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Which pathways trigger the role of complement in
ischemia/reperfusion injury?

Conrad A. Farrar', Elham Asgari’, Wilhelm J. Schwaeble? and Steven H. Sacks' *

" MRC Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, King’s College London School of Medicine at Guy's, King’s
College and St Thomas’ Hospitals, London, UK
2 Department of Infection, Immunity, and Inflammation, Leicester University, Leicester, UK

Edited by: Investigations into the role of complement in ischemia/reperfusion (I/R) injury have identi-
Claudia Kemper, King's College fied common effector mechanisms that depend on the production of C5a and C5b-9 through
London, UK . . . .

the cleavage of C3. These studies have also defined an important role for C3 synthesized
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within ischemic kidney. Less clear however is the mechanism of complement activation
that leads to the cleavage of C3 in ischemic tissues and to what extent the potential trigger
mechanisms are organ dependent —an important question which informs the development
of therapies that are more selective in their ability to limit the injury, yet preserve the other
functions of complement where possible. Here we consider recent evidence for each of
the three major pathways of complement activation (classical, lectin, and alternative) as
mediators of I/R injury, and in particular highlight the role of lectin molecules that increas-
ingly seem to underpin the injury in different organ models and in addition reveal unusual
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INTRODUCTION

Complement is a member of the innate immune system and is
comprised of both soluble proteins and membrane-bound recep-
tors that are activated following invasion of foreign pathogens.
The effector molecules that are generated have diverse biologi-
cal activities, namely, defense against bacterial infection through
opsonization; activation of leukocytes; removal of immune com-
plexes and apoptotic cells (Janeway and Medzhitov, 2002); and the
augmentation of B cell and T cell-mediated immunity (Pratt et al.,
2002; Lee etal., 2005). However, it has clearly been demonstrated
over a number of years that complement activation has a delete-
rious effect in a number of inflammatory conditions, including
the rejection of solid organ transplants — effects that have been
described in a number of organs, such as the lung, liver, heart, and
kidney (Weisman etal., 1990; Eppinger etal., 1997; Zhou etal,,
2000; Lehmann etal., 2001).

There are three different pathways that initiate the comple-
ment cascade, namely the classical, alternative, and the lectin
pathways. The classical pathway is initiated once antibody-antigen
complexes bind the classical pathway recognition subcomponent
C1q, which forms the multimolecular C1 complex with the classi-
cal pathway-specific serine proteases Clr and Cls. The alternative
pathway is activated by distinct carbohydrate or lipid motifs on
pathogens or altered self molecules, leading to recruitment of C3
and factor B. Mannan-binding lectin (MBL) is one of five differ-
ent lectin pathway-specific carbohydrate recognition molecules in
man that associate with lectin pathway-specific serine proteases
to drive complement activation. MBL shares a high degree of
structural homology with C1, the multimolecular complex that
initiates the classical activation pathway of complement. MBL

