
METHODS ARTICLE
published: 28 December 2012

doi: 10.3389/fimmu.2012.00386

Automated cleaning and pre-processing of
immunoglobulin gene sequences from
high-throughput sequencing
Miri Michaeli 1, Hila Noga1, Hilla Tabibian-Keissar1,2, Iris Barshack2 and Ramit Mehr1*

1 The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
2 Department of Pathology, Sheba Medical Center and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel

Edited by:

Harry W. Schroeder, University of
Alabama at Birmingham, USA

Reviewed by:

Harry W. Schroeder, University of
Alabama at Birmingham, USA
Michael Zemlin, Philipps University
Marburg, Germany

*Correspondence:

Ramit Mehr, The Mina and Everard
Goodman Faculty of Life
Sciences, Bar-Ilan University,
Ramat-Gan 52900, Israel.
e-mail: ramit.mehr@biu.ac.il

High-throughput sequencing (HTS) yields tens of thousands to millions of sequences that
require a large amount of pre-processing work to clean various artifacts. Such cleaning
cannot be performed manually. Existing programs are not suitable for immunoglobulin
(Ig) genes, which are variable and often highly mutated. This paper describes Ig
High-Throughput Sequencing Cleaner (Ig-HTS-Cleaner), a program containing a simple
cleaning procedure that successfully deals with pre-processing of Ig sequences derived
from HTS, and Ig Insertion—Deletion Identifier (Ig-Indel-Identifier), a program for
identifying legitimate and artifact insertions and/or deletions (indels). Our programs were
designed for analyzing Ig gene sequences obtained by 454 sequencing, but they are
applicable to all types of sequences and sequencing platforms. Ig-HTS-Cleaner and
Ig-Indel-Identifier have been implemented in Java and saved as executable JAR files,
supported on Linux and MS Windows. No special requirements are needed in order to
run the programs, except for correctly constructing the input files as explained in the text.
The programs’ performance has been tested and validated on real and simulated data sets.

Keywords: B cell receptor, computer programs, high-throughput sequencing, immunoglobulin (Ig) genes,

insertions and deletions (indels)

INTRODUCTION
Studying the generation, development and selection of lympho-
cyte repertoires, and their functions during immune responses, is
essential for understanding the function of the immune system
in healthy individuals, and in monitoring and intervening with
the immune system in immune deficient, autoimmune disease
or cancer patients. The recent development of high-throughput
sequencing (HTS) enables researchers to obtain large numbers
of sequences from several samples simultaneously (Galan et al.,
2010). HTS has a great advantage over classical sequencing meth-
ods in the field of immunoglobulin (Ig) gene research, as it
enables us to extract more sequences per sample and it is sen-
sitive enough so we can identify different unique sequences. Ig
genes encode the B cell receptors (BCR) and tend to accumu-
late point mutations in their sequences in order to improve
the BCRs affinity to antigens. Mutation analysis, which is one
aspect of Ig gene research, enables the tracking of mutation
accumulation in the BCRs and hence analysis of the diver-
sification of Ig gene sequences that originate from the same
ancestor. Thus, HTS presents us now, for the first time, with
the ability to analyze and compare large samples of mutated Ig
gene repertoires in health, aging and disease (Campbell et al.,
2008; Boyd et al., 2009; Gibson et al., 2009; Scheid et al., 2009;
Ademokun et al., 2010; Dunn-Walters and Ademokun, 2010).
However, the huge numbers of sequences obtained require a
large amount of pre-processing work to clean out artifacts, sort
sequences according to sample according to their molecular

identification (MID) tags, identify primers, and discard sequences
that do not contain enough information, such as sequences much
shorter or longer than the expected length of an Ig variable
region gene, or sequences with average quality scores below a
defined threshold. Several programs are already used by the sci-
entific community to study the B cell mutational patterns, such
as SoDA (Volpe et al., 2006), SoDA2 (Munshaw and Kepler,
2010), and iHMMune-Align (Gaëta et al., 2007) which perform
V(D)J segment identification; identification of clonally-related
Ig gene sequences using clustering methods (Chen et al., 2010);
ClustalW2 (Larkin et al., 2007), for alignment of clonally-related
sequences; and IgTree (Barak et al., 2008), for creating lin-
eage trees from the sets of aligned clonally-related sequences.
However, in order to use these programs and receive reliable
results that are not affected by sequencing artifacts, one must
first make sure that all such artifacts are cleaned out of the
input data.

Although HTS has already been available for several years,
there are very few such cleaning programs available for users,
and none that can deal with the cleaning of Ig genes. For exam-
ple, the program CANGS (Pandey et al., 2010) has a very good
pipeline of cleaning sequences, but it discards unique sequences
and searches for primers and MID tags with perfect matches
only, while it is known that tags and primers are often incom-
plete or sequenced incorrectly. Another program that could be
used for Ig gene data cleaning is SeqTrim (Falgueras et al., 2010).
This program does all the desired cleaning processes, but has two

www.frontiersin.org December 2012 | Volume 3 | Article 386 | 1

http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/about
http://www.frontiersin.org/Immunology
http://www.frontiersin.org/B_Cell_Biology/10.3389/fimmu.2012.00386/abstract
http://community.frontiersin.org/people/MiriMichaeli/60954
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=HillaTabibian-Keissar&UID=70727
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=RamitMehr&UID=17632
mailto:ramit.mehr@biu.ac.il
http://www.frontiersin.org
http://www.frontiersin.org/B_Cell_Biology/archive

Michaeli et al. Ig-HTS-Cleaner and Ig-Indel-Identifier

main disadvantages: one is that it runs on sequences that were
inserted in vectors, so the program identifies the inserts only
according to vector sequences found in databases such as NCBI’s
UniVec, EMBL’s emvec, or BLAST. The user does not have the
option to insert the ends of the genes, e.g., primers, as an input.
Therefore, this program is suitable only for researchers that use
sequencing with vectors. A second disadvantage is that SeqTrim
requires other external programs. Ngs_backbone (Blanca et al.,
2011) is another program that can be used for cleaning Ig gene
sequences, but it requires external softwares. Additionally, there
are several programs that trim the adapters (primers used in
HTS) and the template-specific primers (MID tags or barcodes).
One of them is TagCleaner (Schmieder et al., 2010), but this
program takes all the input sequences, aligns them in order to
identify the most frequent sequences at both ends that are sup-
posed to be the adapters/tags and trims them. TagCleaner and
similar programs are therefore ineffective when sequences come
from several samples and hence contain several tag combina-
tions; tags are composed of different sequences, so no consensus
sequence can be deduced correctly using this method. In addi-
tion, highly homologous or, in contrast, highly variable sequences
may yield erroneous alignments and therefore false identifica-
tion of adapters. We have tested TagCleaner on our Ig genes data
but this program could not correctly identify the tags. Another
program is TagDust (Lassmann et al., 2009), but this program
identifies artifact reads by comparing all reads to a library of
sequences and checking for significant match. It is not possi-
ble to create such library for Ig gene sequences, as they undergo
somatic hypermutation (SHM) in a high rate, and thus can
diverge (Cook and Tomlinson, 1995; Rajewsky, 1996). EA-utils
(Aronesty, 2011), Scythe (Buffalo, n.d.), SeqPrep (John, n.d.),
FASTX (Gordon, n.d.), and Trim Galore! (Krueger, n.d.) are addi-
tional programs that are used to trim adapters among other
functions; however, it is not possible to identify adapters in the 5′
end of the reads and to search for multiple different adapters using
these programs. Using trimLRPatterns [one tool of ShortRead,
(Morgan et al., 2009)] lacks the option to search for multiple
different adapters. Trimmomatic (Bolger and Giorgi, n.d.) does
not allow identifying adapters in the 5′ end of the reads, and
anyway is compatible to Illumina sequencing only. FAR [The
Flexible Adapter Remover, (Unknown, n.d.)] is capable of search-
ing for multiple adapters using a simple global alignment algo-
rithm, but it does not record the combination of adapters (or
barcodes or MIDs) if found and cut. This is important when
sequencing several different samples in the same sequencing run.
Cutadapt (Martin, 2011) offers an easy-to-use command-line
program that searches for multiple adapters and trim them, and
is specialized for small RNA sequences. However, cutadapt cur-
rently does not support using a configuration file in which, for
example, a list of adapters can be specified; hence, inputting sev-
eral adapter sequences is via the command-line, which makes
it slightly cumbersome. AdapterRemoval (Lindgreen, 2012) can
search for multiple adapters in both 5′ and 3′ ends of the reads
and discards reads that do not exceed a minimum length given by
the user. However, none of the above mentioned programs assign
the reads to their original samples according to their MIDs (bar-
codes), although the search of adapters should be similar to the

identification of MIDs. Btrim (Kong, 2011) presents the closest
cleaning options to our desired ones. In addition to trimming
adapters and low quality regions as some of the above programs
do, it can also identify barcodes and assign the reads to their orig-
inal samples. However, Btrim has several shortcomings. First, it is
limited to Linux. Second, similar to some of the above-mentioned
programs, it requires some knowledge regarding the use with
the command-line. A program with a user interface or even a
double-click program is preferable, as its use can be included in
an automated pipeline easy to operate even by users with little
experience with computers. Moreover, it can search for multiple
adapters or barcodes, and it can work with a configuration file
containing all the adapters or barcodes to search, but it requires
this file to contain pairs of 5′ and 3′ adapters or barcodes. This
way, if barcodes were used in several combinations for samples,
as we do, this file should contain all possible combinations of
barcodes.

Thus, we needed—and created—a program that can clean the
sequences of artifacts, and would be suitable for use with Ig genes
in spite of their unique characteristics. We present here the Ig-
HTS-Cleaner program, which enables the user to give the ends
of the genes (primers and MID tags) as input no matter what
their origin is, can handle multiple tags, and does not require
any additional programs in order to run. Our Ig-HTS-Cleaner
program does not require any knowledge in programming nor
complicated installation, only a simple input file which contains
the parameters for run. Moreover, the FASTA output files enable
easy downstream analyses of the sequences.

