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Neutrophils are the most abundant leukocytes in circulation and represent one of the
first lines of defense against invading pathogens. Neutrophils possess a vast arsenal
of antimicrobial proteins, which can be released from the cell by a death program
termed NETosis. Neutrophil extracellular traps (NETs) are web-like structures consisting of
decondensed chromatin decorated with granular and cytosolic proteins. Both exuberant
NETosis and impaired clearance of NETs have been implicated in the organ damage
of autoimmune diseases, such as systemic lupus erythematosus (SLE), small vessel
vasculitis (SVV), and psoriasis. NETs may also represent an important source of modified
autoantigens in SLE and SVV. Here, we review the autoimmune diseases linked to
NETosis, with a focus on how modified proteins externalized on NETs may trigger loss
of immune tolerance and promote organ damage.
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INTRODUCTION
Neutrophils are the most abundant leukocyte population in
peripheral blood and have a lifespan of as little as 4 h in the cir-
culation; this short half-life is balanced by continuous and tightly
regulated release from the bone marrow. Neutrophils are among
the first line of defense against invading microbes (Kobayashi and
Deleo, 2009), targeting pathogens through diverse mechanisms
including phagocytosis, reactive oxygen species (ROS) genera-
tion, the release of microbicidal molecules from cytoplasmic
granules, and the recently described extrusion of an extracellu-
lar chromatin meshwork—so-called NETosis (Brinkmann et al.,
2004).

In 2004, Brinkmann et al. described a distinct mechanism of
neutrophil cell death, resulting in the programmed externaliza-
tion of a meshwork of chromatin fibers decorated with granule-
derived antimicrobial proteins (neutrophil extracellular traps or
NETs) (Brinkmann et al., 2004). NETosis has subsequently been
shown to be an important strategy by which neutrophils trap and
kill invading microorganisms (Brinkmann and Zychlinsky, 2012;
Kaplan and Radic, 2012). NETs can also damage the vasculature
and have the potential to trigger thrombosis (Fuchs et al., 2010;
Gupta et al., 2010; Brill et al., 2012; Saffarzadeh et al., 2012).

Although there is still much to learn regarding the trig-
gers and signaling pathways that facilitate NETosis, important
roles have been suggested for the NADPH oxidase machinery
(Fuchs et al., 2007; Ermert et al., 2009; Bianchi et al., 2011;
Remijsen et al., 2011), ROS (Nishinaka et al., 2011; Palmer et al.,
2012), the Raf/mitogen-activated protein kinase/extracellular
signal-regulated kinase pathway (Hakkim et al., 2011), histone

citrullination (Neeli et al., 2008; Wang et al., 2009; Li et al.,
2010; Hemmers et al., 2011), MPO/neutrophil elastase (NE)
(Papayannopoulos et al., 2010; Metzler et al., 2011), autophagy
(Mitroulis et al., 2011; Remijsen et al., 2011), and microtubule
polymerization (Neeli et al., 2009). The characterization of path-
ways implicated in the development of NETs has potential impli-
cations for pharmacologic strategies to block NETosis, which is
particularly appealing in the context of the “sterile” NETosis that
will be described below. The protein fraction of NETs classically
contains histones, MPO, and various serine proteases, although
the specific composition continues to be defined (Urban et al.,
2009; Liu et al., 2012). Here, we will first review recent discover-
ies pertaining to how NETs may play a role in the pathogenesis of
systemic autoimmune diseases, and will then consider the protein
composition of NETs in more detail.

SMALL VESSEL VACULITIS
The first compelling link between NETs and autoimmunity was in
2009 with the characterization of NETosis in small vessel vasculitis
(SVV) (Kessenbrock et al., 2009). SVV is a systemic autoim-
mune disease of unknown etiology, with disease flares that result
in necrotizing inflammation of small blood vessels—especially
targeting the kidneys, lungs, skin, and peripheral nerves. The
majority of SVV patients have detectable anti-neutrophil cyto-
plasmic antibodies (ANCA) with specific reactivity against either
proteinase 3 (PR3) or MPO. In addition to their important
role in diagnosis, ANCA activate neutrophils in vitro (Chen and
Kallenberg, 2009), and are sufficient to induce vasculitic disease in
animal models (Xiao et al., 2002; Pfister et al., 2004). Kessenbrock
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and colleagues showed that NETs externalize PR3 and MPO, and,
reciprocally, that ANCA (and specifically anti-PR3 antibodies)
induce NETosis (Kessenbrock et al., 2009). Furthermore, MPO-
DNA complexes, presumably derived from NETs, can be detected
in the circulation, the levels of which track with SVV disease activ-
ity. In addition, extracellular DNA (co-localizing with histones,
MPO, and PR3) was detected in kidney biopsies from the majority
of SVV patients (Kessenbrock et al., 2009).

While the Kessenbock study, as well as one additional case
report (Abreu-Velez et al., 2009), have hinted at an important
role for NETs in the organ damage of SVV, more recent stud-
ies have begun to mechanistically explore the specialized role of
NET proteins as autoantigens in SVV. To this end, Nakazawa
and colleagues studied the drug propylthiouracil (PTU) which
is a known inducer of anti-MPO autoantibodies and SVV in
humans (Wada et al., 2002; Nakazawa et al., 2012). In the pres-
ence of PTU, phorbol 12-myristate 13-acetate (PMA)-induced
NETs had an abnormal, globular conformation, which was rela-
tively resistant to DNase I digestion (Nakazawa et al., 2012). When
these PMA/PTU NETs were injected into rats, the animals not
only developed anti-MPO autoantibodies, but also pulmonary
capillaritis reminiscent of human vasculitic disease (Nakazawa
et al., 2012). Whether the driving feature of autoimmunity was
enhanced NET stability, differences in the tertiary structure of
PTU NETs or modification of NET proteins such as MPO remains
to be determined.