routes of complement activation that contribute to organ damage.
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binds to carbohydrate residues on microorganisms, or altered-self
endogenous ligands that arise in pathological conditions such as
ischemia/reperfusion (I/R) injury. MBL forms complexes with
MBL-associated serine proteases (MASPs), which share a high
degree of structural homology with the classical pathway serine
proteases Clr and Cls. Three different forms of MASPs (MASP-
1, MASP-2, and MASP-3) have been described, and of those,
MASP-1 and MASP-3 are encoded by a single structural gene
(Thiel, 2007). When lectin pathway activation complexes bind
to microbial carbohydrates or acetylated ligands, MASP-1 and
MASP-2 are converted into their enzymatic active form. Of those,
only MASP-2 can translate binding into complement activation,
by subsequent cleavage of the complement components C4 and
C4b-bound C2, to form the lectin pathway C3 and C5 conver-
tase complexes C4b2a and C4b2a(C3b),, respectively. MASP-1 can
cleave C4b-bound C2, but not C4, therefore the lectin pathway
activation route is deficient in the absence of MASP-2 (Schwae-
ble etal.,2011). MASP-1 can augment MASP-2 functional activity
by cleaving C2 and possibly enhancing complement activation
by conversion of MASP-2 into the enzymatic active form, but it
cannot compensate for the loss of MASP-2 functional activity. A
recent study using MASP-1-specific inhibitory peptides implies
an essential role of MASP-1 in aiding the activation of MASP-2
(Heja etal., 2012), a hypothesis that is not supported by the phe-
notype of serum of MASP-1 and MASP-3-deficient mice, as this
serum clearly shows reduced but marked lectin pathway func-
tional activity mediated by residual MASP-2 (Schwaeble etal.,
2011). The convergence point of all three pathways is the acti-
vation of C3, an abundant plasma component that is converted
into C3a and C3b via a C3 convertase, a process that leads to the
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subsequent formation of membrane attack complexes. Though
the liver is the main site of complement C3 synthesis (Alper etal,,
1969), a wide range of soluble complement proteins, including
C3, are also produced by extra-hepatic synthesis. The synthesis
of many soluble complement proteins in a variety of cells and
tissues is comprehensively outlined in a recent review (Li etal,
2007). The purpose of this article is to focus on the role of
complement in inflamed whole organs, particularly transplanted
ischemic kidney, with emphasis on emerging knowledge of the
relative contribution of the complement activation pathways to
tissue injury.

RENAL I/R INJURY

Ischemia/reperfusion injury manifests rapidly and is the prod-
uct of tissue hypoxia and production of free radicals following
the introduction of oxygenated blood to an oxygen-deprived kid-
ney (Grace, 1994). The tissue architecture of an ischemic organ
has significant bearing on the nature of the inflammatory reac-
tion that mediates damage. In ischemic kidney the primary
area of complement-mediated attack appears to be the tubulo-
interstitium within the corticomedullary junction (Bonventre,
1993). Here, significant tubulo-interstitial damage via the alter-
native pathway of complement activation has been demonstrated
in both native kidney (Zhou et al., 2000) and human transplanted
kidney (Thurman et al., 2005). In both rodent renal allografts and
syngeneic grafts, reperfusion injury affects the proximal tubules in
the corticomedullary region (Pratt et al., 2000; Farrar etal., 2006).

LOCAL RENAL COMPLEMENT PROTEIN EXPRESSION

RENAL SYNTHESIS OF COMPLEMENT PATHWAY COMPONENTS
Following ischemic insult and subsequent reperfusion, renal cells
targeted by complement activation are also capable of significant
complement protein biosynthesis themselves. Complement C3
and/or C4 can be expressed by proximal tubular epithelial cells
(Brooimans etal., 1991), glomerular epithelial cells (Sacks etal.,
1993; Zhou et al., 1993), endothelial cells (Sheerin et al., 1997), and
glomerular mesangial cells (Sacks etal., 1993). Complement pro-
teins can be produced by the liver in large amounts, which raises a
question as to the significance of local renal complement produc-
tion during renal transplantation. It can be speculated that local
production by both resident cells (Sacks etal., 1993) and infiltrat-
ing leukocytes (Botto etal., 1992) enhances the speed of reaction
leading to an inflammatory response and tissue damage follow-
ing reperfusion insult. Additionally, tissue-specific regulation of
complement proteins at sites of inflammation may confer advan-
tages over peripheral gene expression. This idea is given credence
by the observation that interleukin-1 (IL-1) can potently stimu-
late renal complement production in the absence of any effect on
hepatic synthesis (Falus etal., 1987). In fact, most of the com-
plement proteins of both the classical and alternative activation
pathways can be produced within the kidney (Passwell et al., 1988;
Song etal.,, 1998). To date, only hepatocytes have been shown
to synthesize MBL, except for the rat, in which extra-hepatic
expression of MBL protein has been reported within the renal
corpuscle and distal tubules of the kidney (Morio etal., 1997).
It has also been detected in the small intestine of mice (Wagner
etal., 2003), whereas the biosynthesis of MASP-2 strictly occurs

in hepatocytes and is undetectable in any extra-hepatic tissue
(Stover etal., 2004).