Sequencing of complete Ig genes can currently be carried
out only by the 454 pyrosequencing sequencing platform or
the illumina platform. The reason is the maximum sequenc-
ing length required in order to get the full Ig gene. Only 454
or illumina currently reach a maximum read length of 500
nucleotides. Other platforms can reach such lengths only by using
the paired-ends method, when only the ends of the gene are
sequenced and the middle is inferred by comparing to a refer-
ence gene. This, of course, is not valid with Ig genes, due to
their huge variability and the lack of a reference gene. Other
platforms require assembly of complete sequences from shorter
reads, which is also a problem due to the high mutation load
and large numbers of similar but not identical sequences in Ig
genes. When other sequencing platforms reach the same read
length, our programs may be used on the data generated by them
as well.

One of the shortcomings of pyrosequencing is that during
the sequencing of homopolymer tracts (HPTs, repeats of the
same nucleotide), the polymerase can add or delete one or
more nucleotides from these repeats, or alternatively, the signal
of poly-nucleotide incorporation can be misread (Huse et al.,
2007). These errors may result in insertions/deletions (indels)
that are a result of the sequencing and therefore are consid-
ered as artifacts (Margulies et al., 2005). In Ig gene research,
it is very important to distinguish between artifact indels and
legitimate indels that are a result of normal SHM and affinity
maturation of B cells, although naturally occurring indels are
very rare. Legitimate indels should be taken into account when
analyzing mutations of the B cell Ig genes, and artifact indels

Frontiers in Immunology | B Cell Biology December 2012 | Volume 3 | Article 386 | 2

http://www.frontiersin.org/B_Cell_Biology
http://www.frontiersin.org/B_Cell_Biology
http://www.frontiersin.org/B_Cell_Biology/archive

Michaeli et al. Ig-HTS-Cleaner and Ig-Indel-Identifier

should be discarded from the analysis. There are several com-
mon approaches for dealing with indels. Campbell et al. used an
algorithm that discards sequences with insertions, deletions or
substitutions that occurred near or in HPTs, unless the indel or
the substitution was seen in both the forward and reverse reads
(Campbell et al., 2008). In other studies, all sequences with any
type of indel are excluded from analysis (Boyd et al., 2010; Wu
et al., 2010) or included without accounting for indels (Wu et al.,
2010). CANGS (Pandey et al., 2010) identifies indels that appear
only in HPTs near the primers and discards them. The program
does not identify indels occurring far from the primers. VarScan
(Koboldt et al., 2009) and VARiD (Dalca et al., 2010) can iden-
tify indels, but these programs deal with variability and single
nucleotide polymorphism (SNP) identification, and do not dis-
tinguish between legitimate and artifact indels, and are hence
less suitable for identifying and discarding artifact indels from
Ig genes. Recently, two methods for distinguishing true indels
from sequencing artifacts have been developed. Dindel (Albers
et al., 2011) utilizes a probabilistic method that accounts for the
increased indel rates near HPTs. However, Dindel detects indels
from short reads generated by Illumina sequencing and aligns
the reads to a specific region in the genome. Hence, Dindel is
not suitable for Ig genes because they are longer than Illumina
reads and they cannot be aligned to a specific region in the
genome due to the enormous variability and randomness of Ig
gene rearrangements. PiCALL (Bansal and Libiger, 2011) also
detects indels using a probabilistic method, but it works on a
population of diploid individuals. Therefore, piCALL is not suit-
able for Ig gene sequences, in which different cells have different
Ig genes.

Sometimes, discarding all the indels causes loss of informa-
tion. For example, if an indel appears in a unique sequence, most
of the algorithms would discard this sequence because no other
sequence contains this indel. Nevertheless, there is a chance that
this indel is legitimate, and we refer to such cases as uncertain
indels. Because in several of our studies we perform sequencing
on DNA from preserved tissue samples which do not yield large
enough amounts of DNA (Tabibian-Keissar et al., 2008), we do
not want to simply discard all unique sequences. Since there is
no absolute way to identify all sequencing errors, and because
we have limited sequencing data, we intend to save as many
sequences as possible, and still avoid as many artificial indels and
point mutations as possible. To address this issue, we developed
Ig-Indel-Identifier, a program that identifies legitimate and arti-
fact indels and does not discard sequences that contain uncertain
indels. Hence, we may decide to keep these uncertain sequences
for maximal information utilization.

This paper describes both Ig-HTS-Cleaner and Ig-Indel-
Identifier. Our programs were designed to process Ig genes, but
they are easily applicable to all types of sequences.

MATERIALS AND METHODS
Ig-HTS-Cleaner and Ig-Indel-Identifier have been programmed
in Java on the Windows operating system and is saved as an
executable JAR file. The JAR files support Linux and Microsoft
Windows. An executable file for each of our programs is avail-
able at http://immsilico2.lnx.biu.ac.il/Software.html. To execute

the program, the user should double-click on the program symbol
after saving it in the same directory where the input files are
saved. No special requirements are needed in order to run them,
except for correctly constructing the input files as explained
below.

Ig-HTS-Cleaner INPUT AND OUTPUT
The program receives as an input the following files, which should
be saved in the same directory as the program. (1) A group of
∗.fna files (∗denotes any desirable name) containing the FASTA
sequence reads—see Figure 1 for the structure of a typical read.
(2) Quality (∗.qual) files containing the scores for the sequences
(both file types are received from the sequencing platform). (3)
An input.txt file created and updated by the user, containing the
parameters for the cleaning, such as the MID tags and the primer
sequences, the length range within which the sequence is consid-
ered legitimate, the samples (in case more than one sample was
sequenced), etc. A detailed explanation on how to fill the input.txt
file can be found in Figure 2. The input file should be created
precisely according to these instructions.

As output, the program generates the following files:

1. FailedInFindMIDs.txt—a FASTA file containing all the
sequences in which the program could not find one or both
MID tags, or the MID combination did not match the table in
the input file.

2. FailedInFindPrimers.txt—a FASTA file containing all the
sequences in which the program could not find one or both
primers, such that only sequences with identifiable MIDs and
primers are included in further analysis.

3. FailedInCheckLength.txt—a FASTA file containing all the
sequences for which L2 (sequence length between the primers)
was not within the allowed range.

4. FailedInQuality.txt—contains all sequences that had identifi-
able primers at both ends and were within the allowed length
range, but the average quality score of the sequence was lower
than the input threshold.

5. Log.txt—a tab-delimited text file that assembles details of the
run in two parts. The first part (Figure 3A) contains a table of
the samples that were sequenced and the following numbers
per each sample: total number of sequences found, number of
failed sequences in finding primers, percent of the last value
out of the total, number of failed sequences in length, per-
cent of the last value out of total, and out of the total after
the previous stage, number of sequences with lower quality
than threshold, percent of the last value out of total and out
of the total after the previous stage, total remaining number of
sequences, average quality score. The second part (Figure 3B)
contains information regarding the total numbers of the run,
such as (partial list): how many sequences failed in the MID
tags finding step, how many failed in the primers finding
step, how many failed in the length check, how many failed
in the quality check, how many are in the sense or anti-
sense orientation, and a short review of the parameters of
the run.

6. A text file for each sample, containing the sequences that
passed all the checks and were identified as belonging to that

www.frontiersin.org December 2012 | Volume 3 | Article 386 | 3

http://immsilico2.lnx.biu.ac.il/Software.html
http://www.frontiersin.org
http://www.frontiersin.org/B_Cell_Biology/archive

Michaeli et al. Ig-HTS-Cleaner and Ig-Indel-Identifier

FIGURE 1 | A typical sequencer output (e.g., 454) read consists of

the following segments (ordered from the 5′ end to the 3′ end):

adapter: sequencer adapters. FW MID denotes the forward molecular
identifier (tag). FW P denotes the forward polymerase chain reaction
(PCR) primer. Gene is the target sequence. R P denotes the reverse
PCR primer. R MID denotes the reverse molecular identifier (tag).
L1: Sequence length before first filtering—should be in the allowed

range defined by the first minimum and maximum values
(minL1 < L1 < maxL1, for example, 200 and 400 in Figure 2). L2:
Sequence length after primers were cut—should be in the allowed
range defined by the second minimum and maximum values
(minL2 < L2 < maxL2, for example, 150 and 360 in Figure 2). These
ranges can be changed in the input file according to the data set and
the specific requirements of each study.

sample according to their MID tag combination (given as
input, Figure 2).

7. A text file for each sample, containing the quality score
sequence of each sequence belonging to the sample, with the
scores referring to the gene sequence only (without scores for
the MID tags, primers, etc.).

Ig-HTS-Cleaner ALGORITHM
The program works according to the following outline (Figure 4):

1. Read input file and initiate parameters for the run.
2. Read .fna and .qual files and parse them for the run.
3. For each sequence, if it is longer or shorter than the allowed

range given in the input file, discard it from analysis.
4. For each sequence that passed the previous step, do the

following:

4.1. Find tags (MIDs) at both ends of the sequence. If found,
go to 4.2, else go to 4.5.

4.2. Find Primers at both ends of the sequence. If found, go
to 4.3, else go to 4.5.

4.3. Check whether the length of the sequence between the
primers is within the input range. If so, go to 4.4, else go
to 4.5.

4.4. Check the average quality score of the sequence. If the
average quality score is below the input threshold, go to
4.5, else go to 4.6.

4.5. A sequence that failed in one of the above stages will be
written to a discard file according to the reason of failure.

4.6. A sequence that succeeded in all the above stages will
be written to an output file according to its MID
combination.