Another recent study provided a tantalizing link between
NETs and adaptive immunity, demonstrating that NET proteins
were preferentially uploaded into myeloid dendritic cells (mDCs)
in vitro, an affect that was lost when the NET structure was dis-
mantled with DNase (Sangaletti et al., 2012). Injection of the
NET-loaded mDCs into mice resulted in anti-MPO autoanti-
bodies and an autoimmune phenotype including glomerulitis,
although the kidney histopathology was in some ways more rem-
iniscent of lupus lesions than the typical pauci-immune disease
of SVV. This study hints that NETs provide a unique, stimulatory
microenvironment that can break normal immune tolerance, and
thereby predispose to autoimmunity.

PSORIASIS
Psoriasis is a common inflammatory disease of the skin and is typ-
ically thought of as an autoimmune disease given the recognized
importance of autoreactive T-cells. In psoriasis, local produc-
tion of type I IFNs, such as IFNα, by plasmacytoid dendritic
cells (pDCs) is an important upstream event in the activation
of autoimmune T-cells (Nestle et al., 2005). pDCs are a special-
ized type of dendritic cell with unique, high-level expression of
toll-like receptors (TLRs) 7 and 9, which recognize nucleic acids
from viruses and other microbes—the result being robust expres-
sion of type I IFNs (Kadowaki et al., 2001). In 2007, Lande et al.
identified the cationic NET protein cathelicidin/LL37 as a factor
that binds and converts inert self DNA into a complex capable
of activating pDCs (Lande et al., 2007); this leads to robust pro-
duction of IFNα in psoriasis skin, with implications for driving
autoimmunity. More recently, it has also been suggested that the
combination of secretory leukocyte proteinase inhibitor (SLPI)
and NE, both derived from NETs, can bind DNA and serve a

similar role in converting self DNA into an activator of pDCs in
psoriasis lesions (Skrzeczynska-Moncznik et al., 2012).

Interleukin-17 (IL-17) is a proinflammatory cytokine, linked
to autoimmune diseases such as rheumatoid arthritis (RA),
inflammatory bowel disease, and psoriasis (Wilson et al., 2007).
Historically, production of IL-17 has been attributed to Th17-
cells, and, indeed, both IL-17 mRNA and increased numbers of
Th17-cells have been identified in psoriasis lesions (Kryczek et al.,
2008; Lowes et al., 2008). A novel take on this story was the recent
identification of extracellular traps from both mast cells and neu-
trophils as an important, and perhaps predominant, source of
IL-17 in psoriasis lesions (Lin et al., 2011). Further, IL-23, a
known activator of Th17 differentiation, can also stimulate mast
cells to release extracellular traps decorated with IL-17 (Lin et al.,
2011).

GOUT
Acute gout is a common, inflammatory arthritis driven by the
deposition of monosodium urate (MSU) crystals in appendicu-
lar joints; a critical impetus for MSU deposition is elevated serum
uric acid, which correlates with obesity, hypertension, diabetes,
and other metabolic risk factors. Although gout is not a typical
autoimmune disease, it shares the characteristic of acute, sterile
inflammation; and, in recent years, the recognition of the potency
by which anti-IL-1 agents can ameliorate gout flares has opened
the door to what will surely be additional cytokine manipulation
in the future.

Given the now well-recognized role of MSU crystals as acti-
vators of the NLRP3 inflammasome with resultant production of
the pro-inflammatory cytokine IL-1β (Martinon et al., 2006), as
well as the consistent documentation of neutrophilia in acute gout
synovial fluid (Popa-Nita and Naccache, 2010), investigators have
begun to address the extent to which NETs factor into gout patho-
genesis. Indeed, MSU crystals, IL-1β, and both synovial fluid and
serum from patients with acute gout, all stimulate neutrophils to
release NETs (Mitroulis et al., 2011). These “gout NETs” contain
DNA, MPO, and the alarmin, high mobility group box chromo-
somal protein 1 (HMGB1), and may propagate the inflammatory
response. Furthermore, the IL-1 inhibitor anakinra blocks NET
release when control neutrophils are exposed to gout serum or
synovial fluid (Mitroulis et al., 2011).

More recently, basophils and eosinophils (along with neu-
trophils) were been shown to release extracellular traps in
response to MSU crystals. In contrast, monocyte-lineage cells,
despite phagocytizing the crystals, did not release extracellular
DNA (Schorn et al., 2012). The authors argued that MSU-induced
NETs were qualitatively different from those induced by bac-
teria or PMA in that MSU NETs extended more “widely” in
the culture plate, and were relatively resistant to inhibition (and
perhaps degradation) by high concentrations of plasma in the
culture medium (Schorn et al., 2012). The protein content of
MSU-induced NETs was not, however, further explored.