COMPLEMENT REGULATORY PROTEINS EXPRESSED

WITHIN THE KIDNEY

Regulators of complement activation are expressed on most cells
and tissues, providing crucial protection from autologous com-
plement activation and deposition. These complement control
proteins are expressed in a variety of renal cells (Nangaku, 1998)
and include proteins such as CD46 (membrane cofactor protein;
MCP) and CD55 (decay accelerating factor; DAF). DAF functions
by enhancing the dissociation of Bb/C2a from C3 convertases
and MCP acts as a cofactor for factor I-mediated cleavage of
C3b and C4b. Both regulatory components target the activity
of every C3 and C5 convertase complex containing either C3b
or C4b. Under physiological circumstances MCP and DAF pre-
vent excessive activation of complement, and it is of interest to
note that the hypoxia-sensitive renal corticomedullary junction
displays low expression of DAF (Cosio etal., 1989). This may go
some way to explaining why this region of the kidney is particularly
susceptible to complement-mediated attack. Rodent complement
regulator Crry, a homologue of human CR1 (Quigg etal., 1998)
is expressed within the corticomedullary junction. Under inflam-
matory conditions associated with ischemia and reperfusion in
native kidney, Crry expression re-polarizes from the basolateral
surface of the renal tubules to within the tubule lumen (Thurman
etal., 2006), exposing tubules to complement-mediated attack.
An increase in C3 mRNA expression was also observed, suggest-
ing that loss of complement regulation and/or increased local
complement production contributes to the pathogenesis of reper-
fusion injury (Thurman etal.,, 2006). A more closely defined
role for locally-expressed Crry using Crry-deficient kidneys has
been identified. When transplanted into Crry-sufficient recipi-
ents, deficient kidneys are subject to more severe renal damage,
exemplified by unrestricted C3 activation, increased tubular dam-
age and fibrosis, with a significant influx of polymorphonuclear
cells (Bao etal., 2007). More recently it has been demonstrated
that interaction of complement regulator factor H with the
surface of tubular epithelial cells is required to curb comple-
ment deposition following renal I/R injury, as mice treated with
an inhibitor of factor H displayed severe tubular injury (Renner
etal., 2011).

EFFECTORS OF COMPLEMENT-MEDIATED DAMAGE
FOLLOWING RENAL ISCHEMIA/REPERFUSION INSULT

In renal transplantation, organ reperfusion and cell-mediated
immune mechanisms directed at the kidney, as well as invasion
by bacteria, are associated with worse transplant outcome. These
pathological conditions predominantly affect the renal tubules,
where there is significant complement deposition. In native kidney,
animals with individual deficiency of C3, C5, or C6, demonstrated
significant reduction in reperfusion damage, with corresponding
reduction in renal failure (Zhou etal., 2000). The most striking
protective effect was seen in the absence of C3, and further studies
in the absence of C5 or C6 suggested that reperfusion injury is
dependent on the formation of the lytic effector molecule MAC
(Zhou etal., 2000). Indeed, further evidence supports a role for
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both effectors C5a and MAC formation in mouse renal reperfusion
injury (Arumugam et al., 2003; de Vries et al., 2003).

LOCALLY PRODUCED C3 IN I/R INJURY

Regarding the contribution of locally produced C3 within the kid-
ney, C3 mRNA is up-regulated within 2 h of reperfusing ischemic
ratkidney (Takada etal., 1997). Kidney swap experiments between
complement C3-sufficient and C3-deficient mice have been infor-
mative. It was demonstrated that locally synthesized C3, produced
by and deposited on the basolateral surface of proximal tubule
cells, was essential for complement-mediated reperfusion injury
in transplanted kidney (Farrar etal., 2006). Significant involve-
ment of circulating C3 was not observed, a phenomenon that
could indicate poor penetration of hepatic C3 (C3 is a 180-kD
protein), and/or an excessive production of complement within
the inflamed kidney. Indeed, the period of cold ischemia is closely
associated with an increase in renal C3 mRNA (Pratt etal., 2000;
Farrar etal., 2006). It is worth noting that the effect of local renal
C3 production is still observed in allograft models, but it is dif-
ficult to disentangle the effects of C3 on allograft rejection from
those associated with I/R injury alone (Pratt etal., 2002).

