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The research onT cell immunosuppression therapies has attracted most of the attention in
clinical transplantation. However, B cells and humoral immune responses are increasingly
acknowledged as crucial mediators of chronic allograft rejection. Indeed, humoral immune
responses can lead to renal allograft rejection even in patients whose cell-mediated
immune responses are well controlled. On the other hand, newly studied B cell subsets
with regulatory effects have been linked to tolerance achievement in transplantation. Better
understanding of the regulatory and effector B cell responses may therefore lead to new
therapeutic approaches. Mesenchymal stem cells (MSC) are arising as a potent therapeu-
tic tool in transplantation due to their regenerative and immunomodulatory properties.The
research on MSCs has mainly focused on their effects onT cells and although data regard-
ing the modulatory effects of MSCs on alloantigen-specific humoral response in humans
is scarce, it has been demonstrated that MSCs significantly affect B cell functioning. In the
present review we will analyze and discuss the results in this field.
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INTRODUCTION
B cells are a major cell type involved in adaptive immune responses,
specialized in antigen presentation and antibody production. The
balance between the different B cell subsets has been identified as
an important factor for graft outcome. On one hand, effector B
cells generate humoral rejection and pre-formed donor-specific
antibodies (DSA) against human leukocyte antigen (HLA)-I or
HLA-II that have been correlated to worst graft outcome. On the
other hand, pro-tolerogenic B cell subsets have been identified. An
increase in immature transitional and naïve B cells has been related
to tolerance (Liu et al., 2007) and increased B cell numbers and
a differential expression of B cell-related genes were observed in
the peripheral blood of a small cohort of tolerant kidney and liver
transplant patients compared to stable patients under immuno-
suppression or to healthy controls (Newell et al., 2010; Sagoo et al.,
2010).

Mesenchymal stem cells are multipotent stromal cells localized
in virtually every tissue. They are characterized by their adher-
ence to plastic, the expression of surface markers as CD73, CD90,
and CD105 among others and the lack of expression of typi-
cal hematopoietic markers as CD45 and CD11b (Roemeling-van
Rhijn et al., 2012). They also show differentiation potential into
different cell lineages under controlled culture conditions. MSCs
have been considered as naturally immunoprivileged cells due to
low expression of HLA and co-stimulatory molecules in unstim-
ulated conditions and although it is now well-known that under
inflammatory stimulation they can express both HLA-I and HLA-
II it is also known that under this condition they exert more potent
immunosuppressive actions (Crop et al., 2010).

The effect of MSCs on effector and regulatory T cells has been
widely studied (Duffy et al., 2011a) and there is also evidence for

a suppressive role of MSCs on natural killer (NK) cells (Spag-
giari et al., 2008), inhibition of dendritic cells (DCs) maturation
(Spaggiari et al., 2009), and alternative activation of macrophages
leading to an anti-inflammatory phenotype (Francois et al., 2012).
The interaction between MSCs and B cells is gaining interest but
data is still scarce and controversial. Here we review the available
data on the immunomodulatory actions of MSCs on B cells.

B CELLS IN TRANSPLANTATION
T cell-mediated rejection is together with antibody-mediated
rejection the main cause of graft loss. Although research on T
cell immunosuppressive therapies has efficiently improved the
incidence of acute cellular rejection, long-term allograft survival
remains challenged by chronic rejection. Activated B cells have
been found to play a significant role on long-term allograft func-
tion. Their ability to present antigen to T cells via the indirect
pathway and the generation of DSAs are emerging as the major
mediators of allograft rejection. Pre-existing DSAs in the allograft
recipient mediate hyperacute and acute-antibody-mediated rejec-
tion while the presence of de novo DSAs (specific for HLA and
non-HLA) in recipients compromises long-term allograft survival
(Redfield et al., 2011). Furthermore, it has been observed that CD8
and CD4 T cell memory is impaired when the antigen presenting
function of B cells is absent (Ng et al., 2010). This finding would
support the idea of a beneficial effect of B cell depletion at the time
of transplantation to impair T cell mediated alloresponses.