FELTY’S SYNDROME
Patients with RA—the prototypical chronic, inflammatory
polyarthritis—form autoantibodies to citrullinated (deiminated)
proteins, the detection of which has emerged as the most
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compelling serologic test for RA (Wegner et al., 2010). A
small subset of patients with RA develop so-called Felty’s syn-
drome, which manifests clinically as marked neutropenia and
splenomegaly; and, which appears to be closely related to a
syndrome of oligoclonal T-cell expansion, large granular lym-
phocyte leukemia (Balint and Balint, 2004; Liu and Loughran,
2011). Given the classical recognition of anti-histone antibod-
ies in patients with systemic lupus erythematosus (SLE) (Suzuki
et al., 1994), and to a lesser extent in RA and Felty’s syndrome
(Cohen and Webb, 1989; Tuaillon et al., 1990)—as well as the
well-recognized deimination of histones in NETs (Neeli et al.,
2008; Wang et al., 2009; Li et al., 2010; Hemmers et al., 2011)—
a logical question is whether autoantibodies from SLE, RA, and
Felty’s syndrome patients specifically target deiminated histones.

In a 2012 study, autoantibodies from all three diseases showed
reactivity with NETs, with a preference for deiminated histones in
Felty’s syndrome that was not readily apparent in either SLE or
RA serum (Dwivedi et al., 2012). Further linking deimination to
autoimmunity, deiminated histones were detected in circulating
neutrophils of patients with RA, while serum from patients with
SLE and Felty’s syndrome stimulated the ex vivo deimination of
neutrophil histones (Dwivedi et al., 2012).

SYSTEMIC LUPUS ERYTHEMATOSUS
SLE is an autoimmune syndrome characterized by autoantibody
formation against nuclear antigens, with resultant immune com-
plex deposition, inflammation, and organ damage (Tsokos, 2011).
While intensive study has shown that both T- and B-cells are
required for the lupus phenotype (Crispin et al., 2010; Dorner
et al., 2011), neutrophils and other mediators of the innate
immune response have, by comparison, received considerably less
attention (Knight and Kaplan, 2012).

Various abnormalities in neutrophil phenotype and func-
tion have been described over the years, including abnormalities
in phagocytic activity, aggregation, and intravascular activation
(Brandt and Hedberg, 1969; Hashimoto et al., 1982; Abramson
et al., 1983; Jonsson and Sturfelt, 1990; Molad et al., 1994;
Courtney et al., 1999). Further, a subset of neutrophils in the
peripheral blood of lupus patients have lower density and con-
sequently co-purify with peripheral blood mononuclear cells
(PBMCs) during sedimentation of whole blood (Hacbarth and
Kajdacsy-Balla, 1986; Bennett et al., 2003; Denny et al., 2010).
This population may represent the accelerated release of imma-
ture granulocytes from the bone marrow, although the origin,
function, and pathogenic significance of these cells remain to be
fully determined (Denny et al., 2010; Villanueva et al., 2011).

Evidence of a role for neutrophils in SLE pathogenesis is
emphasized by the observation that various bactericidal pro-
teins released by activated neutrophils are present at higher-
than-expected levels in lupus blood (Sthoeger et al., 2009;
Vordenbaumen et al., 2010; Ma et al., 2012). Neutrophils, and
in particular low-density granulocytes (LDGs), have been asso-
ciated with endothelial damage as well as promotion of abnormal
endothelial differentiation, and have been posited to play a criti-
cal role in the well-recognized accelerated atherosclerosis of SLE
(Denny et al., 2010; Kaplan, 2011). Neutrophilic infiltrates are a
recognized feature of diffuse proliferative lupus nephritis (Austin

et al., 1984), while proteins released from neutrophilic granules
are toxic to glomerular structures (Henson, 1972; Johnson et al.,
1988; Hotta et al., 1996).

A particularly exciting development of the past 2–3 years has
been the description of aberrant NETosis in SLE, which might
explain, at least in part, the longstanding recognition of increased
circulating DNA in lupus patients (Tan et al., 1966). Indeed,
mutations in DNase I have been reported among SLE patients,
and seem to promote autoantibody formation (Yasutomo et al.,
2001; Shin et al., 2004). In addition, two groups have recently
described a DNase I-inhibititory activity in SLE serum that pre-
vents degradation of NETs, and is associated with more active dis-
ease (Hakkim et al., 2010; Leffler et al., 2012). Specifically, exper-
iments by Hakkim and colleagues demonstrate that 36.1% of SLE
sera degrade NETs poorly, with inhibitors of DNase I detectable
in some patients, while others coat the NETs with autoantibod-
ies to mechanically protect against degradation (Hakkim et al.,
2010). SLE patients with poor NET degradation have higher anti-
double-stranded DNA antibody titers, display more complement
activation, and are more likely to carry a diagnosis of lupus
nephritis (Hakkim et al., 2010; Leffler et al., 2012).

Further, in 2011, three papers described ex vivo models of
enhanced NETosis in SLE patients (Garcia-Romo et al., 2011;
Lande et al., 2011; Villanueva et al., 2011), with the aforemen-
tioned lupus LDGs particularly capable of releasing spontaneous
NETs (Figure 1). All three papers also demonstrated that NETs
stimulate pDCs to release type I IFNs (Garcia-Romo et al., 2011;
Lande et al., 2011; Villanueva et al., 2011), and, indeed, most cur-
rent models of lupus pathogenesis include a role for activation of
the type I IFN pathway, which lowers the threshold for autore-
activity of both antigen-presenting and antibody-producing cells
(Banchereau and Pascual, 2006; Elkon and Stone, 2011).