WHICH ARE THE MAIN COMPLEMENT ACTIVATION TRIGGER
PATHWAYS IN WHOLE ORGAN I/R INJURY?

Since C3 has been shown to be essential for the formation of
C5a and C5b-9 in animal models of reperfusion injury, a key
question concerns the trigger pathways that lead to the cleavage
of C3 at the affected tissue site. Studies in several organ models
(of I/R damage) have yielded potentially conflicting results about
the contribution of different pathways to the cleavage of C3. Here
we review the evidence for involvement of classical, lectin and
alternative pathway activity, which highlights an emerging role for
lectin pathway activation.

SKELETAL AND INTESTINAL I/R INJURY

In skeletal muscle and the intestine, I/R injury is associated
with marked complement activation and endothelial cell dam-
age within the vasculature and subsequent tissue necrosis (Weiser
etal,, 1996; Zhao etal., 2002). Limited injury was observed in
an intestinal reperfusion injury model suggesting a dependency
on C2, MBL and activation of the lectin pathway for injury,
with no significant contribution from Clq and classical path-
way activation or alternative pathway involvement (Hart etal.,
2005). However, findings in a similar animal model of intesti-
nal reperfusion injury suggested that the observed damage was
dependent upon IgM-mediated activation of the classical path-
way (Williams etal., 1999; Zhang etal., 2004). Recently, a more
detailed understanding of the mechanism of lectin pathway acti-
vation in intestinal I/R injury has been described (Zhang etal.,
2006), in which MBL was shown to bind naturally occurring IgM
at the site of injury, leading to lectin pathway activation with no
involvement of the classical pathway. Furthermore, in a study of
skeletal reperfusion injury, it was initially suggested that inflam-
mation was mediated exclusively through an effect of classical
pathway activation (Weiser etal., 1996). However, with the avail-
ability of both C1q-deficient mice and MBL-deficient mice, it now
seems clear that activation of both lectin and classical pathways

is responsible for the range of inflammatory responses observed.
Muscle injury is dependent on lectin pathway activation, with
remote pulmonary injury and vascular permeability (manifest by
edema), being dependent on classical pathway activation (Chan
etal., 2006). It has been conclusively demonstrated by surface
plasmon resonance that human MBL binds IgM and subsequent
treatment of human endothelial cells in vitro with IgM, MBL
and MASP-2 directly activated and deposited C4 (McMullen et al.,
2006). More recently, using the same model of intestinal I/R injury
as described earlier (Zhang etal., 2006), in which the mesenteric
artery is clamped, tissue injury was more firmly attributed to acti-
vation of the lectin pathway, as MBL was present in association
with naturally occurring IgM. The injury was not mediated by
alternative pathway activation when the same injury protocol was
applied to factor B knockout mice (Lee et al., 2010). This naturally-
occurring antibody was earlier found to be a self-reactive IgM
capable of mediating intestinal reperfusion injury (Zhang etal,,
2004). Presence of this IgM has led to the discovery of two distinct
self-antigens (ischemia-specific antigens), namely type A and C
non-muscle myosin heavy chain (NMHC-II; Zhang etal., 2006)
and more recently, actin cytoskeleton has been shown to bind IgM
during ischemia, leading to reperfusion injury (Shi etal., 2009).
These recent observations are very exciting as they have uncov-
ered a previously unresolved role for IgM in intestinal reperfusion
injury, the hallmark of which is characterized by binding of IgM to
endogenous ligands exposed upon injury, with direct activation of
the lectin pathway without involvement of the classical pathway.

