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Common variable immunodeficiency (CVID) presents in up to 25% of patients with autoim-
mune (AI) manifestations. Given the frequency and early onset in some patients with CVID,
AI dysregulation seems to be an integral part of the immunodeficiency. Antibody-mediated
AI cytopenias, most often affecting erythrocytes and platelets make up over 50% of these
patients.This seems to be distinct from mainly cell-mediated organ-specific autoimmunity.
Some patients present like patients with AI lymphoproliferative syndrome. Interestingly, in
the majority of patients with AI cytopenias the immunological examination reveals a dys-
regulated B andT cell homeostasis.These phenotypic changes are associated with altered
signaling through the antigen receptor which may well be a potential risk factor for disturbed
immune tolerance as has been seen in STIM1 deficiency. In addition, elevated B cell-
activating factor serum levels in CVID patients may contribute to survival of autoreactive
B cells. Of all genetic defects associated with CVID certain alterations in TACI, CD19, and
CD81 deficiency have most often been associated with AI manifestations. In conclusion,
autoimmunity in CVID offers opportunities to gain insights into general mechanisms of
human autoimmunity.
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Autoimmunity is an integral part of immune dysregulation in
a quarter of patients with common variable immunodeficiency
(CVID), often presenting as the first manifestation of the dis-
ease (Agarwal and Cunningham-Rundles, 2009). In recent years
analyses of the immune disturbances have revealed complex dys-
regulations of the immune system. In parallel, progress in our
comprehension of the pathogenesis of connective tissue disorders
like systemic lupus erythematosus (SLE) allows for comparison of
common roots of human autoimmune (AI) disorders.

This perspective article is an attempt to summarize the factors
which contribute to autoimmunity in CVID.

Autoimmune cytopenias are the most common AI manifesta-
tions in CVID and the focus of this article. In the context of distinct
associated alterations of the cellular immune system AI cytope-
nias appear to be a separate manifestation from organ-specific
autoimmunity in CVID (Boileau et al., 2011; Cheng and Anderson,
2012). The presentation of AI-CVID patients resembles patients
with autoimmune lymphoproliferative syndrome (ALPS) with the
coincidence of lymphoproliferation and AI cytopenias (Seve et al.,
2008; Wehr et al., 2008; Boileau et al., 2011). While none of the cel-
lular markers, such as increased double negative T cells or reduced
switched memory B cells, helped to distinguish AI-CVID from
FAS-ALPS, increased serum levels of soluble Fas ligand, interleukin
(IL) 10, and vitamin B12 allowed a distinction between FAS-ALPS
patients and AI-CVID to be made (Rensing-Ehl et al., 2010). None
of the tested CVID patients carried a genomic or somatic muta-
tion in FAS, rendering FAS-ALPS a differential diagnosis. Thus,
the reason that lymphoproliferation and autoimmunity are seen

together in most of the CVID patients remains obscure. Other
causes of ALPS and ALPS-related disorders have not been excluded
systematically in AI-CVID.

Other immunodeficiencies strongly associated with AI mani-
festations comprise immune dysregulation, polyendocrinopathy,
enteropathy X-linked (IPEX) syndrome, autoimmune polyen-
docrine syndrome type 1, combined immunodeficiencies (CID)
including hypomorphic severe (S)CID variants (Liston et al.,
2008), both calcium channelopathies, Wiskott–Aldrich syndrome
(WAS), DiGeorge syndrome, Good syndrome, activation-induced
deaminase (AID) deficiency, CD25 deficiency, Stat5b deficiency,
and cartilage hair dysplasia (Al-Herz et al., 2011).

Most of these immunodeficiencies are associated with (i) dis-
turbed T cell homeostasis, (ii) altered antigen receptor, or (iii)
altered cytokine signaling. Aspects relevant in patients with CVID
shall be discussed in the following sections.

DISTURBED T CELL HOMEOSTASIS IN AI-CVID
Disturbed T cell homeostasis is a common contributing fac-
tor to the development of autoimmunity in different forms of
monogenic primary immunodeficiency disorders (PIDs). Several
features of disturbed cell homeostasis are also present in CVID.
Lymphopenia affects mostly CD4 T cells and especially naïve CD4
T cells, while CD8 T cells become relatively expanded (Giovannetti
et al., 2007). Both CD4 and CD8 T cells are activated as determined
by the expression of activation markers and Ki67. Thymic out-
put was decreased, but Ki67 expression was particularly strong
in naïve and central memory T cells, suggesting homeostatic
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proliferation as described for other immunodeficiency models
(Cassani et al., 2010). In addition, the Vβ repertoire of CD4 T cells
had contracted. These changes are well known to be associated
with an increased risk of autoimmunity as previously demon-
strated in murine models and human AI disease (Datta and
Sarvetnick, 2009).

