrowth may be suitable for the expansion of Treg. Effects
of A2AR agonists on human Treg will need to be examined
for numerical increase and enhancement of regulatory activity.
Dependent on the nature of human Treg, optimization of cul-
ture condition is expected to improve the recovery of functionally
enhanced Treg.

In conclusion, we found that T cell activation in the pres-
ence of A2AR agonist resulted in expansion of Treg. After the

A2AR-mediated expansion, Treg acquired stronger immunoreg-
ulatory activity. The quantitative and qualitative enhancement
of Treg by the adenosine-A2AR pathway may be relevant to the
establishment of longer-lasting immunomodulation. This mech-
anism may be utilized in the expansion of Treg for treatment of
autoimmune diseases and GVHD.
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