Continuing the theme discussed above for SVV and Felty’s
syndrome, NETs may provide novel antigens for autoantibody
formation in SLE (Liu et al., 2012). There are also hints that NETs
may be a source of vascular and organ damage in SLE (Villanueva
et al., 2011), which would not be surprising if parallels were drawn
to other inflammatory diseases where NET toxicity has been doc-
umented such as SVV, cystic fibrosis, transfusion-related acute
lung injury (TRALI), and sepsis (Clark et al., 2007; Kessenbrock
et al., 2009; Caudrillier et al., 2012; Dubois et al., 2012; Thomas
et al., 2012).

NET PROTEINS AND SLE
There are at least two general frameworks by which NET proteins
might impact on SLE pathogenesis, both of which have already
been touched upon in this review. The first posits a role for NETs
in organ damage, which is supported by both the potential tox-
icity of NET proteins and the recognition that many of these
proteins have been detected at increased levels in SLE patients.
Proof of this principle will depend on animal models where
specific proteins can be targeted by genetic or pharmacologic
approaches.

The second concept is that NET proteins may be uniquely
modified and positioned to break tolerance and thereby trigger
or exacerbate autoimmunity. Certainly, the idea of modified pro-
teins serving as autoantigens in SLE is not new (Casciola-Rosen
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FIGURE 1 | Circulating lupus LDGs undergo increased NETosis.

(A) Representative images of control neutrophils, lupus neutrophils, and
lupus LDGs isolated from peripheral blood and analyzed at baseline
(T0) or after stimulation for 2 h with DMSO or PMA. Panels show
merged images of neutrophil extracellular traps (NETs) in which
neutrophil elastase is stained green by immunofluorescence and DNA is

stained blue by Hoechst 33342; 40× images, scale bar: 20 μm.
(B) Quantification of the percentage of NETs (elastase-labeled cells over
total number of cells) are plotted as mean ± SEM (n = 6 patients/group;
∗p = 0.05). [Obtained with permission from Villanueva et al. (2011) and
The Journal of Immunology. Copyright 2011. The American Association of
Immunologists, Inc.].

et al., 1999; Utz et al., 2000; Graham and Utz, 2005; Dieker and
Muller, 2010), and the milieu of NETs may represent a novel
environment—replete with pathogens and immunostimulatory
host molecules—where this can take place.

At this point, relatively few proteins have been definitively
detected in lupus NETs, with the definition of “lupus NETs” being
somewhat arbitrary and based on the ex vivo study of lupus neu-
trophils. Of the lupus-associated NET proteins, the most in-depth

work has involved LL37/cathelicidin, with the demonstration that
this small cationic protein circulates in complex with chromatin
fragments and anti-DNA autoantibodies in lupus serum, thereby
enhancing stimulation of pDCs and protecting against DNase-
mediated destruction (Lande et al., 2011). Although not directly
linked to SLE, LL37/cathelicidin can also complex with RNA to
activate dendritic cells through TLR7 and TLR8 (Ganguly et al.,
2009); this work is particularly interesting given the suggestion by
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Garcia-Romo and colleagues that anti-RNP antibodies and TLR7
may play a role not only in dendritic cell activation, but also in
the activation of lupus neutrophils to release NETs (Garcia-Romo
et al., 2011).

Other proteins identified by immunofluorescence (no lupus-
NET proteomics have been undertaken outside of the histone
studies described below) include C1q (Leffler et al., 2012), NE
(Garcia-Romo et al., 2011; Villanueva et al., 2011), histones
(Villanueva et al., 2011; Liu et al., 2012), HMGB1 (Garcia-Romo
et al., 2011), HNP (Lande et al., 2011), IL-17 (Villanueva et al.,
2011), LL37/cathelicidin (Lande et al., 2011; Villanueva et al.,
2011), and MPO (Garcia-Romo et al., 2011; Lande et al., 2011;
Villanueva et al., 2011). These proteins, along with those identi-
fied in the aforementioned autoimmune/inflammatory diseases,
are summarized in Table 1. In the absence of a definitive pro-
teomics approach, this list is certainly not exhaustive, and one
might therefore extrapolate from other studies (Urban et al.,
2009), with the caveat that the NETs heretofore characterized by
proteomics were isolated from neutrophils treated with PMA, and
therefore have unknown in vivo relevance from the perspective of
SLE. We will now consider some of these individual lupus-NET
proteins.

Both the peroxidase MPO and serine protease PR3 have
compelling roles as autoantigens in SVV, as discussed above
(Kessenbrock et al., 2009). And, given the common availabil-
ity of commercial assays, anti-MPO and anti-PR3 titers have
been frequently assessed in SLE patients (Nassberger et al.,
1990; Cambridge et al., 1994; Manolova et al., 2001; Pan et al.,
2008). The available data is heterogeneous and no clear trend
has emerged, although one can be relatively confident in saying
that—at least for the assays that are commercially available—
anti-MPO/PR3 autoantibodies do not specifically identify SLE
patients, nor do they track with specific disease manifestations.