However, there is increasing evidence for a tolerogenic role
of specific B cell subsets. Naïve B cells have been shown to
stimulate the development of regulatory T cells by antigen pre-
sentation to naïve T cells (Reichardt et al., 2007). And more
recently, increased expression levels of B cell genes were found
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in peripheral blood of kidney transplant patients that sponta-
neously became tolerant (Newell et al., 2010; Sagoo et al., 2010).
The three main genes with predictive value for discerning tol-
erant from non-tolerant (IGKV4-1, IGLL1, and IGKV1D-13) are
expressed by transitional B cells, which are considered to be tolero-
genic. Moreover, there is evidence of a subset of B cells with
anti-inflammatory properties and the ability to secrete IL10, which
down-regulation is known to be involved in the development of
autoimmune diseases (Mauri and Bosma, 2011) and in solid organ
transplantation there is preliminary evidence for their presence
in immunosuppressive free kidney transplant patients (Le Texier
et al., 2011).

The use of B cell directed monoclonal antibodies (anti-
CD20, Rituximab), antibody depleting strategies (plasmaphere-
sis), plasma cell depleting agents (anti-proteasome, Bortezomib),
or complement-inhibitor agents (Eculizumab) have been reported
to be efficient in promoting graft survival (Rocha et al., 2003;
Tyden et al., 2009; Walsh et al., 2012). It is however still controver-
sial which approach is the best to avoid humoral rejection without
compromising regulatory mechanisms.

IMMUNOMODULATORY EFFECT OF MSCs IN
TRANSPLANTATION
T cells, as key initiators and mediators of transplant rejection, have
been the main target to prove the immunomodulatory potential
of MSCs. Multiple studies have demonstrated that MSCs inhibit
effector T cell proliferation and cytokine release through mecha-
nisms that are cell-contact-dependent (PD-L1, Augello et al., 2005;
B7-H4, Xue et al., 2010; ICAM1; VCAM1, Ren et al., 2010) and
contact-independent (IDO, Ge et al., 2010; PGE2, Najar et al.,
2010; Duffy et al., 2011b; HLA-G, Selmani et al., 2009; TGFβ, Liu
et al., 2012; galectins, Sioud, 2011). In vivo models have shown
that MSCs have an indirect effect on T cell activation by inhibition
of maturation of DCs. Injected MSCs prevent DCs maturation
(Spaggiari et al., 2009) and their migration to lymph nodes by
down-regulating CCR7 expression, thus inhibiting T cell prim-
ing (Chiesa et al., 2011). MSC-exposed DCs have also the ability
to promote Tregs induction (Ge et al., 2009). MSCs posses also
the ability to induce Tregs directly via the production of TGFβ,
PGE2 together with cell-contact as key factors. In vivo, FoxP3+

Treg generation has been associated with IDO expression by MSC
(English et al., 2009). This factor is produced by MSCs under
IFNγ conditioning (Croitoru-Lamoury et al., 2011) and is essential
to achieve allograft tolerance in an experimental kidney trans-
plantation model (Ge et al., 2010). It appears that MSCs under
inflammatory conditions act as super-regulators on T cells inhibit-
ing the effector responses and enhancing the regulation inducing
Tregs.

Of note, these actions are not only relegated to the experi-
mental and in vitro setting as the applicability of injected MSCs
as induction therapy in human kidney transplantation has been
recently proved. Injection of autologous MSCs at the moment of
transplantation and 2 weeks post-transplantation resulted in lower
incidence of acute rejection, decreased risk of opportunistic infec-
tion and better estimated renal function at 1 year compared to
anti-IL2 receptor antibody (Basiliximab) induction therapy (Tan
et al., 2012).

EFFECT OF MSCs ON B CELLS IN VITRO
To the moment, the few published papers studying the effect of
MSCs on B cells proliferation, differentiation, and function show
disparity in their approaches and results. The different results
among the groups might be explained by the different starting
B cell population (purity and isolation method) and the stimuli
used to trigger B cell differentiation and proliferation. MSC: B
cell ratio is also an important point, as the most effective ratios
used are very high and it is hardly observed a dose dilution effect,
contrarily to what happens with the immunosuppressive effect of
MSCs on T cells (Hoogduijn et al., 2008).