The severe reduction in naïve CD4 T cells in CVID has been sug-
gested as a criterion for the diagnosis of late-onset CID (LOCID;
Malphettes et al., 2009) for resembling the immunological and
clinical phenotype of patients with hypomorphic SCID muta-
tions (Liston et al., 2008; Cassani et al., 2010; De Ravin et al.,
2010). Interestingly, the association of CD4 lymphopenia in pri-
mary immunodeficiency seems to be stronger with granulomatous
inflammatory disease than AI cytopenias (Schuetz et al., 2008;
Mouillot et al., 2010). IL-7, which has a key role in the expansion
of autoreactive T cell clones in the lymphopenic host, was also
found to be elevated in a subgroup of CVID patients (Holm et al.,
2005). Though increased IL-7 levels were not associated with T cell
lymphopenia, they nevertheless correlated with a more frequent
incidence of autoimmunity. The regular feedback mechanism of
IL-7 regulation seemed to fail in the small group of AI-CVID
patients examined. The production of several other cytokines
including IL-2, interferon (IFN)-γ, IL-4, and TNFα is altered in
some CVID patients, but none of the reported alterations have
been examined for their role in eliciting autoimmunity (Fischer
et al., 1994; Fritsch et al., 1994; Mullighan et al., 1997). Testing the
role of specific cytokines in this setting will be of great interest as
it is likely to reveal potential therapeutic targets.

Skewing of CD8 T cells is often more prominent than that
of CD4 T cells (Giovannetti et al., 2007). Cytomegalovirus (CMV)
causes immunosenescence associated with terminal differentiation
of CD8 effector T cells which results in a skewing of the repertoire.
In CVID this phenomenon was exaggerated (Kuntz et al., 2011).
A chronic viral infection is therefore a potential trigger for the
clinical manifestation of AI disease in a disturbed immune system
(Marashi et al., 2011).

Selection, activation, and differentiation of T cells in CVID
may also be affected by an impaired response of the T cell recep-
tor after stimulation (Fischer et al., 1994; Boncristiano et al., 2000;
Paccani et al., 2005). However, to date, the published investiga-
tions neither report an underlying genetic defect nor a correlation
between altered T cell receptor signaling and a higher preva-
lence of autoimmunity. Currently, the only intrinsic T cell defect
which causes CVID was found in a total of 11 patients with defi-
ciency of the inducible costimulator (ICOS; Warnatz et al., 2006;
Takahashi et al., 2009). Only one of the original nine European
patients presented with AI neutropenia, whereas AI manifestations
were more prominent in the two Japanese patients presenting with
(rheumatoid) arthritis, inflammatory bowel disease, interstitial
pneumonitis, and psoriasis.

Finally, many reports have described reduced numbers of cir-
culating regulatory T cells in CVID, especially affecting Freiburg
Ia patients with reduced switched memory B cells and expan-
sion of CD21low B cells (see below; Fevang et al., 2007; Genre
et al., 2009; Horn et al., 2009; Melo et al., 2009; Yu et al., 2009;
Arumugakani et al., 2010; Mouillot et al., 2010). Several of
the factors mentioned above, such as a CID-like phenotype

with or without a disturbed TCR signal (Picard et al., 2009;
Sauer et al., 2012), cytokine disturbance (Setoguchi et al., 2005),
and even persistent CD4 lymphopenia itself (Matsuoka et al.,
2010) might contribute to the reduction in regulatory T cells.
Interestingly, even ICOS deficiency disturbs maintenance and
function of regulatory T cells (Kornete et al., 2012), thus poten-
tially rendering regulatory T cell deficiency a crucial element in
AI dysregulation which is also common to different forms of
immunodeficiency.