MYOCARDIAL I/R INJURY

An association of both C3 and MBL deposition in ischemic rodent
heart was observed over a decade ago (Collard et al., 2000). Subse-
quently, it was shown that blockade of rat MBL with a therapeutic
antibody reduced the extent of myocardial reperfusion injury (Jor-
dan etal.,, 2001). Moreover, MBL deficiency conferred protection
from injury, whereas classical pathway activation appeared not
to be involved in mediating injury, as Clq-deficient mice were
not protected (Walsh etal., 2005). This finding echoed observa-
tions in the intestine, where presence of Clq-mediated classical
pathway activation was not a requirement for injury (Hart etal.,
2005). Further insight into the mechanisms causing myocardial
reperfusion injury was provided through reconstitution experi-
ments in triple knockout mice, in which injury was dependent
upon both naturally occurring IgM and MBL-mediated com-
plement activation (Busche etal., 2009). Of particular interest
is the observation that diabetic patients, who are at risk of
cardiomyopathy, may benefit from transient blockade of MBL,
as MBL-knockout mice are protected from diabetes-induced
myocardial reperfusion injury (Busche etal., 2008). Interestingly,
as in I/R injury of the intestine, it is emerging that there is sig-
nificant contribution to pathophysiology through an interaction
between naturally-occurring IgM and lectin pathway activation
(Busche etal., 2009).

KIDNEY I/R INJURY

That C3 is a crucial mediator of renal reperfusion injury is not
in dispute. This seems unsurprising, given that C3 is the central
protein of the complement cascade, the point of convergence for all
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three recognized activation pathways. Classical pathway activation
is currently not regarded as a requirement for renal reperfusion
injury, as it has been demonstrated that injury is independent of
both IgG and IgM (Park etal., 2002) and deficiency of C4 was
non-protective both in native kidney (Zhou et al., 2000) and renal
transplant models (Lin etal., 2006) in the mouse. An absence of
classical pathway activation in the kidney is perhaps not surprising
as it seems unlikely that there would be adequate transfer of IgM
from the renal capillaries to the interstitium, the principle target of
reperfusion injury. Damage within the kidney is manifest by sig-
nificant MAC deposition that was curtailed in the absence of C3
(Zhou etal., 2000). This MAC deposition hinted at the involve-
ment of alternative pathway activation as a mediator of renal
reperfusion injury. In addition, no protective effect was found in
the complete absence of C4, suggesting that the phenotypic injury
did not result from classical or lectin pathway activation, since C4
is common to both (Zhou etal., 2000). However, the recent dis-
covery that the lectin pathway shows residual functional activity
in C4-deficient mouse and human sera may explain the persis-
tence of complement-mediated I/R injury in C4-deficient subjects
(Schwaeble etal., 2011). A role for contribution of the alternative
activation pathway was demonstrated in factor B knockout mice,
which were afforded significant protection from reperfusion injury
when compared to mice replete with factor B (Thurman etal.,
2003). Lectin pathway involvement in renal reperfusion injury was
suggested following a study in which both mouse kidney (dam-
aged by I/R injury) and human renal transplant biopsies displayed
significant deposition of MBL-A and MBL-C, components that
were found to co-localize with complement C3 (de Vries etal.,
2004). Using transgenic mice deficient in both MBL-A and MBL-
C, contribution of lectin pathway activation to renal I/R injury was
demonstrated (Moller-Kristensen etal., 2005). The observed pro-
tective phenotype was readily reversed following reconstitution of
the mutant mice with recombinant MBL (Moller-Kristensen et al.,
2005). In a pig model, inhibition of classical and lectin activation
pathways following the administration of recombinant human C1-
inhibitor (rC1INH), conferred protection from renal reperfusion
injury (Castellano etal., 2010). Components of the lectin pathway
(MBL and MASP-2) were abundantly deposited in the damaged
kidney, with sparse Clq deposition, suggesting a predominance
of lectin pathway activity (Castellano etal., 2010). More recently,
an entirely new concept of lectin pathway participation in renal
reperfusion injury suggested that MBL is internalized by damaged
tubules which are then subject to apoptosis through an MBL-
mediated mechanism. This injury was found to be independent of
an effect of complement (van der Pol etal., 2012).