In contrast to the assessment of autoantibodies, studies that
examine the role of the MPO protein in SLE are relatively lim-
ited, although at least one study has shown increased MPO
plasma levels in lupus patients as compared to healthy controls
(Telles et al., 2010), albeit without a clear correlation to dis-
ease activity. NE is also a recognized trigger of autoantibodies
in SLE (Nassberger et al., 1989, 1990), but the clinical signif-
icance remains to be determined. In terms of the NE protein,
one study has suggested higher plasma levels in SLE patients
(Zhang et al., 1989).

Both the iron-chelator lactoferrin and the serine protease
cathepsin G have been objectively identified in PMA-induced
NETs (Urban et al., 2009), and both appear to function as
autoantigens in SLE (Lee et al., 1992; Galeazzi et al., 1998; Zhao
et al., 1998; Manolova et al., 2001; Caccavo et al., 2005); although,
again, no clear clinical correlation has emerged. In terms of
circulating protein, there is no correlation between plasma lacto-
ferrin and either active or inactive SLE (Adeyemi et al., 1990;
Tsai et al., 1991), while cathepsin G protein levels have not been
considered.

Alarmins are endogenous mediators capable of enhancing
innate and adaptive immune response through recruitment and
activation of antigen-presenting cells. From the perspective of
NET proteins, both the α-defensins (sometimes called neutrophil
defensins or human neutrophil peptides/HNPs) and HMGB1
would be classified as alarmins. α-defensins 1 and 3 were iden-
tified in the proteomic analysis of PMA-induced NETs (Urban
et al., 2009), while both HMGB1 (Garcia-Romo et al., 2011) and
α-defensins/HNP (Lande et al., 2011) have been described in the
context of lupus NETs.

α-defensins activate monocyte-lineage cells to release pro-
inflammatory cytokines such as TNF-α and IL-1β; they also
serve as chemokines for recruitment of diverse cell types

Table 1 | NET proteins with potential roles in autoimmunity.

Protein Present in Present in AutoAbs Role(s) in auto-immunity

disease-specific PMA-induced

NETs (by IF) NETs (by proteomics∗ )

Histones All (by definition) Yes SLE, Felty’s AutoAg in SLE and Felty’s; pro-thrombotic

MPO SLE, psoriasis, SVV, gout Yes SVV, SLE AutoAg in SVV; oxidative stress?

Proteinase 3 SVV Yes SVV, SLE AutoAg in SVV

LL37 SLE No SLE Binds ICs to activate pDCs

HNP/α-defensins SLE Yes SLE Binds ICs; predisposes to CVD?

HMGB1 SLE, gout No Unknown Binds ICs; pro-inflammatory

IL-17 SLE, psoriasis No SLE, psoriasis Pro-inflammatory

C1q SLE No SLE Activates complement; protects from degradation?

Elastase SLE, psoriasis Yes SLE Unknown

Lactoferrin Unknown Yes SLE Unknown

Cathespin G Unknown Yes SLE Unknown

Calprotectin Unknown Yes Unknown Unknown

α-enolase Unknown Yes SLE Unknown

Catalase Unknown Yes SLE Oxidative stress?

∗ (Urban et al., 2009); autoAb, autoantibody; autoAg, autoantigen; IC, immune complex.

NET, neutrophil extracellular trap; IF, immunofluorescence; SLE, systemic lupus erythematosus; SVV, small vessel vasculitis; CVD, cardiovascular disease.
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including T-lymphocytes and dendritic cells; and can regu-
late activation of the complement cascade (Lehrer et al., 1993;
Lehrer and Ganz, 2002). α-defensins have been linked to SLE
both from the perspective of defensin-specific autoantibodies that
correlate with disease activity (Tamiya et al., 2006), as well as cir-
culating protein levels that seem to be higher in lupus patients
(Sthoeger et al., 2009; Vordenbaumen et al., 2010); in fact, high
α- and β-defensin levels were recently shown to correlate with car-
diovascular disease in lupus patients (Vordenbaumen et al., 2012).
One can certainly imagine a role for defensins in the induction of
lupus inflammation and autoimmunity, and indeed this concept
has been reviewed elsewhere (Froy and Sthoeger, 2009).

From a lupus perspective, HMGB1, a DNA-binding protein
with alarmin potential when released into the extracellular space,
has received considerable interest in recent years, as evidenced by
the number of review articles written on this topic (Abdulahad
et al., 2010; Pan et al., 2010; Urbonaviciute and Voll, 2011;
Pisetsky, 2012). Initial reports described extracellular HMGB1
in cutaneous lesions (Popovic et al., 2005; Barkauskaite et al.,
2007), but, more recently, this DNA-binding protein has been
linked to lupus nephritis (Zickert et al., 2012)—where HMGB1
has been suggested as a novel urine biomarker for nephritis
activity (Abdulahad et al., 2012). Similar to cathelicidin/LL37,
HMGB1 associates with extracellular nucleosomes and poten-
tiates their inflammatory potential through receptors such as
TLR9 (Tian et al., 2007; Urbonaviciute et al., 2008). A recent
review, however, points out that caution is necessary as HMGB1
function is critically-dependent on its redox state, and there-
fore detection may not always equate with pathologic potential
(Pisetsky, 2012).