DISTURBED B CELL HOMEOSTASIS IN AI-CVID
B cell homeostasis is also disturbed in CVID patients. Therefore,
reduced switched memory B cell development and the expansion
of activated CD21low B cells are associated with the manifestation
of AI-CVID (Warnatz et al., 2002; Sanchez-Ramon et al., 2008;
Isnardi et al., 2010; Boileau et al., 2011). CD21low B cells con-
tain a high proportion of autoreactive clones (Rakhmanov et al.,
2009; Isnardi et al., 2010) suggesting a disturbed selection of the
B cell repertoire. This may involve defects in central selection
for some (Isnardi et al., 2010), but not all patients (Rakhmanov
et al., 2010). Several factors have been identified as interfering
with B cell selection. Firstly, the signal strength of the BCR itself
determines the outcome during selection (Khan, 2009). Several
mouse models have demonstrated that alterations in the signal-
ing machinery (Cornall and Goodnow, 1998; Wang and Clark,
2003) and the balance between co-stimulatory (Tedder et al., 1997)
and inhibitory co-receptors (Cornall et al., 1998) determine the
counter-selection of AI B cell clones. In CVID patients dis-
turbed antigen receptor signaling was described and is discussed
below.

Given the negative feedback loop of immune complexes on
B cells and plasma cells via the inhibitory receptors (Seite et al.,
2010; Baerenwaldt et al., 2011) it is intriguing to speculate as to
whether low serum IgG by itself may contribute to antibody-
mediated AI cytopenias as one of the first manifestations in
AI-CVID. Signaling by FcγRIIB inhibits B cell activation and
can even induce apoptosis in plasma cells (Xiang et al., 2007).
Additionally, a lack of inhibition of monocytes/macrophages
by FcγRIIB may foster overwhelming inflammatory responses
and granuloma formation, a serious clinical problem seen in
a subset of AI-CVID patients. Lupus-like disease in FcγRIIB-
deficient C57BL/6 mice (Bolland and Ravetch, 2000) as well as
the increased risk of SLE in homozygous carriers of the dysfunc-
tional FcγRIIB I232T variant (Floto et al., 2005) clearly indicate
a crucial role for this inhibitory receptor in the maintenance
of humoral tolerance. This hypothesis is supported by the fact
that in most CVID patients the initiation of immunoglobulin
replacement leads to an amelioration of the bouts of AI-mediated
cytopenias.

The other major factors, which contribute to B cell-mediated
autoimmunity, are related to survival signals during selection
(Cancro, 2004). For B cells, overexpression of B cell-activating
factor (BAFF) causes increased survival of autoreactive B cells and
overt autoimmunity (Mackay et al., 1999; Thien et al., 2004). It is
noteworthy that most CVID patients present with elevated BAFF
levels (Kreuzaler et al., 2012). Currently it is unknown whether
elevated BAFF levels sustain the expansion of CD21low B cells in
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CVID. The number of circulating CD21low B cells increases in
other AI diseases, such as SLE (Wehr et al., 2004), rheumatoid
arthritis (Isnardi et al., 2010), and cryoglobulinemia (Terrier et al.,
2011), supporting an association with autoimmunity. In contrast
to SLE, where switched memory B cells are relatively expanded
and active disease is associated with expansion of circulating plas-
mablasts (Dorner and Lipsky, 2004), AI-CVID has a more severe
reduction in the number of switched memory B cells when com-
pared to other CVID patients. This could represent a disturbed
peripheral differentiation and selection. Increased autoimmu-
nity associated with poor germinal center function has also been
observed in deficiency of the AID (Hase et al., 2008), but no abnor-
malities of AID expression or function have been described in
CVID at this point.

Of all the genetic mutations which are associated with CVID,
AI manifestations are most common in TACI-deficiency [18/50
(36%) vs 112/490 (23%) in wt TACI CVID; Salzer et al., 2009]. In
particular, heterozygous C104R mutations seem to effect a pre-
disposition for autoimmunity (11/20 patients, 55%; Salzer et al.,
2009). While partial TACI signals in a heterozygous state may con-
tribute to the survival of autoreactive B cells, a formal proof of this
hypothesis is still missing. AI manifestations including glomeru-
lonephritis and vasculitis (interestingly with deposits of IgA) as
well as AI thrombocytopenia (AI-TP) have also been described for
CD19 and CD81 deficiency, and are possibly related to the dis-
turbed antigen receptor signal in these patients (see also below;
van Zelm et al., 2006, 2010; Vince et al., 2011). The other B cell-
intrinsic genetic defects associated with CVID (BAFF-R, CD20,
CD21) have not been reported with AI manifestations (Warnatz
et al., 2009; Kuijpers et al., 2010; Thiel et al., 2011, but to date only
single patients have been described for each defect, thus precluding
definite conclusions.

