
While innate immunity has been studied 
in insects since the time of Pasteur and 
Metchnikoff (Brey, 1998), research into 
nematode immune defenses was initiated 
only comparatively recently (Kurz and 
Ewbank, 2003). In the mid 1990s, through 
a biochemical approach, Yusuke Kato was 
able to isolate an antibacterial activity from 
the body fluid of the parasitic nematode 
Ascaris suum. This activity was ascribed 
to A. suum antibacterial factor (ASABF), a 
peptide that is particularly potent against 
Gram-positive bacteria (Kato, 1995). The 
subsequent molecular characterization of 
ASABF allowed the identification of six 
orthologous “ABF” peptides in the model 
nematode C. elegans, one of which, ABF-2 
displays in vitro microbicidal activity against 
a range of bacteria and fungi (Kato and 
Komatsu, 1996; Kato et al., 2002; Zhang 
and Kato, 2003). The six ABF peptides were 
immediately recognized as sharing features 
with defensins, placing them in the class 
of cysteine-stabilized α-helix and β-sheet 
(CSαβ) peptides, the most wide-spread 
and conserved class of antimicrobial pep-
tides (AMPs; Zhu, 2008). The constitutive 
expression of abf-1 and abf-2, the best char-
acterized of the six corresponding genes in 
C. elegans, overlaps in the pharynx (Kato 
et al., 2002); they are likely to contribute to 
the breakdown of the microbes that form 
the nematode’s normal diet. Although they 
undoubtedly act upon both bacteria and 
fungi, here, we consider only their poten-
tial role in anti-fungal defenses. Both abf-1 
and abf-2 are up-regulated by infection with 
the fungus Cryptococcus neoformans (Means 
et al., 2009), while the expression of abf-1 but 
not of abf-2 is induced by infection with the 
natural fungal pathogens Drechmeria coni-

ospora and Harposporium sp. (Engelmann 
et al., 2011). Conversely, abf-2 is up-regu-
lated by Candida albicans. It is not clear what 
the underlying regulatory pathways govern-
ing abf gene expression are (Pukkila-Worley 
et al., 2011), but one can speculate that their 
differential regulation reflects both the vari-
ous modes of pathogen infection (Labed 
and Pujol, 2011), and also their potentially 
distinct spectra of antimicrobial activities.

This conserved family of defensin-like 
peptides is something of an exception, since 
overall, C. elegans possesses a highly derived 
innate immune system. It has no equivalent 
of NF-κB, central to immunity in many ani-
mals, and also lacks orthologs of most of the 
receptors known from other species to be 
important for triggering host defenses (Pujol 
et al., 2001; Gravato-Nobre and Hodgkin, 
2005). Indeed, as explained more in detail 
below, several classes of AMPs implicated in 
anti-fungal defense appear to be restricted to 
certain nematode species, and are controlled 
by signal transduction cascades with a very 
limited phylogenetic range (Dierking et al., 
2011; Labed et al., 2012). Different fungal 
pathogens infect either via the intestine fol-
lowing ingestion, or via the epidermis. They 
influence AMP gene expression via distinct 
signaling cascades, but a detailed discussion 
of these regulatory mechanisms is beyond 
the scope of this short article.

Unlike A. suum, which can grow to a 
length of 40 cm, an adult C. elegans meas-
ures barely 1 mm, making extraction of body 
fluid technically almost impossible. Many of 
the other putative AMP genes in C. elegans 
were initially identified on the basis of their 
differential regulation following D. conio-
spora infection. The first such genes were 
members of the nlp (for  neuropeptide-like 