CELL SOURCE AND ISOLATION METHOD
If we refer to in vitro data (Table 1), the main starting difference
of those studies is the B cell isolation method. On one hand, some
authors decided for a more “physiological” model by using a B
cell enriched system in which we can still find T helper cells (in
different proportion depending on the depleting technique and
the source used) and other mononuclear cells found in peripheral
blood or spleen (Rasmusson et al., 2007; Comoli et al., 2008). On
the other hand, some authors use CD19 positive selection to start
with a pure B cell population (Corcione et al., 2006; Tabera et al.,
2008; Traggiai et al., 2008), or a CD43 depleted population to have
an isolated “untouched” non-activated B cell population to start
with (Asari et al., 2009; Schena et al., 2010). The purity of the
starting population and the stimuli used to trigger B cell prolifer-
ation and differentiation are key factors in determining the effect
of MSCs on B cells.

Of note, the source of MCS used in the various studies is bone
marrow and the use of allogeneic or autologous MSCs does not
seem to affect the interaction between MSC and B cells (Comoli
et al., 2008).

The first key study to understand the role of MSC on B cells,
on a non-purified starting population, was performed by Comoli
et al. (2008). The exposure of enriched B cell populations to irra-
diated third party PBMCs led to an increase in immunoglobulin
(Ig) production that was abrogated by the addition of MSCs. Inter-
estingly the effect exerted by MSCs was abolished by the addition
of anti-CD40 and IL10 indicating that MSCs suppression of Ig
production was produced by T help suppression rather than by
a direct effect on B cells. This is in tune with Rasmusson et al.
(2007) who showed that under strong stimulation of mononu-
clear cell fraction (non-purified B cells), MSCs inhibited the Ig
secretion. However, the same cells without or under mild poly-
clonal stimulation increased their IgG production in the presence
of MSCs (Rasmusson et al., 2007).

However, when the effect of MSCs is studied on purified B cells
(or B cell subsets) the effect is diverse depending on the stimuli
used to induce proliferation and/or differentiation.

CELL STIMULATION
The activation of naïve B cells requires three signals: B cell recep-
tor (BCR) activation (via anti-Ig), T cell co-stimulatory help (via
CD40/CD40L), and appropriate cytokines or toll-like receptor
(TLR) activation (microbial products, CpG, dsRNA), while mem-
ory B cells can be activated in the absence of BCR stimulation
and triggered via stimulation of TLR or bystander T cell help only
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Table 1 | Effect of MSCs on B cells in vitro.

Species and

model

B cell isolation B: MSC

ratio

B cell stimuli Effect of MSCs Reference

MICE

Mice C57Bl/10

and Balb/C

Spleen B cell

isolation kit

1:1 PWM Inhibition of B cell proliferation. PD-1/PD-1L/PD-2L

pathway is involved.

Augello et al.

(2005)

Mouse B6 and

CCR2−

Spleen sorted

CD19−CD138+

plasma cells

1:1 rOVA Inhibition of Ig production by a cleaved form of CCL2

secreted by MSCs.

Rafei et al.

(2008)

Mouse

C57Bl/g

Spleen CD43

depletion

2:1 LPS T cell

dependent/

independent

in vivo

Inhibition of Plasma cells (Blimp-1+) induced by LPS.

Suppression of B cell proliferation but do not induce

plasma cell apoptosis. B cell differentiation inhibition

is cell-contact-independent (also not CCL2, IL10,

TGFβ, or IDO).

Asari et al.

(2009)5:1

10:1

Mouse

NZBxNZW F1

Spleen CD43

depletion and sorted

marginal vs. follicular

zone

1:1

3:1

9:1

CpG+CD40L

+ anti-IgM

+ IL2

Inhibition of proliferation and differentiation in the

presence of IFNγ of BCR stimulated naive B cells. This

effect is IDO independent and cell-contact-dependent

and not related to apoptosis. Inhibition of

phosphorylation of 3 main pathways downstream de

BCR and PD-1/PD-L1 upstream the BCR.

Schena et al.

(2010)

Mouse

NZBxNZW F1

Spleen, BM, kidney

CD138+ plasma

cells isolation

1:1 OVA Coculture MSCs increase survival and function of

plasma cells leading to increased IgG production.

Youd et al.

(2010)1:5

HUMANS

Human healthy

volunteer

PB T cell

depleted+CD19+

positive selection

MACS

1:1

1:2

CpG+ rCD40L

+ anti-Ig+ IL2

+ IL4± IL10

Inhibition of proliferation (not apoptosis) by arrest of

cell cycle G0/G1. Mediated by soluble factors.