MID tag finding
The goal of the first step is to find the MID tags for each sequence.
Each 454 run enables the sequencing of several, pooled samples,
as long as we mark each sequence according to its sample using
known combinations of MID tags at both ends of the sequence

(because sequencing may start at each end of the sequence). To
use this feature, the genes must undergo preliminary PCR with
primers that are connected to specific 10-base oligonucleotides,
representing the MID tags. These tags were composed by the
sequencing company to provide different oligosequences that
are distinguishable. In addition, the reads also contain adapter
sequences at their ends that are required for starting the sequenc-
ing (Figure 1). Since the number of tags that are sufficiently
distinguishable from each other (see below) is limited, one can
use primers with a known combination of forward and reverse
MID tags for each sample. This way, one can obtain different
sequences from many different samples at one run, and later
correctly attribute the sequences to the original samples by iden-
tifying the MID tag combination in each sequence. If either
MID tag cannot be identified, the program would not be able
to attribute the sequence to a sample and thus will reject it
as a failed sequence. The program searches each sequence for
a perfect match to each MID tag (taken from the input file)
at both ends of the sequence, which are the regions where we
expect the MID tags to be found (and not in the middle of the
read, for example). The search is executed on a limited range of
nucleotides, given in the input file. If a perfect match is achieved,
the number of the tag is noted. If not, the program searches for
a perfect match of the minimal MID length that the user has
inserted in the input file. This minimal MID length represents
the number of consecutive nucleotides of the tag on the side
closer to the primers (the inner side of the sequence) that enables
unambiguous identification of the tag. This is done because the
sequencer more often inserts errors close to the sequence bound-
aries, so the tags might have been trimmed or contain errors
at their outer edges. We found that five consecutive nucleotides
are the lowest number of nucleotides that can still distinguish
between the different MID tags we used (basic set—Hamming
distance: 6, Table 1). However, the minimal MID length is depen-
dent on the Hamming distance of the MID set used, and should
be assigned correctly by the user. The program prioritizes a per-
fect match, thus in case of a perfect match to the minimal MID
length of one MID tag, the program will continue the search

Frontiers in Immunology | B Cell Biology December 2012 | Volume 3 | Article 386 | 4

http://www.frontiersin.org/B_Cell_Biology
http://www.frontiersin.org/B_Cell_Biology
http://www.frontiersin.org/B_Cell_Biology/archive

Michaeli et al. Ig-HTS-Cleaner and Ig-Indel-Identifier

FIGURE 2 | An example of the input.txt file content. In bold- words/
characters that should always appear. Organism—represents the
organism to which the sequences belong, “Human” in this example.
Chain—represents the chain of the Ig (h, heavy as in this example; l,
lambda; k, kappa). Quality threshold—the minimal average score for a
sequence allowed. Maximum mismatches allowed—the number of
mismatches the user allows when primers are being searched. “2” means
that when primers are being searched, the sequence can contain
2 insertions/deletions or substitutions in the primer’s sequence. Fraction of

primer to search—in case the full primer was not found, the program
searches only the given fraction of the primer from the side closer to the
gene. Range to search primers in—the search is executed on a limited
range of bases at the ends of the read. Minimal MID length—in case the
full MID was not found, the program searches for a perfect match of the
minimal length of the MID from the side closer to the gene. Mids—a list of
the MID tags that have been used in the current sequencing. The program
automatically numbers the MID tags according to the insertion order. At
the end of each list, a “#” should appear, see example. In case no MIDs

(Continued)

FIGURE 2 | Continued

were used, leave only the title and the “#”. Forward—a list of the forward
primers that have been used in the current sequencing, used for
identification of the primers. At the end of each list, a “#” should appear,
see example. Reverse—a list of the reverse primers that have been used in
the current sequencing, used for identification of the primers. At the end of
each list, a “#” should appear, see example. Minimum length—two
values, the first is the minimal length for the first filtering of the data
(minL1). The second value represents the minimal length that is legitimate
for the genes in between the primers (minL2). Maximum length—two
values, the first is the maximal length for the first filtering of the data
(maxL1). The second value represents the maximal length that is allowed
for the genes in between the primers (maxL2). Table—contains the MID
tag combination per each sample that was sequenced. MID tag numbers
should coordinate with their serial number in the above list. This enables
the program to attribute each sequence to its corresponding sample. Each
line should contain: number of the forward MID tag/tab/number of the
reverse MID tag/tab/sample id (see example). At the end of each list, a “#”
should appear, see example. In case no MIDs were used, put 0 as the
number of forward and reverse MIDs.

for a perfect match of the rest of the MID tags. Although rare,
in case a perfect match of one MID tag and a perfect match of
the minimal MID length of other MID tags are found in the
same read-end, the program prefers the perfect match of the full
MID tag.

A legitimate sequence contains a legitimate combination of
tags (according to the input file) with the tag at the 5′ end found
in the sense orientation and at the one 3′ end found in the anti-
sense orientation. Each search for tags is performed using both
the tags and their complementary sequences, in order to identify
tags at both ends. If a match of two tags, one at each edge of the
sequence, is found, the tag numbers are noted and the sequence
in between the MID tags is passed on to the next stage of clean-
ing. Otherwise, the sequence is discarded from further analysis,
and written to a file containing all the sequences that failed in
this stage. It is important to note that Ig-HTS-Cleaner can also
work in case no MIDs are listed (for example, when the sequenc-
ing was carried out on a single sample). The program will then
search directly for primers, but it is important that the input file
is written properly as detailed in Figure 2.

Primer identification
In this stage, the sequence between the MID tags (after MID
tags have been removed) is searched for primers at both ends.
Again, the search is executed on a limited range of nucleotides,
given in the input file. The program runs using the primer
lists given in the input file and searches for a perfect match
of both forward and reverse primers in the current sequence.
The program searches both the primer and its complementary
sequence. If one or both primers were not found with a per-
fect match, the program searches for a partial match between
the sequence and the primers, after the latter are trimmed (from
the side furthest from the gene) leaving a fraction of the original
primers’ length, given in the input file (e.g., 75% of the origi-
nal length). Sometimes PCR and/or sequencing trim the primer
ends. Searching only the primer fraction closer to the gene enables
the program to identify even primers which contain errors or
were trimmed at the ends distal to the gene. This is useful when

www.frontiersin.org December 2012 | Volume 3 | Article 386 | 5

http://www.frontiersin.org
http://www.frontiersin.org/B_Cell_Biology/archive

Michaeli et al. Ig-HTS-Cleaner and Ig-Indel-Identifier

FIGURE 3 | A sample of an Ig-HTS-Cleaner log.txt output file. (A) The first
part of the file (after importing the .txt file into a table). “Sample” is the
sample name, inserted in the input file. “Total” represents the total number
of sequences received from the sequencer before cleaning (as counted after
MID identification). “Failed in primers” represents the number of sequences
without primers at both ends. “% out of total” means the % of the “Failed in
primers” column out of the total column. “Failed in length” represents the
number of sequences with length not in between the input range. “% out of
total” means the % of the “Failed in length”column out of the total column.
“% of the remaining” for the “Failed in length” column represents the %
after we subtract the number of sequences failed in primers from the total
and calculate the % from that. “Failed in quality” represents the number of

sequences with an average quality score below the threshold. “% out of
total” means the % of the “Failed in quality” column out of the total column.
“% of the remaining” for the “Failed in quality” column represents the %
after we subtract the number of sequences failed in primers and in length
from the total and calculate the % from that. “Total remaining” represents
the number of sequences that have passed all cleaning steps successfully.
“Average score” is the average score for the sample. First, the average score
for each sequence is calculated by an average of the scores per base, given
in the .qual files in the 454 output. Then, the average score of the sample is
calculated as the average of the scores of all sequences belonging to the
sample. (B) The second part of the file, containing information and statistics
regarding the run.

the reads are from one sample and thus there was no use in
MID tags. The partial match allows the number of mismatches
per primer defined by the user input. The larger the number
of allowed mismatches, the more erroneous primer identifica-
tions would occur. Therefore, one should decide on the maximal
number of mismatches allowed for the data, according to this
trade-off. We examined this parameter on data sets from human
and mouse tissues (data not shown). We ran each data set in
Ig-HTS-Cleaner with different values between 1 and 10 for the
number of allowed mismatches. For our human data set, we
found that a value of two allowed mismatches is the best cut-off

which minimizes both the loss of sequences and the gain of erro-
neous sequences with falsely identified primers. For our mouse
data set, we found that a value of four allowed mismatches is the
best cut-off. This type of analysis may be performed on other data
sets with Ig-HTS-Cleaner, to decide on the best value for each
data set.

The partial match uses dynamic programming of local align-
ment of the sequence with each forward or reverse primer, based
on the Smith–Waterman algorithm. If both forward and reverse
primers are found, the gene orientation is known, hence the MID
tag order is known as well, so the sample identity is known.

Frontiers in Immunology | B Cell Biology December 2012 | Volume 3 | Article 386 | 6

http://www.frontiersin.org/B_Cell_Biology
http://www.frontiersin.org/B_Cell_Biology
http://www.frontiersin.org/B_Cell_Biology/archive

Michaeli et al. Ig-HTS-Cleaner and Ig-Indel-Identifier

FIGURE 4 | A schematic outline of the Ig-HTS-Cleaner program

algorithm. “Discard” means: discard the read because it is not likely to be
an immunoglobulin gene sequence. “Record” means: write the sequence
to a file containing all sequences that failed in this stage. “Count” means:
count the number of failed sequences. In case the failure is in the last two
stages, the counts are done per sample. “MID tags found?” means: “Is
there an identifiable MID tag at each end of the sequence?”, “Primers
found?” means: “Is there an identifiable primer at each end of the
sequence?” Checks of L1 and L2 are as described in Figures 1 and 2.
“Quality score > threshold?” means: “Is the average quality score of the
sequence larger than the threshold score given in the input file?” “Save
sequence” means: “Write the sequence to the corresponding sample file.
Advance the counter of sequences per sample.”

The sequence then proceeds to the next stage. If one or both
primers were not found, the sequence is discarded from further
analysis, and written to a file containing all the sequences that
failed in this stage.

Length check
This is the last check before the sequence is accepted as legiti-
mate. If the sequence length between the primers is within the
allowed range, the sequence is written to the file of the sample
corresponding to its MID tag combination; each file represents

Table 1 | List of MID tags, forward and reverse primers used for

Ig-HTS-Cleaner validationa.