With the exception of the nuclear protein HMGB1, all of the
aforementioned proteins are primarily derived from neutrophil
granules. Cytoplasmic proteins such as the antimicrobial het-
erodimer calprotectin have been identified in NETs (Urban et al.,
2009); the links between calprotectin and lupus are tenuous,
although one study reported elevated circulating levels which,
in a population of 100 patients, correlated with disease activity
and anti-DNA autoantibodies (Haga et al., 1993). These findings
have not been replicated in another study (Wahren et al., 1995).
Autoantibodies to another NET protein, α-enolase (Urban et al.,
2009)—which have gained notoriety for their possible association
with Hashimoto’s encephalopathy (Yoneda et al., 2007)—can also
be detected in patients with SLE (Mosca et al., 2006). Similarly,
autoantibodies to the NET protein catalase have been described
in lupus (Mansour et al., 2008), with suggestion that these anti-
bodies may be linked to oxidative stress.

To summarize, studies reporting autoantibodies to NET pro-
teins are common in SLE, although with tenuous clinical corre-
lations that have yet to be reproduced across studies; certainly,
none of these autoantibodies are presently useful to the rheuma-
tologist in clinic (with the possible exception of anti-histone
antibodies). In contrast, some of the most clinically relevant
autoantigens in SLE such as Ro, La, Smith, and RNP have yet to
be identified in NETs (Villanueva et al., 2011). When circulating
protein levels are considered, there is a trend toward NET pro-
teins being increased in lupus plasma. HMGB1 probably has the
most momentum presently for use as a biomarker in the clinical

care of lupus patients—especially in the context of nephritis—but
confirmation in additional patient populations is needed.

There are still several gaps in our understanding of how NETs
may potentially trigger autoimmunity. First, there still does not
seem to be an answer to the question of whether all NETs are
created equal. Replicating the proteomics data for PMA-induced
NETs (Urban et al., 2009) in other systems, such as NETs sponta-
neously released by lupus neutrophils (Villanueva et al., 2011), or
NETs triggered by MSU crystals, seems desirable and would surely
generate new hypotheses regarding the potential for organ dam-
age, and the interplay between innate and adaptive immunity.

Along these same lines, there is also still much work to be done
to understand potential triggers of sterile NETosis in the rheuma-
tologic diseases. In SVV, anti-PR3 and anti-MPO autoantibodies
have been suggested as possible triggers (Kessenbrock et al., 2009),
while type I interferons as well as anti-LL37, anti-RNP, and anti-
double-stranded DNA autoantibodies may play a role in SLE
(Garcia-Romo et al., 2011; Lande et al., 2011; Villanueva et al.,
2011). These concepts await confirmation by other investigators
and in animal models.

Next, there is still no validated biomarker for enhanced
NETosis in vivo. Quantifying a circulating protein may be infe-
rior to the strategies described for MPO (Kessenbrock et al.,
2009; Caudrillier et al., 2012) and LL37/cathelicidin (Lande
et al., 2011) that identify and quantify that protein in complex
with DNA.

Finally, the clinical studies described above typically rely on
commercial assays for the detection of autoantibodies. As will be
discussed in more detail below, NETs are an attractive milieu for
post-translational modifications (Liu et al., 2012), and it may take
a more refined look at autoantibodies (and their specificities) to
prove relevant clinical correlations, should they exist.

MODIFIED NET PROTEINS AS AUTOANTIGENS
POSTTRANSLATIONAL MODIFICATIONS (PTMs)
PTMs are chemical alterations of a protein by the addition of
biochemical functional groups (such as acetate, methyl, phos-
phate, lipids, and carbohydrate moieties; see Table 2), that
change the chemical nature of an aminoacid (e.g., arginine
> citruline) or by altering the secondary structure of the

Table 2 | Posttranslational modifications.

Modification Residues Function/notes

modified

Acetylation Lys Protein stability, DNA regulation

Deimination Arg Transcription

Disulfide bond Cys Protein stability, inter- intra-
molecular crosslinkformation

Glycosilation Asn (N-linked) Cell–cell recognition, signaling

(N-, O-linked) Ser (O-linked)

Methylation Lys, Arg Gene regulation

Nitration Tyr Oxidative damage during
inflammation

Phosphorylation Tyr, Ser, Thr Activation/inactivation, signaling

Ubiquitination Lys Signaling, degradation
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polypeptide (e.g., di-sulfide bonds). Such modifications orches-
trate a variety of specific functions such as unraveling of
chromatin, signaling, cell–cell recognition/communication, and
enzyme activation/inactivation. Therefore, it is important to
examine whether proteins externalized on the NETs undergo spe-
cific PTMs, and whether exposition of modified proteins can
circumvent tolerance and promote the development of autoim-
mune syndromes in predisposed individuals. In this section, we
will review the PTMs already reported in NET proteins.

The scaffold and most abundant proteins in the NETs are
histones. They comprise about 70% of the proteins associated
to chromatin fibers released during NETosis to the extracellular
space (Urban et al., 2009). Nucleosome is the fundamental unit
of the chromatin and it is composed of two copies of each of
the core histones (H2A, H2B, H3, and H4) (Luger et al., 1997).
The unstructured N-terminal tail of this proteins undergoes a
series of modifications, important for their role during transcrip-
tion, condensation, and decondensation of the DNA. Although
detection of PTMs can be a challenge, today’s armamentarium
includes mass spectrometry with or without proteomic analy-
sis, and immunoblot against most common modifications (e.g.,
methylation, acetylation, and ubiquitination). Liu and collegues
reported a series of PTMs in NETs’ histones isolated from H2O2-
stimulated human neutrophils and from two neutrophil-like cell
lines stimulated with H2O2, TNF, LPS, Ionomycin, or PMA (Liu
et al., 2012) (Table 3). Methylation of histone H4K20 (mono-,
di-, and tri-methyl), acetylation of histone H4K5 and H4K16
and citrullination of histone H3 and H4 increased upon stimu-
lation with H2O2, when compared with unstimulated conditions.
The same study reported that SLE sera reacted preferentially to
unmodified histone H2B and acetylated H2BK12 and K20 pep-
tides, although a subset reacted to citrullinated histone H3 (Liu
et al., 2012). In addition, autoantibodies against acetylated his-
tone H2B tail, histone H4, histone H3K27Me3, citrullinated H3
and H4 and ubiquitination of H2A have been reported in SLE