Inhibition of IgG, IgA, IgM secretion.

Inhibition of homig molecules CXCR4, CXCR5, CCR7,

and chemotaxis to CXCL12, CXCL13.

Corcione

et al. (2006)

Human healthy

volunteer

Spleen or PB

enriched B cell

population MACS

10:1 LPS/CMV/VZV Increase IgG producing cells in coculture with MNCs

or B cells. The effect on enriched B cells is

cell-contact-dependent while is mediated by soluble

factors in MNCs. Under strong stimulation MSC

reduce Ig production, under low stimulation increases

Ig production.

Rasmusson

et al. (2007)

Human healthy

volunteer and

highly

sensitized

patients

PB partial depletion

CD4 and full

depletion CD8

MACS

4:1

20:1

MLC±CD40

agonist+ IL10

MSCs inhibit IgG, IgA, IgM production induced in

MLC (different ratios and allogeneic or syngeneic

MSCs have same effect). Sensitized patients allo-sera

induce ADCC but supernatant of MLC+MSC do not

induce ADCC. In the presence of agonist

CD40+ IL10, MSCs have no effect on Ig reduction and

in transwell the effect is not lost.

Comoli et al.

(2008)

Human healthy

volunteer

Buffy Coat CD19+

and CD3+ selection

MACS

5:1

10:1

CpG+ anti-

Ig±CD40L

+ IL4

Promotion of B cell proliferation and viability but under

highly proliferative conditions, MSCs arrest B cell

cycle in G0/G1. Inhibit Plasma cells induced by pDCs

mediated by ERK 1/2 and p38 phosphorylation.

Tabera et al.

(2008)

(Continued)
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Table 1 | Continued

Species and

model

B cell isolation B: MSC

ratio

B cell stimuli Effect of MSCs Reference

Human healthy

and SLE

PB CD19+ selection

MACS+ subsets

sorting

1:1 CpG+ IL2

±CD40L

+ anti-Ig

Induction of survival and proliferation of transitional,

naïve, IgM memory, and switch memory subsets

with/out stimulation. Up-regulation of CD38 and IGM

but naïve B cells do not increase IgA and IgG.

Cell-contact-dependent effect. Enhancement of

survival of SLE patient B cell subsets, increase CD38

expression and IgM and IgG secretion.

Traggiai et al.

(2008)

Summary of the published works on the effect of MSCs on B cells in vitro. In all cases the source of MSCs is bone marrow. PWM, Pokeweed mitogen; OVA,

ovalbumin; LPS, lipopolysaccharide; BM, bone marrow; PB, peripheral blood; MACS, magnetic cell sorting technology; CMV, cytomegalovirus; VZV, varicella zoster

virus; MNCs, mononuclear cells; MLC, mixed lymphocyte culture.

(Lanzavecchia et al., 2006). MSC may have a role in modulating
some of these B cell activating pathways.

Among the studies that isolated pure B cells and exposed them
to different stimuli to analyze the effect of MSCs we find diverse
results. Although MSC were shown to increase the viability of B
cells (Tabera et al., 2008), they arrest them in G0/G1 (Corcione
et al., 2006; Tabera et al., 2008) and inhibit their differentiation
into plasma cells and subsequent Ig formation. This effect has
been shown to be cell-contact-independent (Asari et al., 2009)
or indirect through inhibition of pDCs induced B cell matura-
tion (Tabera et al., 2008). Contrarily, some authors (Augello et al.,
2005; Schena et al., 2010) found PD-1/PD-L1 interaction and the
inhibition of pathways downstream the BCR (Schena et al., 2010)
to be responsible for B cell inhibition by MSC. However, Schena
et al. (2010) observed that pre-exposure of MSCs to IFNγ was
mandatory for their suppressive effect on B cells, similar to their
effect on T cells (Crop et al., 2010). These studies on isolated B
cells were performed in the presence of stimuli targeting the three
signals for B cell activation, suggesting a role of MSCs directly on
B cells besides their effect on T helper cells (contrarily to what was
observed in studies using mixed starting population).

In contrast to activated B cells, isolated naïve, transitional, and
memory B cell subsets exposed to MSCs increased their survival
and proliferation (Traggiai et al., 2008). MSCs synergize with TLR
stimuli and IL2, with or without T cell help (CD40L or anti-
CD40) and BCR mediated stimulation by inducing proliferation
and differentiation into plasma cells. This effect was shown to be
contact-dependent although some of the factors released by MSCs
are important to modulate this effect.