MID tags
(5′ to 3′)b

ACGAGTGCGT
ACGCTCGACA
AGACGCACTC
AGCACTGTAG
ATCAGACACG
ATATCGCGAG
CGTGTCTCTA
CTCGCGTGTC
TAGTATCAGC

Human Forward primers
(5′ to 3′)

TGCGMCAGGCCCCYGGACAAR
ARGRAAGGCCCTGGAGTGG
CCGCCAGGCTCCAGGSAAG
MGGGAAGGGRCTGGAGTGG
GAAAGGCCTGGAGTGGATGGG
TTGAGTGGCTGGGRAGGAC

Reverse primer
(5′ to 3′)

TGACCRKGGTHCCYTGGCCC

Mouse—heavy
chain

Forward primers
(5′ to 3′)

AGRTYCARCTGCARCAGYC
TGCAGCTKMAGSAGTCAG
GARGTGAAGCTKSTSGAGTC
GAGGAGTCTGGAGGAGGCTT
CTGGGATATTGCAGCCCTCC
AGGTGTGCATTGTGAGGTGC
GTSAGGTGCAGCTKGTRGA
CAATCCCAGGTTCACCTACAA

Reverse primer
(5′ to 3′)

GTGGTBCCTTSGCCCCAG

Mouse—light
chain

Forward primers
(5′ to 3′)

MTGATGACCCARTCTCCA
SRGATATTGTGATGACGCAGG
AWTGTDCTSACCCARTCTCC
CCTGTGGRGACATTGTGAT
AYCCVGATGACYCAGTCT
CCAGATGTGAYRTYCARATG
BCAGTGTGACATCCRVAT
ACACAGGCTCCAGCTTCTCT
TCCCAGGCTGTTGTGACTC
CAACTTGTGCTCACTCAGTC
CTCTAGGAAGCACAGTCAAAC

Reverse primer
(5′ to 3′)

GTGGTBCCTTSGCCCCAG

aKey to degenerate nucleotides: R = A + G; M = A + C; W = A + T ; K = G +
T ; S = G + C; Y = C + T ; H = A + T + C; B = G + T + C; D = G + A + T ; N =
A + C + G + T ; V = G + A + C.
bWe used the basic set, with Hamming distance = 6.

one sample. Otherwise, the sequence is discarded, and written to
a file containing all the sequences that failed in this stage.

Quality check
For each sequence, a file containing the sequencing quality scores
per each base is generated during the sequencing run. When
using the 454 platform, each nucleotide in each sequence gets
a score between 0 and 40 that represents the confidence level

www.frontiersin.org December 2012 | Volume 3 | Article 386 | 7

http://www.frontiersin.org
http://www.frontiersin.org/B_Cell_Biology/archive

Michaeli et al. Ig-HTS-Cleaner and Ig-Indel-Identifier

of the sequencer that a specific nucleotide is the correct one. In
other words, the higher the score per base (or average score per
sequence), the better the quality of the sequencing. For each read,
a sequence of numbers between 0 and 40 in the original length of
the read is generated. The file with all the score sequences is the
.qual file.

In addition to cleaning the sequence of tags and primers, a
calculation of the quality score per sequence is performed in
Ig-HTS-Cleaner using the .qual files. One can either look at each
position to investigate its quality (for example, when examining
point mutations), or can look at the average quality score per
sequence or even per sample to evaluate the quality of sample
sequencing (for example, when dealing with preserved tissue sam-
ples where DNA is often denaturated). For each sequence, the
quality score is calculated as the average score for all bases of the
sequence, after tags and primers were removed. Then, the qual-
ity score of each sample is calculated, as the average score of the
sample’s sequences.

The calculation of minimal and average quality scores of one
sample or a group of samples is also important for downstream
analyses. For example, in Ig-Indel-Identifier (see below for more
details), point mutations are checked for their quality score, and
if the latter is lower than the threshold given by the user, the
sequence can be discarded. In Figure 5, we show as an example
the quality score analyses of four samples from human lymph
nodes (LN).

In this example, many (42.81%) of the sequences in the LN
samples had an average quality score of 37–38, which is consid-
ered a very high score (Figure 5A). On the other hand, many of
the sequences also contained nucleotides with low quality scores
(11–12, Figure 5B). These analyses led us to conclude that in
our LN data, we could use the average quality score threshold of
30 without losing to many sequences. However, as most of the
sequences appear to have a low minimal quality score (mostly
lower than 20, with a peak in 11–12), we could not use a minimal
threshold larger than 10.

Ig-Indel-Identifier INPUT AND OUTPUT
To identify indels created by the sequencer, the sequences are usu-
ally compared to some reference gene. In the case of Ig genes,
where no reference gene can be used, the sequences should be
organized by clones, according to their germline (GL) segment
identifications. Then, a consensus sequence can be created for
each clone based on all sequences in the clone, and serve as the
reference gene. In our analysis pipeline, we first identify the GL
segments for every sequence using SoDA (Volpe et al., 2006).
Then we group the sequences (from the same sample) that use
the same GL segments into one clone, and find the consensus
sequence for the N-regions of this clone. In each position of
the N-regions, the consensus GL contained the most frequent
nucleotide in all the aligned sequences that belonged to the same
clone. In the data presented below, we identified clones only
based on their V(D)J GL segments for the purpose of demonstra-
tion of the action of Ig-Indel-Identifier. However, for proper data
analysis, these groups of sequences are aligned and examined,
as more than one clone may have the same V(D)J combina-
tion. For this purpose, one may use the clustering-based program

FIGURE 5 | Four formalin-fixed paraffin-embedded (FFPE) reactive

lymph node tissues, archived about 10 years ago, from adult patients,

were used as part of a study that dealt with Ig repertoire analysis of

gastric lymphomas. In the current paper we used these samples in order
to demonstrate quality scores obtained by the 454 platform using FFPE
tissues. (A) Average quality score distribution of sequences obtained from
four LN samples. For each sequence, the average quality score was
calculated as the sum of all base scores divided by the length of the
sequence. (B) Minimal quality score distribution of sequences obtained
from four LN samples. For each sequence, the minimal quality score was
calculated as the minimal base score value of all base scores in the
sequence.

created by Gaeta et al. (Chen et al., 2010), which deals with groups
of sequences that share the same V(D)J segments, and checks
whether they belong to one or more clones. After the clonally-
related groups of sequences are identified, the sequences from
each clone are aligned, along with the “root” sequence composed
of the GL segments and N-region consensus, using ClustalW2
(Larkin et al., 2007). The output files from ClustalW2 (∗.txts files
in the PIR format, which is an alignment format) serve as the
input files for Ig-Indel-Identifier.

In addition to cleaning artifact indels, Ig-Indel-Identifier iden-
tifies point mutations (mismatches) by comparing to the ref-
erence gene or GL, and decides whether they are sequencing
artifacts or may be derived from natural mutation processes. For
each point mutation, Ig-Indel-Identifier checks the quality score
of the base, given in the ∗.qual files. One of the parameters that
are given by the user is the minimal quality score. This parameter

Frontiers in Immunology | B Cell Biology December 2012 | Volume 3 | Article 386 | 8

http://www.frontiersin.org/B_Cell_Biology
http://www.frontiersin.org/B_Cell_Biology
http://www.frontiersin.org/B_Cell_Biology/archive

Michaeli et al. Ig-HTS-Cleaner and Ig-Indel-Identifier

is used when Ig-Indel-Identifier compares the quality score of the
point mutation to the given minimal quality score. If the quality
score of the point mutation is lower than the user’s threshold, and
if this point mutation appears in fewer sequences in the clone
than the number given in the input.txt file, the sequence is dis-
carded. Moreover, Ig-Indel-Identifier identifies whether a point
mutation occurred inside activation-induced cytidine deaminase
(AID) motifs that contain HPT [AACA or the complementary
TGTT (MacCarthy et al., 2009)]. If so, the sequence shall not be
discarded even if its quality score is lower than the threshold. If the
user is not interested in identifying such mismatches, the value of
the minimal quality score given in the input.txt file should be set
to −1.

Ig-Indel-Identifier receives as input ∗.txts files, each contain-
ing an alignment of a group of clonally-related sequences with
their consensus GL sequence; an ∗.input file, containing all the
sequences from the current sample in the FASTA format; and a
∗.qual file, corresponding to the ∗.input file, which contains the
quality score sequences of the sequences in ∗.input file. Ig-HTS-
Cleaner generates these files automatically. In addition, the user
should prepare a file called “input.txt,” with integer values for
three parameters, as follows:

1. The minimum number of sequences in a clone that must
share the same indel or a low quality score point muta-
tion for this indel or mutation to be considered legitimate.
Before discarding a sequence, the user may decide that in
case more sequences contain the same indel or low quality
score point mutation, the suspected sequence shall not be dis-
carded. The user can choose how many sequences in a clone
must share that particular indel or mutation in order to save
this sequence. The higher this threshold number, the fewer
suspected sequences would be saved.

2. HPT length: the user can decide on the minimum length
of same-nucleotide stretch that will be considered a HPT.
The longer the HPT length, the more sequences would be
saved, since fewer indels would be identified as near-HPT
indels.

3. The minimal quality score for a point mutation to be con-
sidered legitimate. The higher the minimal quality score, the
more sequences would be discarded. If the user is not inter-
ested in identifying such mismatches, the value of the minimal
quality score given in the input.txt file should be set to −1.

To use Ig-Indel-Identifier on non-Ig gene sequences, one
should create a consensus sequence of all sequences that should
be checked. This can be done using several programs, such as
ClustalW2 (Larkin et al., 2007). A consensus sequence is com-
posed of the most frequent base in each position of the aligned
sequences. Then, the consensus and the sequences should be run
in ClustalW2 to create the ∗.txts file that contains the alignment.
Ig-Indel-Identifier will work on this file together with the ∗.input
file that should contain the sequences. When using ClustalW2 in
order to align each of the sequences with its reference gene, each
gap (of one or more nucleotides), in either the GL or the tested
sequence, anywhere in the sequence, is designated as an indel that
would be checked by Ig-Indel-Identifier.

As output, the program generates the following files for each
input file:

1. “(Name-of-input-file)-WithoutIndels.txt”—a FASTA file
that contains a list of all sequences from the current
input file which contain neither artifact nor uncertain
indels.

2. “(Name-of-input-file)-CloneOfSize1WithIndels.txt”—a FAS-
TA file that contains a list of sequences that contain suspected
indels, but do not belong to a larger clone, so we cannot decide
whether each indel is an artifact or not. We call these “uncer-
tain indels,” and keep these sequences separately, so one can
perform the analysis either with or without them, as desired.

3. “(Name-of-input-file)-IllegitimateIndels.txt”—a FASTA file
that contains a list of the sequences with artifact indels, which
are part of a large clone, hence these indels are certainly artifact
and not uncertain indels (this list has no overlap with output
file number 2).