patients (Suzuki et al., 1994; Dieker et al., 2007; Van Bavel et al.,
2009, 2011; Liu et al., 2012). Histone epitopes are proposed as
clinically important autoantigens in SLE, RA and other autoim-
mune diseases (Monestier et al., 2000; Robinson et al., 2002; Van
Bavel et al., 2011). Indeed, Liu and colleagues found that many
of the relevant SLE autoantigens were contained in NETs (Liu
et al., 2012). As mentioned above, autoantibodies generated in
Felty’s syndrome bind preferentially to deiminated histones, in
particular to histone H3 (Dwivedi et al., 2012) and sera from
these patients binds to LPS-generated NETs (Dwivedi et al., 2012).
These observations further support that NETs can be a source
of modified autoantigens associated with autoimmunity. Future
research directions will need to focus on whether “sterile” stim-
uli specific for certain autoimmune diseases can induce specific
PTMs in proteins externalized in the NETs, and whether these
specific modifications can preferentially trigger certain chronic
inflammatory processes. PTMs of various cellular proteins may
trigger formation of neoantigens with the capacity to induce
adaptive immune responses (Rosen and Casciola-Rosen, 1999).
Despite that purified NETs failed to exacerbate autoimmune phe-
notypes in certain strains of mice (Liu et al., 2012), it is possible
that priming factors or second signals are needed to break toler-
ance in the presence of aberrant NETosis. These factors may vary
from disease to disease and could include, in the case of SLE, type
I IFNs (Baechler et al., 2003; Bennett et al., 2003; Banchereau and
Pascual, 2006), other cytokines or specific environmental insults.
Indeed, a high “interferon signature” in SLE is associated with
high titers of autoantibodies against histones and other nuclear
proteins that may be externalized during NETosis (Baechler et al.,
2003; Bennett et al., 2003). It has also been reported that type I
IFNs can potentiate production of NETs (Martinelli et al., 2004).

While most of the PTMs are often associated with reversible
events involved in signal transduction, deimination (arginine
to citrulline conversion)—catalyzed by a family of enzymes
named peptidylarginine deiminases (PADs)—is not reversible.

Table 3 | Posttranslational modifications in NETs.

Source of NETs Stimulation Enriched PTMs found in NETs Affected PTMs in NETs

Acetylation Citrullination Methylation Acetylation Citrullination Methylation

Human peripheral Hydrogen peroxide H4K5Ac H3Cit(2,18,17) H4K20Me1/2/3 H3K9Ac

neutrophils H4K16Ac H4Cit3

ATRA/GM-CSF Hydrogen peroxide H3Cit(2,8,17) H3K9Me2 H2BK12Ac H3K36Me2

differentiated murine Ionomycin H3Cit26 H3K27Me1/2/3 H3K9Ac H4K20Me2

EPRO cells LPS H4Cit3 H4K20Me1/2/3 H3K27Ac

PMA H4K16Ac

TNF H3R17Me2(a)

H4R3Me2(s)

ATRA differentiated Hydrogen peroxide H3K27Me1/2/3 H2BK12Ac H3Cit(2,8,17) H3K36Me2

human leukemia LPS H3K9Ac H3Cit26 H4K20Me2

HL-60 cells TNF H3K27Ac H3R2Me2(a)

H3R17Me2(a)

H4R3Me2(s)

Abbreviations: K, lysine; R, arginine; Me, methyl; Ac, acetyl; Cit, citrulline; (a), asymmetric; (s), symmetric; TNF, tumor necrosis factor; EPRO, early promyelocyticcell