protein) and cnc (caenacin) families 
(Couillault et al., 2004). At the time, the for-
mer had been tentatively annotated as neu-
ropeptides, based on their limited sequence 
similarity with known neuropeptides. It was, 
however, observed that these genes were not 
generally expressed in the nervous system, 
but rather in the epidermis (Nathoo et al., 
2001). This ties in with the fact that D. conio-
spora spores attach to the nematode’s cuti-
cle and then germinate, penetrating into the 
body of the worm via the epidermis. Much, 
but not all, of the response to infection is 
a cell-autonomous mechanism acting in 
the epidermis; reviewed in Labed and Pujol 
(2011). The infection-induced nlp genes 
are structurally related to the cnc genes. 
The two groups further share the property 
of being found in clusters in the genome. 
Interestingly, comparison of the syntenic 
regions in two other Caenorhabditis spe-
cies, C. briggsae and C. remanei revealed 
that these genes are undergoing relatively 
rapid evolution, with clear evidence for gene 
duplication and gene loss, and appear to be 
under positive selective pressure. Indeed, 
over-expression of either the nlp or cnc 
AMPs leads to somewhat increased resist-
ance to D. coniospora infection (Pujol et al., 
2008; Zugasti and Ewbank, 2009), suggesting 
that they play a direct role in host defense 
against invasive fungi. This is further rein-
forced by the finding that the nlp and cnc 
AMP genes feature prominently among the 
few genes commonly up-regulated by D. 
coniospora and the fungi Harposporium sp. 
(Engelmann et al., 2011). The expression of 
cnc-4 and cnc-7 is also induced by virulent C. 
albicans (Pukkila-Worley et al., 2011), which 
like Harposporium sp. infects C. elegans via 
the intestine.
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Since the initial phylogenetic studies, 
more nematode genome sequences have 
become available. Comparative analyses 
reinforce the notion of rapid gene evo-
lution. For example, the single copy C. 

remanei gene CRE-nlp-27 corresponds to 
a cluster of 5 paralogs in C. elegans (Pujol 
et al., 2008), but 10 predicted paralogs in 
C. japonica (Figures 1A,B). On the other 
hand, there apparently has been no expan-

sion of the cnc genes in C. japonica, whereas 
multiple paralogs are found in the other 
Caenorhabditis species (Figure 1C). We 
have not found orthologous genes in several 
other nematode species for which genome 

Figure 1 | (A) The nlp-29 cluster in C. elegans together with syntenic 
regions from C. brigssae (Cbg), C. remanei (Cre), and C. japonica. AMP 
genes of the nlp class are shown in blue; there has been a marked expansion 
in C. japonica. The genes labeled “a” and “c” in C. elegans, and their 
orthologs (Cbg-a, Cbg-c, Cre-a, and Cre-c) are predicted to encode serpentine 
receptors; “b” in C. elegans is K09D9.9. Its ortholog in C. japonica is ca. 
60 kb 3′ of the locus. Immediately 3′ of the gene labeled “e” in C. japonica 
there is the remnant of a degenerate paralog of K09D9.9. The figure is 
adapted from data in Wormbase WS230; it does not reproduce the predicted 
fusion of Cre-b and Cre-c, as this does not appear to be probable. Only the 3′ 
extremities of a, b, and c are shown. (B–D) Phylogenetic trees for selected 

members of the NLP (B), CNC (C), and FIPR (D) family peptides, including 
homologs in C. brenneri (CBN). A distance matrix analysis was performed 
using the alignment program clustalw2 to generate a guide tree via pairwise 
and subsequent multiple sequence alignment. This guide tree was then used 
to produce a true phylogenetic tree that was loaded into the Interactive Tree 
Of Life v2 software suite (Letunic and Bork, 2011). Partial rooted trees were 
extracted that corresponding to interesting features within the complete FIP/
FIPR/NLP/CNC tree. For the non-elegans peptides, with the exception of 
CBG NLP-27 and CRE NLP-27, the corresponding gene identifier is given. The 
numbers in brackets for the C. japonica gene names match the 
corresponding genes in (A).
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also exert a regulatory function during the 
innate immune response to fungal infec-
tion. The metabolism and activity of sev-
eral classes of neuropeptide, both in C. 
elegans and other species are influenced by 
neprilysins (Husson et al., 2007). Typically, 
these zinc metallopeptidases are found 
on the outer surface of animal cells. They 
cleave small signaling peptides and thereby 
block their action. Interestingly, 13 of the 27 
neprilysins genes in C. elegans are down-
regulated upon infection with D. conio-
spora or by Harposporium sp. It remains 
to be determined whether they act on the 
infection-induced NLPs, or on other classes 
of peptides, such as insulin-like peptides, 
which are also transcriptionally regulated 
upon fungal infection (Engelmann et al., 
2011). If they do, this would add a further 
level of complexity to the regulation of the 
host response to pathogens.

In conclusion, the last decade has seen 
considerable advances in our understand-
ing of the role and evolution of AMPs in C. 
elegans. Future studies should yield more 
insights into their evolutionary origins and 
conservation, as well as their precise mode 
of action and the details of their complex 
regulation.
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