4. “(Name-of-input-file)-SeqsWithLowQualPointMuts.txt”—a
FASTA file that contains a list of sequences that contain
point mutations with quality scores lower than the minimal
quality score given by the user, and which appeared in fewer
sequences in the clone than set by the user.

5. “(Name-of-input-file)-Ig-Indel-Identifier.log”—a file cont-
aining the report of the run.

Ig-Indel-Identifier ALGORITHM
The program works according to the following outline (Figure 6):

1. For each sequence in each clone, do:

1.1. Search for indels or point mutations by comparing
the sequence to the corresponding GL (or consensus)
sequence position by position, from the last indel or
point mutation checked (or, in a new sequence—from
the first position of the alignment) until the alignment
ends. If an indel is found, go to 1.2. If a point mutation
is found, go to 1.9, else go to 1.7.

1.2. If this indel appears near a HPT (see below), go to 1.3,
else go to 1.6.

1.3. This indel is suspected to be an illegitimate (artifact)
indel. If this indel is unique, i.e., no other sequence in
its clone shares the same indel, go to 1.4, else go to 1.6.

1.4. If the sequence is the single one in its clone go to 1.8, else
go to 1.5.

1.5. The sequence has an artifact indel and hence is discarded
from further analyses. Write it to the appropriate file and
go to the next sequence (step 1).

1.6. This indel is considered as a legitimate indel. Go to 1.1.
1.7. Sequence is OK. Write it to the appropriate file and go

to the next sequence (step 1).
1.8. Sequence has an uncertain indel. Mark as uncertain. Go

to 1.1.
1.9. Check if the quality score of the point mutation base is

lower than the threshold given by the user as input. If so,
go to 1.10, else go to 1.1.

www.frontiersin.org December 2012 | Volume 3 | Article 386 | 9

http://www.frontiersin.org
http://www.frontiersin.org/B_Cell_Biology/archive

Michaeli et al. Ig-HTS-Cleaner and Ig-Indel-Identifier

FIGURE 6 | A schematic outline of the Ig-Indel-Identifier program.

“Indel or mutation?” means: “Are there (more) indels or mutations in the
sequence?” “Low quality?” means: “Did the point mutation have a quality
score lower than the input threshold?” “Near HP tract?” means: “Is the
indel near a HPT?” “In AID motif?” means: “Is the indel or point mutation
detected inside the known AID motif (AACA or the complementary
TGTT)?” “Repeated in clone?” means: “Are there more sequences in the
clone with the same indel?” “Single in clone?” means: “Is this the only
sequence in the clone?” “Discard” means: “Discard the sequence
because it has an artifact indel.” “Uncertain” means: save the sequence
separately as it is suspected to have artifact indel(s), but there are no other
sequences in this clone, hence we cannot be sure. “Probably real” means:
save the sequence as it has a legitimate indel according to our definitions.

1.10. Check if the point mutation is inside the AID motif
(AACA or the complementary TGTT). If so, go to 1.1,
else go to 1.11.

1.11. Check the number of sequences in the clone that share
the same point mutation. If there are more sequences in
the clone but no other sequence shares the same point
mutation, go to 1.12. Else, go to 1.1.

1.12. The sequence has an artifact point mutation and hence
is discarded from further analyses. Write it to the appro-
priate file and go to the next sequence (step 1).

2. Write the sequences to the output files.

In order to decide whether an indel is near or inside a HPT of
a length that equals or exceeds the minimum length given by the
user, we test the GL sequence to find whether one or more of the
following conditions are fulfilled:

• The indel is inside a HPT.
• The indel is 5′ to a HPT.
• The indel is 3′ to a HPT.

We chose to first define HPTs by at least two identical nucleotides.
Although this definition is very broad, as pairs of identical
nucleotides are very common in all sequences, we preferred to
check more indels than to leave sequences with illegitimate ones
in the dataset. However, the user can choose the minimal length
defining a HPT. If any of the above three conditions is fulfilled,
this indel is suspected to be a sequencing artifact. A suspected
indel is denoted as an artifact if fewer than the threshold number
of sequences that share this indel exist in the clone.

Creating a simulated dataset for testing Ig-Indel-Identifier
In order to check the Ig-Indel-Identifier program, we collected
504 real sequences without indels from previous 454 HTS studies.
This dataset contained either groups of clonally-related sequences
or single sequences, all already aligned to their GL. We simulated
the artificial induction of deletions (see below) on this dataset,
creating a new and larger dataset of sequences, each with one
deletion at most, near or inside HPTs of different lengths. The
simulation was not created in order to reflect the “natural” gen-
eration of indels by the sequencer, but simply in order to have
sequences with no more than one deletion, near or inside HPTs
of different lengths, in order to test the Ig-Indel-Identifier pro-
gram and analyze the results more easily. The simulation works
as follows. For each sequence, the simulation decides whether to
introduce a deletion or not. In case a deletion should be intro-
duced, the simulation draws a value (2–10) for the length of
HPT that the deletion should occur in. If the sequence does
not contain any HPTs with that length, the simulation keeps
drawing a value until at least one HPT with the drawn length
is found in the sequence. From the list of positions contained
in the chosen HPT, the simulation draws one position in one
HPT to introduce the deletion in. A deletion (and indels in gen-
eral) can occur 5′ to the HPT, 3′ to the HPT, or in its middle.
Hence, the simulation draws the exact position for the dele-
tion, according to the length of HPT drawn in the first step.
Deletions were not allowed at the beginning or at the end of a
sequence. Deletions were introduced by replacing the character
(A/C/G/T) in the desired position of the aligned sequence by “−”.
Ig-Indel-Identifier identifies insertions and deletions according
to the alignment of the clonally-related sequences and their GL,
and hence a “−” sign in the GL is considered as an insertion,
and in the sequence, it is considered as a deletion). Introducing
only deletions during the simulation should not affect identifica-
tion of indels by Ig-Indel-Identifier, and we used only deletions
for convenience. After introducing a deletion to the sequence,
the simulation draws a value (0–10) for the number of dupli-
cate sequences carrying the same deletion that will be generated.
One of our assumptions for correctly identifying artifact indels is
that indels that appear in more than one sequence in the same
clone are probably real and thus are not designated as suspect.
The exact number of sequences carrying the same indel, which
are needed for accurately identifying an indel, can change between
datasets and observations. It is important to note that all the dele-
tions introduced into the sequences during the simulation were
artifact indels, and hence were all expected to be identified by
Ig-Indel-Identifier and evaluated based on their frequency within
the clone.

Frontiers in Immunology | B Cell Biology December 2012 | Volume 3 | Article 386 | 10

http://www.frontiersin.org/B_Cell_Biology
http://www.frontiersin.org/B_Cell_Biology
http://www.frontiersin.org/B_Cell_Biology/archive

Michaeli et al. Ig-HTS-Cleaner and Ig-Indel-Identifier

The simulation algorithm is as follows:

1. For each sequence (not GL) in a clone do:

1.1. Decide whether the sequence will undergo a deletion. If
so, go to 1.2. Else go to the next sequence (step 1).

1.2. Draw a value (2–10) for the length of HPTs to search for
in the sequence. If no HPT in the drawn value is found,
repeat step 1.2. Else, go to 1.3.

1.3. Draw one HPT from the sequence (there can be several,
but only one is chosen).

1.4. Draw the specific position near or inside the HPT (this
depends on the HPT’s length).

1.5. Replace the character in the chosen position (A/C/G/T)
with a “−”.

1.6. Draw the number of duplicate sequences carrying the
same indel (0–10).

1.7. Generate the new sequence(s) and write them into a new
file.

RESULTS
Ig-HTS-Cleaner—PERFORMANCE AND VALIDATION
We tested the performance of Ig-HTS-Cleaner on real data from
454 HTS. Twenty-nine DNA samples (from a study that will be
published elsewhere) were subject to Ig gene amplification by
PCR and the products were sequenced on the Roche 454 FLX
Titanium platform to yield a total of 44,617 reads. We ran Ig-
HTS-Cleaner on this data set with the following parameters:
average quality score threshold of 20, 2 allowed mismatches in
the primer search, 75% of the primer’s length to search, and
a range of 50 bases at the ends of the read for the MIDs and
primers search (denoted as “combination 1,” see Table 2). Out
of the 44,617 reads, 35,453 reads contained MID tags at both
ends of the read. In the next step, Ig-HTS-Cleaner discarded 2504
sequences that did not contain identifiable primers at both ends,
because in such sequences we cannot identify sequence orienta-
tion. It is important to identify primers at both ends, not only
in order to identify where the gene is positioned inside the read,
but also to identify the orientation of both primers, in order to
discard those chimeric sequences—created during the PCR or
the sequencing—that contain both primers in the same orienta-
tion rather than opposite orientations. These artifact sequences
can be identified by primers with the same orientation. Only one
read did not have a length within the requested range and was

discarded. The reason the latter number was so low is that all Ig
genes are of similar lengths, such that if the whole gene between
the primers was sequenced, it is highly likely to have the correct
length. Much shorter or longer reads could be chimeric sequences
(discussed below). Only seven sequences did not pass the average
quality threshold, which we set to be 20. This is not surprising,
as most of the nucleotides were sequenced with a quality score
of 20–40 (see Figure 5). The user may decide whether to assign
this threshold a higher value, and thus to discard more sequences.
Finally, when Ig-HTS-Cleaner had finished running, we were left
with 32,941 remaining sequences (Table 2, parameter combina-
tion 1). The list of MID tags and primers used in this specific run
can be found in Table 1.

We ran Ig-HTS-Cleaner on the same data set with four dif-
ferent combinations of parameters (numbered 2–5 in Table 2),
in order to demonstrate the influence of each parameter on the
cleaning process. Parameter combination number 2 had the same
parameter values as the original run (number 1) except for allow-
ing up to 4 mismatches. It is not surprising that fewer reads were
discarded in the stage of primer search (because more mismatches
were allowed), thus there were more sequences attributed to MID
tag combinations. In addition, six reads were included due to the
lenient primer search, but two were discarded due to insufficient
length, and 4 were discarded due to a low average quality score.
Parameter combination number 3 had the same parameter values
as the original run (number 1) except for the fraction of primer
to search, which was set to 100%—that is, the program would
search only for the full primer. It was obvious that in this case,
more reads would be discarded, as we searched for the full primer
sequence and allowed only 2 mismatches. There were fewer reads
with low average quality scores, because some were already dis-
carded in the primer search step. Parameter combination number
4 had the same parameter values as the original run (number 1)
except for the range of 25 bases at the ends of the read for the MID
and primers search. In this case, which took longer than previous
runs (see below regarding run times), more reads were subjected
to partial match, which allows mismatches, and thus fewer reads
were discarded. Parameter combination number 5 had the same
parameter values as the combination number 4 except for the
fraction of primer to search, which was set to 100%. In this case,
more reads were discarded than in the previous run, because the
program searched only for the full primer. However, fewer reads
were discarded than in runs 1 and 3, because more reads were
subjected to partial match.