In this setting, the effect of the stimuli on MSCs should be also
taken into account. It has been proved that MSCs express TLRs
(DelaRosa and Lombardo, 2010), and their activation promote
mainly a different cytokine secretion. MSC stimulated with CpG
(one of the main stimuli used in B cell activation that acts through
TLR9) produce IL6. This cytokine stimulates B cell proliferation
(Friederichs et al., 2001) and could be an explanation for the MSC
induction of naïve B cell proliferation under TLR9 stimulation in
the absence of BCR triggering (Traggiai et al., 2008).

All these studies give a hint on a potential dual effect of MSCs
on B cells. While in the enriched system the effect of MSCs on B
cells appear to be by-passed by their immunosuppressive action

on T cells, in an activated pure B cell population MSCs efficiently
arrest or increase the proliferation depending on the potency of the
stimuli on B cells but also on MSCs. Both cell-contact-dependent
and independent factors are involved.

EFFECT OF MSCs ON PLASMA CELLS
Mesenchymal stem cells inhibit plasma cell formation induced
by allostimulation (Comoli et al., 2008), by LPS (Asari et al.,
2009) or by plasmatic DCs (Tabera et al., 2008) and subsequent
Ig production (Corcione et al., 2006; Rasmusson et al., 2007). The
mechanisms of action described to be involved are cell-contact-
independent (alternatively cleaved CCL2 Rafei et al., 2008) or
dependent (PD-1/PD-L1 interaction, Schena et al., 2010).

However, we also find some disparity in the results obtained
in vitro, as some authors observed and increased differentiation
into plasma cells with increased Ig production (Traggiai et al.,
2008) along with a better survival and function (Youd et al.,
2010). This observation is reflected in in vivo systemic lupus
erythomatosus (SLE) models treated with MSCs.

EFFECT OF MSCs ON B CELLS IN VIVO
Similar to the controversial in vitro effects of MSC on B cells, there
are contradictory reports on the effects of MSC on B cells in animal
models.

Different groups have approached the treatment of a SLE model
with MSCs. A single injection of human BM-MSCs combined with
cyclophosphamide (CTX) increased survival, decreased protein-
uria, and reduced the levels of circulating anti-dsDNA IgG in a
MRL/Lpr mice model (Zhou et al., 2008), and similar results were
obtained in NZBxNZW F1 mice injected preventively with adipose
tissue MSCs every 2 weeks for 54 weeks although this protective
effect was lost when the animals were treated after the onset of the
disease (Choi et al., 2012). This late treatment does not prevent
from developing anti-dsDNA IgG or proteinuria, neither increases
the survival of the treated animals but it decreases lymphocytic
infiltration, glomerular proliferation, and immune complex depo-
sition (Schena et al., 2010). Contrarily, the use of mouse allogeneic
MSCs in this model, increases serum anti-dsDNA antibodies and
the glomerular deposition of IgG, along with higher interstitial
fibrosis and inflammation and protein casts in the kidney when
compared to CTX treatment (Youd et al., 2010). Of note the
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numbers of IgG+ plasma cells in the bone marrow of MSC treated
mice are also increased (Table 2).

In the transplantation setting, we (Franquesa et al., 2012) and
others (Ge et al., 2009) have demonstrated that MSCs injection
can significantly reduce levels of allospecific circulating antibod-
ies and intragraft allospecific IgG deposits (Ge et al., 2009) leading
to long-term graft acceptance.

INDUCTION OF B CELL RESPONSES BY ALLO-MSC
Despite the low immunogenicity that MSCs are supposed to exert
(low HLA class I and negative for HLA class II in unstimulated
conditions), there is evidence that MSC may be capable of induc-
ing an adaptive immune response (Nauta et al., 2006; Sbano et al.,
2008). Therefore it is still a matter of debate whether allogeneic
MSCs exert a humoral response in the recipient.