In recent years, a B cell population producing IL10 has
been described as regulatory B cells (Mauri and Bosma, 2012).
Currently, nothing is known about their existence and function
in CVID.

DISTURBED ANTIGEN RECEPTOR SIGNAL
IN AUTOIMMUNE CVID
Several mouse models of increased BCR signals demonstrate an
increased prevalence of AI manifestations (Dorner and Lipsky,
2006). On the other hand, models of decreased TCR signaling can
also represent a risk factor for autoimmunity (summarized in Lis-
ton et al., 2008). Decreased TCR signals are thought to interfere
with negative selection either through a selective or a stronger
impact on tolerogenic signals (Liston et al., 2008) thus poten-
tially impairing the generation of regulatory T cells (Liston and
Rudensky, 2007). In humans, ORAI (Feske et al., 2006) and Stim1
deficiency (Picard et al., 2009) need to be mentioned as proto-
types of reduced antigen receptor signal strongly associated with
the coincidence of immunodeficiency and autoimmunity in the
affected patients. Also in B cells of the subgroup of CVID patients
with an increased risk of AI manifestations, calcium signaling is
reduced compared to other CVID patients and healthy controls
(Foerster et al., 2010; van de Ven et al., 2011). The exact mechanism
of the signaling defect and its potential interference with selection
are unknown. In WAS, antigen receptor signaling is impaired due

to mutations in the WAS protein (Zhang et al., 1999). Interestingly,
WASP deficiency also leads to increased AI disease associated with
decreased CD27+ memory B cells and increased CD21low B cells
(Park et al., 2005). Although WASP deficiency affects both T and
B cell receptor signaling, B cell-intrinsic defects clearly contribute
to autoimmunity in WAS (Recher et al., 2012). As indicated above,
previous reports have found disturbed TCR-induced calcium sig-
nals (Fischer et al., 1996) in 40–50% of CVID patients but a link
to immune dysregulation in the identified patients has not been
established.

ALTERED TYPE I INTERFERON SIGNAL
IN AUTOIMMUNE CVID
Cytokines have been implicated in AI dysregulation. Type I IFNs
are thought to be particularly important as (i) AI reactions are
induced in patients after treatment with type I IFNs, (ii) the
IFN signature is increased in patients with SLE, and (iii) some
chronic viral infections are associated with autoimmunity (Hall
and Rosen, 2010). The mechanisms are manifold and include
induction of dendritic cell (DC) maturation and increased BAFF
production, a positive feed back loop in toll-like-receptors (TLR)
7 and 9 signaling leading to class switched antibody production
(Hall and Rosen, 2010).

Type I IFNs have not been well examined in CVID patients.
There exists only a single report of increased type I IFN production
in CVID patients (Strannegard et al., 1987); others have detected
increased MxA expression as a marker of IFN exposure in leuko-
cytes of only 2/13 CVID patients (Rump et al., 1995). So far no
attempt to correlate in CVID IFN expression to AI manifestations
has been made.

Type I IFN expression and the induction of AI reactions is
closely linked to the activation of TLRs on plasmacytoid DCs
(pDCs) and B cells (Green and Marshak-Rothstein, 2011). Dif-
ferent strains of AI prone mice rendered deficient in TLR7/9 or
MyD88 expression produce dramatically fewer autoantibodies and
develop less severe disease (Green and Marshak-Rothstein, 2011).
Surprisingly, however, TLR9 deficiency in the presence of normal
TLR7 function reduces only anti double-strain-DNA autoanti-
body levels, but not other autoantibodies and is associated with
a more severe AI disease, suggesting a regulatory role of TLR9
for TLR7-mediated immune disease. In CVID patients, pDC and
B cell responses to TLR7 and 9 ligands are impaired (Yu et al.,
2012). Subanalysis of the reported data suggests that a subgroup
of patients is more seriously affected by reduced TLR signaling.
While the authors correlate the reduced function to increased
infection susceptibility no correlation to autoimmunity is
mentioned.

In summary, autoimmunity is a prominent clinical feature in
CVID. Associated factors include disturbed B and T cell homeosta-
sis and selection, altered antigen receptor signals, increased BAFF
levels, and possibly altered TLR signaling. Pathogenic mechanisms,
however, have not been identified yet on a molecular level. Fur-
ther research needs to consider established mechanisms in other
genetically defined immunodeficiency disorders to unravel the
underlying immune dysregulation in CVID. Our improved knowl-
edge will not only steer potential treatment strategies but also our
concept of autoimmunity in general.
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