Table 2 | A summary of the Ig-HTS-Cleaner results in each parameter combination: human data set of 44K sequences.

Parameter

combination

Number of

sequences

received

Number of

sequences with

tags

Number of

sequences

without primers

Number of

sequences that

failed due to length

Number of sequences

that failed in quality

check

Number of

remaining

sequences

1 44,617 35,453 2504 1 7 32,941

2 44,617 35,891 1662 3 11 34,215

3 44,617 35,114 3528 1 3 31,582

4 44,617 36,246 439 0 8 35,799

5 44,617 35,911 1684 0 4 34,223

See text for parameter combinations.

www.frontiersin.org December 2012 | Volume 3 | Article 386 | 11

http://www.frontiersin.org
http://www.frontiersin.org/B_Cell_Biology/archive

Michaeli et al. Ig-HTS-Cleaner and Ig-Indel-Identifier

Validation of Ig-HTS-Cleaner results was done manually. Each
cleaning step was examined individually. We checked for false
negatives by looking at 50 reads that were discarded due to lack
of MID tags and manually checked whether they do contain
MID tags. None of the sequences was found to be false nega-
tive in this step. False positives were also not found when we
performed manual checks on about 10 sequences from each sam-
ple (a total of ∼200 sequences), which had successfully passed
this step. The same validation steps were performed on ∼150
sequences lacking primers and on ∼100 sequences at both ends
of which primers were found. This step was more complicated
due to the use of dynamic programming for identifying primers
with less than 100% match. About 50 sequences that did not con-
tain 100% match of a primer were also checked to validate the
dynamic programming algorithm’s accuracy. All of the sequences
that proceeded to the next cleaning step contained primers at
both ends. Discarded sequences in this step indeed lacked one or
more primers at their edges. Length checks were done automat-
ically: a simple script validated that the lengths of all sequences
that had passed the length check are truly within the allowed
range, and that the sequences that had failed this step really
were outside the allowed length range. We also validated that
the sequences that were discarded due to lower quality score had
indeed an average quality scores below the threshold. We collected
these sequences and automatically calculated their average quality
scores.

Applying Ig-HTS-Cleaner on the first data set of 44,617 reads,
with a range of 50 nucleotides at each end to search primers in,
took approximately 3–4 min to run on an Intel® core™2 CPU
6700, 2 GB RAM 2.67 GHz. When the primer search range was
decreased to 25, Ig-HTS-Cleaner run took almost 1 h on the same
computer. The longer run time is because when the primer search
range decreases, primers that were located not in the first 25
bases but closer to the inner side of the sequence would not be
found. Hence, the program would search for partial match of the
primer(s), and that would take much longer. We then proceeded
to test Ig-HTS-Cleaner on larger data sets, obtained from human
and mouse DNA samples and together representing ∼527,000
reads that were assigned into samples. However, for this num-
ber of reads we could not use the above-described computer due
to memory shortage, and needed to run Ig-HTS-Cleaner on our
UNIX server, which is equipped with larger RAM (16 GB). An
Ig-HTS-Cleaner run on the ∼527,000 reads took approximately
5 min on our UNIX server. Hence, we recommend using Ig-
HTS-Cleaner on UNIX machines or on PCs with large internal
memory. Regarding memory complexity, the program saves the
reads for the whole running time in a special data structure,

representing O(n × k) memory, where n represents the length of
a sequence, k represents the number of sequences, and n � k,
hence O(k) memory is required. For each instance of dynamic
programming used in finding a partial primer match, we have
O(n × m), where n represents the sequence length and m � n
represents the primer length. Actually, when the program searches
for the primer, it searches it in a window shorter from the full
sequence length at each side of the sequence, and not in the
whole sequence, as we expect the primers to be on the sides of
the sequence and not in the middle. Thus, O(n × m) is limited
to a finite number. Moreover, a partial match search was car-
ried out in less than 10% of the reads, reducing the complexity
in one order of magnitude. To summarize, a run of ∼500,000
sequences performed on a computer equipped with large internal
memory (16 GB) would yield results within a short time (5 min).
Table 3 presents the cleaning results of both human and mouse
data sets with an average quality score threshold of 20, and 2
and 4 allowed mismatches of primers for the human and mouse
data sets, respectively. The two data sets were sequenced in the
same run, but in different lanes. We present here the numbers
of sequences attributed to each dataset and the cleaning results
using Ig-HTS-Cleaner. The list of MID tags and primers used in
this specific run can be found in Table 1.

Ig-Indel-Identifier—PERFORMANCE AND VALIDATION
We tested the performance of Ig-Indel-Identifier on the first
dataset described above. The original study included 29 samples,
but after cleaning with Ig-HTS-Cleaner, five samples out of the 29
yielded fewer than 30 sequences each, and these sequences were
discarded from further analyses due to lack of interest. Data from
24 samples, which originally contained 36,944 sequences, were
taken from the output of Ig-HTS-Cleaner. Out of these sequences,
33,767 sequences did not contain indels at all; this is reason-
able, since SHM inserts mostly single base substitutions (Liu and
Schatz, 2009; Steele, 2009). On the other hand, 3177 sequences
contained indels (both uncertain and artifact), representing 8.6%
of all sequences. Of the latter, 93 sequences with uncertain indels
and 3084 with artifact indels were found (Table 4).

Applying Ig-Indel-Identifier on the data set of 44,617 reads
took approximately 5 min to run on an Intel® core™2 CPU 6700,
2 GB RAM 2.67 GHz. Regarding memory complexity, the pro-
gram saves the reads for the whole running time in a special
data structure, representing O(n × k) memory, where n repre-
sents the length of a sequence and k represents the number of
sequences. For each sequence, both the sequence and its GL
(consensus) sequence are being compared, representing addi-
tional O(n) memory space.

Table 3 | A summary of the Ig-HTS-Cleaner results: human and mouse data sets of 500 K sequences together.

Organism Number of sequences

with tags

Number of sequences

without primers

Number of sequences

that failed in due to

length

Number of sequences

that failed in quality

check

Number of remaining

sequences

Human 116,546 3248 4 10 113,284

Mouse 410,352 143,729 271 4 266,348

Frontiers in Immunology | B Cell Biology December 2012 | Volume 3 | Article 386 | 12

http://www.frontiersin.org/B_Cell_Biology
http://www.frontiersin.org/B_Cell_Biology
http://www.frontiersin.org/B_Cell_Biology/archive

Michaeli et al. Ig-HTS-Cleaner and Ig-Indel-Identifier

Table 4 | Numbers of sequences after Ig-Indel-Identifier cleaning.

Total Number of sequences

w/o indels

Total number of

sequences with indels

% of sequences with

indels

Number of uncertain

indelsa

Number of sequences

with artifact indelsb

36,944 33,767 3177 8.6 93 3084

aAn uncertain indel is an indel in a single sequence that does not belong to a multi-sequence clone.
bAn artifact indel is an indel near a HPT, where no other sequences in the same clone contain the same indel (and is not in a single sequence).

TESTING Ig-Indel-Identifier ON SIMULATED DATA
We collected 504 sequences without indels, from 85 clones with
sizes ranging from a single sequence to 73 sequences. These
sequences were taken from seven different samples from the
dataset described above. The simulation ran on each clone 10
independent times, each time with different random variables as
described above, in order to extend the dataset. These simulations
yielded a total of 10,475 sequences, out of which 10,308 sequences
had artifact deletions.

We then ran Ig-Indel-Identifier on each clone from the sim-
ulated dataset, using all possible combinations of the following
program parameters: the minimum HPT length (with values
ranging between 2 and 5) and the required number of sequences
sharing the same indel for an indel to be considered a legitimate
indel (with values ranging between 1 and 12). The former value
range was based on our finding that there were no HPTs of length
higher than five in our dataset.

For each parameter combination, we recorded how many arti-
fact deletions were identified and calculated the percentage of
accuracy (the number of identified deletions divided by the total
number of artifact deletions and multiplied by 100).

As expected, the higher the value for HPT length, the lower the
number of identified artifact deletions. This is reasonable since
the probability of a HPT to be found in a sequence decreases with
its length (HPTs of length two are much more frequent than HPTs
of length five).

On the contrary, but also as expected, the higher the required
number of sequences sharing the same deletion, the more arti-
fact deletions were identified, designated as suspect and finally
discarded. This is also reasonable, since the higher the required
number of sequences sharing the same indel, the more stringent
the requirements, and hence more indels (and sequences) do not
fulfill these requirements.

Table 5 presents the average required number of sequences
sharing the same deletion in each HPT length that was needed
to identify 50% of the artifact deletions, or to identify all the arti-
fact deletions—or as many as the program managed to identify.
Due to the fact that Ig-Indel-Identifier was run individually on
different samples (in our case we used seven different samples to
collect the initial dataset of clones and sequences without indels
from), and since each Ig-Indel-Identifier run included all com-
binations as explained above, the results in Table 5 represent the
average numbers out of 336 (7 × 4 × 12) runs.

When the minimal HPT length was 2, 50% of the artifact
deletions were identified only when we required more than five
sequences sharing the same deletion (on average) for a deletion
to be considered legitimate. The maximal number of the artifact
deletions identified out of the total deletions in the dataset was

Table 5 | The numbers of sequences sharing an indel within a clone

that are required in order for it to be considered legitimate, that

allow the indicated level of artifact indel identification.