line; ATRA, all-trans retinoic acid; PMA, phorbol 12-myristate 13-acetate; LPS, lipopolysaccharide.
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The presence of this atypical aminoacid (citrulline), not encoded
by the genome, plays an important role during NET formation
since PAD4-deficient mice suffer of impairment in NETs forma-
tion (Li et al., 2010). Studies have suggested that changes in the
polarity of the aminoacid (positive to neutral) can play puta-
tive roles in the generation of autoimmune responses (Vossenaar
et al., 2003; Neeli et al., 2008). High levels of PADs have been
described in the central nervous system of multiple sclerosis
(MS) patients and animal models of inflammatory demyelinat-
ing diseases (Mastronardi et al., 2006). Strong evidence supports
a pathogenic role for citrullinated autoantigens and the immuno-
logical response to them, in RA (Schellekens et al., 2000; Suzuki
et al., 2003; Lundberg et al., 2005; Foulquier et al., 2007; Duskin
and Eisenberg, 2010). As histone citrullination appears to be
an important phenomenon in NET formation, it remains to be
established if and how this modification may promote loss of
tolerance or the development of deleterious immune responses
(Hirsch, 1958; Neeli et al., 2008; Li et al., 2010). Further, cit-
rullination of other peptides that have been described present
in the NETs may alter their functionality. This is the case of
LL37, present in the NETs and recently found to be substrate
of citrullination in vitro by both PAD2 and PAD4 (Lande et al.,
2007, 2011; Kilsgard et al., 2012). Indeed, LL37 can be citrul-
linated in 3 or 5 sites and the degree of modification dictates
the activity and stability of the peptide (Kilsgard et al., 2012).
Indeed, LL37 (5Cit) is more chemotactic to PBMCs and more
pro-inflammatory compared to LL37 (3Cit) or unmodified LL37.
Thus, immunoregulation can be induced by specific PTMs that
occur during NETosis. Considering that citrullination by PAD4
is essential for the generation of NETs, allowing chromatin to
decondense and be released during NETosis (Wang et al., 2009; Li
et al., 2010), it will be important to determine whether other pro-
teins are citrullinated or otherwise modified in the NETs, besides
histones, and in the role of these additional modifications in the
regulation of inflammation and adaptive immune responses.

AUTOANTIGENS GENERATED BY PROTEOLYTIC CLEAVAGE
Another process to be considered in the generation of neoanti-
gens is proteolytic cleavage, the process of breaking the peptide
bond between two residues in a protein. Enzymes such as pepti-
dases and proteases carry out this process and generate fragments
involved in cell signaling or activation of a zymogen, the inac-
tive form of an enzyme. Proteins can be cleaved as a result of
intracellular processing. As mentioned above, NE and MPO are
important during NET formation (Papayannopoulos et al., 2010).
Indeed, NE can translocate into the nucleus and partially and
specifically degrade histones to promote nuclear decondensation
(Papayannopoulos et al., 2010). Modified or unmodified frag-
ments of histones generated by partial cleavage could potentially
be recognized as neoantigens by B- and T-cells, thereby gener-
ating autoantibodies against them. Indeed, SLE autoantibodies
can recognize peptides of five aminoacids (Pro-Glu-Pro-Ala-Lys)
or more and other peptides containing modifications such as
methylation or acetylation, in the case of antibodies against his-
tone H2B, using an elegant silico-based peptide array that contain
every possible overlapping peptide sequence in a linear fashion
against H2B (Price et al., 2012). Although, the work focused

mainly on histone H2B, it shows an innovative and powerful
tool to define minimum epitopes for recognition by the adaptive
immune system. It remains to be fully characterized and tested
whether histone fragments generated by NE during NETosis can
serve as autoantigens or resemble epitopes that can be recognized
by the immune system.

Some important questions remain to be answered. First, if
NETs are a main source of autoantigens, how can we account
for the variability in autoantibody responses among the vari-
ous autoimmune diseases and among individuals with the same
autoimmune condition? We may consider that not all proteins in
the NETs are equally exposed. Some epitopes can be uncovered by
the help of chemical agents or other molecules. This is the case of
the study mentioned above regarding PTU-induced vasculitis and
the development of insoluble NETs by this drug (Nakazawa et al.,
2012). In this case, the high similarity of PTU to a nitrogenous
base and the presence of thione group (≥S) in its structure may
contribute to the high affinity to create inter and intra-molecular
bonds with other sulfhydryl groups (-SH) in the NETs. Those
reactions can be catalyzed by free radicals and oxidative species
during NETosis, creating a compact conformation of the NETs
that is insoluble. Indeed, conformational changes in the structure
of the NETs may expose epitopes, such as MPO, that were not
exposed in NETs in the absence of drug exposure, thereby trig-
gering the generation of autoantibodies. Whether induction of
aberrant NET structure may be one of the key mechanisms impli-
cated in drug-induced lupus remains to be established. It will
also be important to examine whether NETs triggered by specific
conditions present in certain autoimmune diseases (ANCAs, anti-
RNP antibodies, IFNs, etc.) induce different rearrangement of
the chromatin and/or other modifications that promote specific
protein content of the NETs and/or changes in their structure.

Taken together, exposure of altered proteins on the NETs,
either by PTMs, proteolytic cleavage or specific environmen-
tal stimuli (e.g., drugs) in the context of an underlying pro-
inflammatory milieu could promote deleterious consequences for
the host. In addition, patients with deficiency in the clearance of
NETs, such as that described in patients with SLE (Hakkim et al.,
2010), may confer enhanced, persistent exposition of NETs and
associated proteins that may promote generation and perpetua-
tion of autoimmune responses. In this scenario, autoantibodies
against specifically modified antigens could serve as prospective
biomarkers for autoimmune diseases beyond RA.

CONCLUSIONS
NETs may represent an important source of neoantigens, where
PTMs and proteolytic cleavage of proteins externalized in the
NETs could promote the generation of autoantibodies in pre-
disposed individuals. Indeed, the generation of autoantibodies
to modified autoantigens has been described, suggesting a link
between PTMs and autoimmunity. While NETs are unlikely to
be the only source of autoantigens in SLE and other autoim-
mune/inflammatory diseases, the combination of PTMs derived
from NETs and inflammatory molecules that may act as prim-
ing factors, represent an attractive milieu for the loss of toler-
ance and/or the activation of deleterious innate and adaptative
immune responses.
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