UNORTHODOX ROUTES OF COMPLEMENT ACTIVATION VIA
LECTIN PATHWAY IN I/R INJURY

As most recently described (Turner, 2003), there has been sig-
nificant interest in the contribution of the lectin pathway to I/R
injury. In models of intestinal, skeletal and renal I/R injury, signifi-
cant contribution of the lectin activation pathway was observed. It
is of particular interest that the lectin pathway may trigger inflam-
matory responses within the pathophysiology of I/R injury by
unconventional and as yet undefined bypass activation events.
This may have an impact on our current understanding of the

mechanism of lectin pathway activation in reperfusion injury.
Although C4 is traditionally considered a requirement for lectin
pathway-mediated cleavage of C3 (Thiel etal., 1997; Vorup-Jensen
etal., 2000), there is clear evidence for the existence of so called
“bypass” pathway activation events, leading to residual activation
in the absence of certain cascade components caused by inherited
or gene-targeted deficiencies (Degn etal., 2007). The existence of
a C4-bypass pathway was first reported in C4-deficient guinea pig
serum (May and Frank, 1973). Recent work has provided remark-
able insight into the role of lectin pathway components in models
of both cardiac and intestinal I/R injury in mice (Schwaeble etal.,
2011). In both pathological states, injury was induced via MASP-2-
mediated lectin pathway activation. The report also demonstrated
that C4 was not required, suggesting the presence of a previously
unrecognized C4-independent MASP-2-dependent bypass route
of lectin pathway cleavage of C3. These findings may explain the
lack of protection of C4 deficiency in both native renal ischemia
and the model of renal allograft rejection discussed earlier (Zhou
etal., 2000; Lin etal., 2006). This C4-independent MASP-2-
dependent bypass mechanism has recently has been confirmed in
a renal transplant model (Farrar etal., 2009). Importantly, these
recent findings in different organ models of I/R injury highlight
MASP-2 as an early trigger point in a specific complement acti-
vation pathway, which may prove to be an attractive therapeutic
target in ischemic inflammatory settings. As to the role of MASP-
1 or MASP-3 in complement-mediated I/R injury, gene-targeted
mice deficient of both MASP-1 and MASP-3 are not protected
from injury, indicating that neither MASP-1, nor MASP-3 con-
tribute to MASP-2-dependent reperfusion injury (W. Schwaeble,
unpublished data).

MBL AND LECTIN PATHWAY OF COMPLEMENT

ACTIVATION IN HUMANS

A link between deficiency of MBL and susceptibility to infection
in both man and rodents has been established (Eisen and Minch-
inton, 2003; Shi etal., 2004). In experimental models of renal
reperfusion injury, MBL deficiency in rodents (Moller-Kristensen
etal,, 2005) and lectin pathway inhibition in pigs (Castellano
etal., 2010) led to improved renal function. In human transplant
recipients suffering from delayed graft function (DGF) after trans-
plantation, there was a positive association with MBL pathway
products (de Vries et al., 2004). Moreover, in human kidney trans-
plantation, genetically-determined low levels of pre-transplant
serum MBL correlated with significantly improved transplant out-
come (Berger etal., 2005). A similar study looking at simultaneous
pancreas and renal transplantation again found that low levels
of circulating MBL correlated with improved long-term kidney
survival (Berger etal., 2007). However, a recent study of a large
cohort of donor and recipient MBL and MASP-2 genotypes failed
to confirm a link between genotype and allograft function fol-
lowing kidney transplantation (Damman etal., 2012). Hence to
date, from a limited number of studies in humans, there is no
conclusive agreement upon the importance of genetic variation of
lectin pathway components in ischemic renal allografts, although
this remains a subject of much interest as a possible means to
stratify patient groups according to expected outcome of the
transplant.
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CONCLUDING REMARKS

This brief overview of the role of complement activation in the
pathogenesis of whole organ ischemia highlights a previously
unrecognized predominant role of lectin molecules in several
organ models of I/R injury. One possible trigger mechanism lead-
ing to activation of the lectin pathway is the binding of natural
IgM to epitopes exposed on ischemic tissue, with no involve-
ment of previously implicated classical pathway activation. The
alternative pathway is implicated in some instances, for example
following renal ischemia, and may serve to amplify the cleavage
of C3 and subsequent evolution of injury, following initiation
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