HPT length 50% identification Maximal identification

2 5 10

3 7 10

4 – 9*

5 – 7*

Numbers marked with a “” indicate that for the indicated HPT length, the

program achieved less than 50% identification even with the indicated number

of required sequences. Higher values gave the same results, so the minimal

values of the required number of sequences in a clone that share the same

indel were chosen.

obtained only when we required more than 10 sequences sharing
the same deletion (on average). Similarly, when the HPT length
was 3 (or 4), 50% of the artifact deletions were identified when we
required more than 7 (or 9) sequences sharing the same deletion
(on average). For HPT = 3, the maximal number of the artifact
deletions identified out of the total deletions in the dataset was
when we required more than 10 sequences sharing the same dele-
tion (on average). With HPTs of length 4–5, no required number
of sequences sharing the same indel could help identify more than
50% of the artifact indels. If the HPT length is set to 4 in Ig-Indel-
Identifier, the program does not consider HPTs of length less than
4 and hence “misses” those indels, which brings the % identifi-
cation down no matter now many sequences we require. When
the HPT length was 5, the maximal number of the artifact dele-
tions identified out of the total deletions in the dataset was when
we required more than seven sequences sharing the same dele-
tion (on average). Again, most of the deletions occurred near or
inside HPTs of length less than 5, thus, no matter what the num-
ber of sequences sharing the same indel was, most of the indels
were missed. Based on these results, our conclusion is that one
should consider using either 2 or 3 as the values for HPT length
in Ig-Indel-Identifier; otherwise the program would miss many
artifact indels. Of course, it would be more efficient for each user
to investigate their data for appearances of indels near or inside
HPTs and lengths of the latter, in order to decide on the appropri-
ate parameter values. We also recommend demanding as many
sequences to share the same indel as possible (each user should
optimize this number for their specific dataset).

In addition, we tested Ig-Indel-Identifier performance on 2355
Ig Sanger sequences from data published on B cells from autoim-
mune diseases (AI) (Zuckerman et al., 2010a,b) and lymphomas
(Zuckerman et al., 2010c). The Sanger sequences barely contained

www.frontiersin.org December 2012 | Volume 3 | Article 386 | 13

http://www.frontiersin.org
http://www.frontiersin.org/B_Cell_Biology/archive

Michaeli et al. Ig-HTS-Cleaner and Ig-Indel-Identifier

Table 6 | Numbers of Sanger and 454 sequences after Ig-Indel-Identifier cleaning.

Sequencing

method

Sample

(number of

sequences in

the sample)

Number of

indels found in

the sample

Number of

sequences

with artifact

indelsa

Number of

uncertain

indelsa

Number of

sequences w/o

indels or with

legitimate

indels

Total number

of point

mutations in

the sample

Number of

point

mutations in

AID targeting

motifs

Sanger MG (33) 24 2 0 31 459 11

MS (78) 4 0 0 78 2709 25

Myositis-
Bradshaw
(33)

25 4 0 29 781 0

RA-Gause (28) 7 1 2 25 356 6

RA-Miura (123) 125 10 73 41 2495 29

SS-Gellrich (70) 2 0 0 70 1269 13

SS-Jacobi (190) 94 14 58 118 1226 22

BL-Chapman
(22)

0 0 0 22 465 1

MZL-Zhu (72) 0 0 0 72 587 8

DLBCL (708) 98 17 0 692 19,416 209

FL (772) 87 31 0 741 19,249 226

PCNSL (226) 4 2 0 224 7204 127

454 LN-1 (507) 2276 24 1 482 4631 2

LN-2 (913) 8164 82 1 837 5682 0

LN-3 (585) 5803 30 0 557 3019 0

LN-4 (1137) 17,831 280 2 887 5744 0

aSame as in Table 4.

MG, Myasthenia Gravis; MS, Multiple Sclerosis; RA, Rheumatoid Arthritis; SS, Sjögren’s Syndrome; BL, Burkitt’s Lymphoma; MZL, Marginal Zone Lymphoma;

DLBCL, Diffuse Large B Cell Lymphoma; FL, Follicular Lymphoma; PCNSL, Primary Central Nervous System Lymphoma; LN, Lymph Node.

For the original studies from which the sequences were taken, see Zuckerman et al. (2010a,b,c).

indels (Table 6). However, when they did, most of the indels were
uncertain, due to the small numbers of sequences sampled using
the Sanger method. Only a small proportion of the sequences
contained artifact indels. Therefore, the many indels observed
in the 454 sequences and identified by Ig-Indel-Identifier are
probably sequencing errors.

DISCUSSION
HTS is increasingly popular in various research fields such as
immunology, cancer research, and evolutionary biology. The
enormous amounts of data generated by HTS require the devel-
opment of new and efficient data processing algorithms. There
are already several tools for cleaning and analysis of HTS data, but
no dedicated program for Ig genes has been made publicly avail-
able up to this work. In this paper, we present Ig-HTS-Cleaner,
a program that successfully performs the pre-processing of Ig
sequences derived from HTS, and Ig-Indel-Identifier, a program
that precisely distinguishes between legitimate and artifact indels

which are typical of 454 HTS (and discards the latter), and also
discards sequences containing point mutations with low quality
score that appear only once in a clone. The two programs are
independent of each other or any other tools, and are applicable
to other sequences, in addition to Ig genes, and other sequencing
platforms in addition to 454.

While the rules defined in Ig-Indel-Identifier do not guaran-
tee that we identify all sequencing artifacts, it is known that HTS
using the 454 platform mostly introduces indels near HPTs (Huse
et al., 2007), while SHM of Ig genes mostly introduces point
mutations rather than indels (Liu and Schatz, 2009; Steele, 2009).
Moreover, most features of the SHM process are studied through
analysis of point mutations (Zuckerman et al., 2010a,b,c). Thus,
on one hand, the elimination of a large fraction of the artifact
indels helps us retain the legitimate sequences that—having fewer
indels—are easier to align and analyze further. On the other hand,
the remaining artifact indels that may have not been eliminated
do not affect the measurements of mutation characteristics.

Frontiers in Immunology | B Cell Biology December 2012 | Volume 3 | Article 386 | 14

http://www.frontiersin.org/B_Cell_Biology
http://www.frontiersin.org/B_Cell_Biology
http://www.frontiersin.org/B_Cell_Biology/archive

Michaeli et al. Ig-HTS-Cleaner and Ig-Indel-Identifier

The next step in analyzing Ig genes is to identify the GL
V(D)J segments used in the unmutated (ancestor) sequences,
and then assign the sequences into clonally-related groups. For
gene segment identification, we use either SoDA (Volpe et al.,
2006) or iHMMune-align (Gaëta et al., 2007). Our automated
pipeline, which follows the above-described processes of cleaning
the data, removing indels and identifying GL segments, contains
our program “Ig_Clone_Finder©,” which groups the sequences
into clones based only on their V, D, and J segments. The weak-
ness of this method is that two different rearrangements using
the same V(D)J segments may be grouped together into the same
clone; this necessitates manual checking of groups that clearly seg-
regate into two or more different clones. A more sophisticated
method, based on sequence clustering and the use of an empirical
cut-off, was recently published by Chen et al. (2010); however, it
has yet to be tested on large data sets.

Another weak point of HTS analysis is identifying chimeric
(hybrid) sequences generated during PCR or HTS. It is essential to
discard such sequences before performing repertoire and hyper-
mutation analyses. Although there are a few existing tools that
identify and discard chimeric sequences from HTS data (Huber
et al., 2004), these programs are not suitable for use with Ig
gene sequences. These programs depend on reference sequences
that do not exist for Ig gene sequences, due to the complexity
of Ig gene rearrangements and mutations, which make almost
each sequence unique. There are several reasons why such a tool
has not been fully developed yet for Ig genes, although HTS
is already available and is extensively used. One major reason
is the large homology between V segments. In order to find a
chimeric sequence, one must recognize the two most probable

V segments [obtained by e.g., SoDA2 (Munshaw and Kepler,
2010) or iHMMune-Align (Gaëta et al., 2007)] that are likely to
have been merged to create the suspected sequence. The prob-
lem is that GL genes from the same family can only diverge by
up to 25% (by definition) and are usually much more similar,
while mutated Ig genes can diverge by several tens of mutations
(Cook and Tomlinson, 1995; Rajewsky, 1996). Thus, it is often
impossible to identify whether the mismatches in the alignment
are due to SHM of the suspected sequence, or due to SNPs that
distinguish between the two almost identical V segments. Due
to these reasons, we still search for chimeric sequences manually.
However, discarding sequences that are too short or too long to be
legitimate Ig gene sequences, as we do, probably gets rid of some
obvious chimeras.

Technologies for HTS and the amounts of sequences generated
using them continue to evolve. For this reason, we developed Ig-
HTS-Cleaner and Ig-Indel-Identifier, two independent programs
for cleaning high-throughput sequences. We hope these programs
would be useful to the research community.

ACKNOWLEDGMENTS
The authors are indebted to Dr. Deborah Dunn-Walters for crit-
ical reading of the manuscript. This work was supported in
parts by an Israel Science Foundation [grant number 270/09,
to Ramit Mehr and Iris Barshack]; and a Human Frontiers
Science Program Research Grant [to Ramit Mehr]. The work
was part of Miri Michaeli’s studies toward the MSc degree in
Bar-Ilan University, and she was supported by a Combined
Technologies Scholarship from the Israeli Council for Higher
Education.

REFERENCES
Ademokun, A., Wu, Y.-C., and Dunn-

Walters, D. K. (2010). The age-
ing B cell population: composi-
tion and function. Biogerontology
11, 125–137.

Albers, C. A., Lunter, G., Macarthur,
D. G., McVean, G., Ouwehand, W.
H., and Durbin, R. (2011). Dindel:
accurate indel calls from short-read
data. Genome Res. 21, 961–973.

Aronesty, E. (2011). ea-utils: Command-
line Tools for Processing Biological
Sequencing Data. Available online at:
http://code.google.com/p/ea-utils

Bansal, V., and Libiger, O. (2011). A
probabilistic method for the detec-
tion and genotyping of small indels
from population-scale sequence
data. Bioinformatics 27, 2047–2053.

Barak, M., Zuckerman, N. S., Edelman,
H., Unger, R., and Mehr, R. (2008).
IgTree: creating Immunoglobulin
variable region gene lineage trees.
J. Immunol. Methods 338, 67–74.