In rats a single injection of allogeneic MSC (1× 106 cells/animals)
induced substantial alloantibody production (IgG1, IgG2) in con-
trast to syngeneic cells injection in an immunocompetent host
(Schu et al., 2011). Also immunocompetent non-human pri-
mates (baboons) injected with two doses of allogeneic MSCs
(5× 106 cells/kg body weight) developed alloantibodies (Beggs
et al., 2006). Contrarily, in a clinical study with 12 patients which
were treated with MSCs (0.8–2.0× 106 cells/kg body weight)
after hematopoietic stem cell (HSC) transplantation, none of
them developed anti-MSC antibodies (Sundin et al., 2007).
And our own experience with a single injection of third party

MSCs (0.5× 106/300 g body weight) in a rat kidney transplan-
tation model is that the injected animals do not develop spe-
cific anti-MSCs antibodies while they do increase antibody lev-
els against the third party when they are injected with the full
fraction of bone marrow mononuclear cells (Franquesa et al.,
2012).

Those studies reflect some disparity of humoral response
directed against the injected MSCs that could be explained by
the source of MSCs (allo- vs. syngeneic), the number of injected
cells, the number of injections, the route of administration or
concurrent immunosuppression used. More in vivo studies need
to be done to develop safe long-term protocols for the clinical
setting.

CONCLUSION
The role of B cells in transplantation is multifaceted due to the
opposed roles of different B cell subsets in tolerance and rejection.
This enlightens the need for more refined immunosuppressive
regimens to treat humoral rejection without compromising the
effect of the pro-tolerogenic B cell subsets, namely transitional
and regulatory B cells.

Mesenchymal stem cells have proven immunomodulatory
properties, suppressing inflammatory cell (effector T cells, DCs,
inflammatory macrophages) functions, and differentiation and
increasing or synergizing with regulatory cells such as Tregs.

Their effect on B cells has been scarcely studied and although
the results obtained are contradictory so far, it seems clear there

Table 2 | Effect of MSCs on B cells in vivo.

Model Species MSC source MSC dose Effect of MSCs Reference

SLE Mouse female

MRL/Lpr

BM human 1×106/mice MSCs alone or combined with Cyclophosphamide (CTX)

reduce serum creatinine levels and C3 deposition compared

to CTX alone. CTX+MSC reduce circulating dsDNA

antibodies.

Zhou et al. (2008)

Heart

allograft

Mouse

C57BL/6

BALB/c C3H

BM 1×106/mice Inhibition of intragraft and circulating alloreactive antibody

levels. In combination with rapamycin induce tolerance.

Ge et al. (2009)

SLE Mouse

C57Bl/g

BM

conditioned

medium

Conditioned

medium

Suppression of antigen specific IgM and IgG1 secretion in

immunized mice with T cell-dependent and -independent

effect

Asari et al. (2009)

SLE Mouse

NZBxNZW F1

BM C57BL/6J

mice

3 Injections

1.25×106

Injections of MSC in SLE mice has no effect on IgG dsDNA,

proteinuria and survival, but improves glomerular

proliferation, lymphocytic infiltration, and IgG immune

complex deposition.

Schena et al. (2010)

SLE Mouse

NZBxNZW F1

BM Allogeneic

Balb/C

1×106

Bi-weekly for

18 or 7 weeks

MSC enhance autoantibody production, pathology and

proteinuria.

Youd et al. (2010)

SLE Mouse

NZBxNZW F1

AT human 28 Injections

5×105

Higher survival, improvement of histologic, and serologic

abnormalities and immunologic function and decreased

proteinuria. Anti-dsDNA antibodies and BUN decreased.

GM-CSF, IL4, and IL10 increase. Increase of Tregs

proportion. Early injections have best results than late

treatment.

Choi et al. (2012)

Summary of the published works on the effect of MSCs on B cells in vivo. BM, bone marrow; SLE, systemic lupus erythematosus; AT, adipose tissue.
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is a close interaction between MSC and B cells. It appears that
this interaction occurs partly through the modulation of T cell
help by MSCs, but also in the absence of helper cells MSCs can
inhibit activated B cells. The study of this threesome relation is
of special interest in the transplantation setting. Another interest-
ing point that remains to be studied is the potential of MSCs to
induce pro-tolerogenic B cell subsets that have themselves proved
immunomodulatory properties.

The potential of MSCs in B cell immunomodulation appears
to be promising and not fully understood. The advent of new and
well designed studies can give important insights to fully picture
the therapeutic role of MSCs in B cell mediated rejection.
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