Blanca, J. M., Pascual, L., Ziarsolo,
P., Nuez, F., and Cañizares, J.
(2011). ngs _ backbone: a pipeline
for read cleaning, mapping and
SNP calling using next generation

sequence. BMC Genomics 12:285.
doi: 10.1186/1471-2164-12-285

Bolger, A., and Giorgi, F. Trimmomatic:
A Flexible Read Trimming Tool for
Illumina NGS Data. Available online
at: http://www.usadellab.org/cms/
index.php?page=trimmomatic

Boyd, S. D., Gaëta, B. A., Jackson,
K. J. L., Fire, A. Z., Marshall, E.
L., Merker, J. D., et al. (2010).
Individual variation in the
germline Ig gene repertoire inferred
from variable region gene rear-
rangements. J. Immunol. 184,
6986–6992.

Boyd, S. D., Marshall, E. L., Merker,
J. D., Maniar, J. M., Zhang,
L. N., Sahaf, B., et al. (2009).
Measurement and clinical mon-
itoring of human lymphocyte
clonality by massively parallel V-D-J
pyrosequencing. Sci. Transl. Med. 1,
12ra23.

Buffalo, V. Scythe. Available online
at: https://github.com/vsbuffalo/
scythe

Campbell, P. J., Pleasance, E. D.,
Stephens, P. J., Dicks, E., Rance,
R., Goodhead, I., et al. (2008).
Subclonal phylogenetic structures

in cancer revealed by ultra-deep
sequencing. Proc. Natl. Acad. Sci.
U.S.A. 105, 13081–13086.

Chen, Z., Collins, A. M., Wang,
Y., and Gaëta, B. A. (2010).
Clustering-based identification of
clonally-related immunoglobulin
gene sequence sets. Immunome Res.
6(Suppl. 1), S4.

Cook, G. P., and Tomlinson, I. M.
(1995). The human immunoglobu-
lin VH repertoire. Immunol. Today
16, 237–242.

Dalca, A. V., Rumble, S. M., Levy, S.,
and Brudno, M. (2010). VARiD: a
variation detection framework for
color-space and letter-space plat-
forms. Bioinformatics 26, i343–i349.

Dunn-Walters, D. K., and Ademokun,
A. (2010). B cell repertoire and
ageing. Curr. Opin. Immunol. 22,
514–520.

Falgueras, J., Lara, A. J., Fernández-
Pozo, N., Cantón, F. R.,
Pérez-Trabado, G., and Claros,
M. G. (2010). SeqTrim: a high-
throughput pipeline for pre-
processing any type of sequence
read. BMC Bioinformatics 11:38.
doi: 10.1186/1471-2105-11-38

Gaëta, B. A., Malming, H. R., Jackson,
K. J. L., Bain, M. E., Wilson,
P., and Collins, A. M. (2007).
iHMMune-align: hidden Markov
model-based alignment and iden-
tification of germline genes in
rearranged immunoglobulin gene
sequences. Bioinformatics 23,
1580–1587.

Galan, M., Guivier, E., Caraux, G.,
Charbonnel, N., and Cosson,
J.-F. (2010). A 454 multiplex
sequencing method for rapid
and reliable genotyping of highly
polymorphic genes in large-scale
studies. BMC Genomics 11:296. doi:
10.1186/1471-2164-11-296

Gibson, K. L., Wu, Y.-C., Barnett,
Y., Duggan, O., Vaughan, R.,
Kondeatis, E., et al. (2009). B-cell
diversity decreases in old age and is
correlated with poor health status.
Aging cell 8, 18–25.

Gordon, A. FASTX-Toolkit. Available
online at: http://hannonlab.cshl.
edu/fastxtoolkit/

Huber, T., Faulkner, G., and
Hugenholtz, P. (2004). Bellerophon:
a program to detect chimeric
sequences in multiple sequence

www.frontiersin.org December 2012 | Volume 3 | Article 386 | 15

http://code.google.com/p/ea-utils
http://www.usadellab.org/cms/index.php?page=trimmomatic
http://www.usadellab.org/cms/index.php?page=trimmomatic
https://github.com/vsbuffalo/scythe
https://github.com/vsbuffalo/scythe
http://hannonlab.cshl.edu/fastx_toolkit/
http://hannonlab.cshl.edu/fastx_toolkit/
http://www.frontiersin.org
http://www.frontiersin.org/B_Cell_Biology/archive

Michaeli et al. Ig-HTS-Cleaner and Ig-Indel-Identifier

alignments. Bioinformatics 20,
2317–2319.

Huse, S. M., Huber, J. A., Morrison,
H. G., Sogin, M. L., and Welch,
D. M. (2007). Accuracy and qual-
ity of massively parallel DNA
pyrosequencing. Genome Biol. 8,
R143–R151.

John, J. S. SeqPrep. Available online at:
https://github.com/jstjohn/SeqPrep

Koboldt, D. C., Chen, K., Wylie, T.,
Larson, D. E., McLellan, M. D.,
Mardis, E. R., et al. (2009). VarScan:
variant detection in massively par-
allel sequencing of individual and
pooled samples. Bioinformatics 25,
2283–2285.

Kong, Y. (2011). Btrim: a fast,
lightweight adapter and quality
trimming program for next-
generation sequencing technologies.
Genomics 98, 152–153.

Krueger, F. Trim Galore! Available
online at: http://www.

bioinformatics.babraham.ac.
uk/projects/trimgalore/

Larkin, M. A., Blackshields, G., Brown,
N. P., Chenna, R., McGettigan, P.
A., McWilliam, H., et al. (2007).
Clustal W and Clustal X version 2.0.
Bioinformatics 23, 2947–2948.

Lassmann, T., Hayashizaki, Y., and
Daub, C. O. (2009). TagDust—a
program to eliminate artifacts
from next generation sequenc-
ing data. Bioinformatics 25,
2839–2840.

Lindgreen, S. (2012). AdapterRemoval:
Easy Cleaning of Next Generation
Sequencing Reads. Available online
at: http://code.google.com/p/
adapterremoval/

Liu, M., and Schatz, D. G. (2009).
Balancing AID and DNA repair dur-
ing somatic hypermutation. Trends
Immunol. 30, 173–181.

MacCarthy, T., Kalis, S. L., Roa, S.,
Pham, P., Goodman, M. F., Scharff,

M. D., et al. (2009). V-region
mutation in vitro, in vivo, and
in silico reveal the importance
of the enzymatic properties of
AID and the sequence environment.
Proc. Natl. Acad. Sci. U.S.A. 106,
8629–8634.

Margulies, M., Egholm, M., Altman, W.
E., Attiya, S., Bader, J. S., Bemben, L.
A., et al. (2005). Genome sequenc-
ing in microfabricated high-density
picolitre reactors. Nature 437,
376–380.

Martin, M. (2011). Cutadapt removes
adapter sequences from high-
throughput sequencing reads.
EMBnet J. 17, 10–12.

Morgan, M., Anders, S., Lawrence,
M., Aboyoun, P., Pagès, H., and
Gentleman, R. (2009). ShortRead:
a bioconductor package for input,
quality assessment and exploration
of high-throughput sequence data.
Bioinformatics 25, 2607–2608.

Munshaw, S., and Kepler, T. B. (2010).
SoDA2: a Hidden Markov Model
approach for identification of
immunoglobulin rearrangements.
Bioinformatics 26, 867–872.

Pandey, R. V., Nolte, V., and Schlötterer,
C. (2010). CANGS: a user-friendly
utility for processing and analyz-
ing 454 GS-FLX data in biodiversity
studies. BMC Res. Notes 3:3. doi:
10.1186/1756-0500-3-3

Rajewsky, K. (1996). Clonal selection
and learning in the antibody system.
Nature 381, 751–758.

Scheid, J. F., Mouquet, H., Feldhahn,
N., Seaman, M. S., Velinzon, K.,
Pietzsch, J., et al. (2009). Broad
diversity of neutralizing antibod-
ies isolated from memory B cells
in HIV-infected individuals. Nature
458, 636–640.

Schmieder, R., Lim, Y. W., Rohwer,
F., and Edwards, R. (2010).
TagCleaner: identification and

removal of tag sequences from
genomic and metagenomic datasets.
BMC Bioinformatics 11:341. doi:
10.1186/1471-2105-11-341

Steele, E. J. (2009). Mechanism of
somatic hypermutation: critical
analysis of strand biased muta-
tion signatures at A:T and G:C
base pairs. Mol. Immunol. 46,
305–320.

Tabibian-Keissar, H., Zuckerman, N.
S., Barak, M., Dunn-Walters, D.
K., Steiman-Shimony, A., Chowers,
Y., et al. (2008). B-cell clonal
diversification and gut-lymph
node trafficking in ulcerative col-
itis revealed using lineage tree
analysis. Eur. J. Immunol. 38,
2600–2609.

Unknown. FAR – The Flexible Adapter
Remover. Available online at: http://
sourceforge.net/apps/mediawiki/
theflexibleadap/

Volpe, J. M., Cowell, L. G., and Kepler,
T. B. (2006). SoDA: implementa-
tion of a 3D alignment algorithm
for inference of antigen receptor
recombinations. Bioinformatics 22,
438–444.

Wu, Y.-C., Kipling, D., Leong, H. S.,
Martin, V., Ademokun, A., and
Dunn-Walters, D. K. (2010). High-
throughput immunoglobulin reper-
toire analysis distinguishes between
human IgM memory and switched
memory B-cell populations. Blood
116, 1070–1078.

Zuckerman, N. S., Hazanov, H., Barak,
M., Edelman, H., Hess, S., Shcolnik,
H., et al. (2010a). Somatic hyper-
mutation and antigen-driven selec-
tion of B cells are altered in autoim-
mune diseases. J. Autoimmun. 35,
325–335.

Zuckerman, N. S., Howard, W. A.,
Bismuth, J., Gibson, K. L., Edelman,
H., Berrih-Aknin, S., et al. (2010b).
Ectopic GC in the thymus of

myasthenia gravis patients show
characteristics of normal GC. Eur. J.
Immunol. 40, 1150–1161.

Zuckerman, N. S., McCann, K. J.,
Ottensmeier, C. H., Barak, M.,
Shahaf, G., Edelman, H., et al.
(2010c). Immunoglobulin gene
diversification and selection in
follicular lymphoma, diffuse large B
cell lymphoma and primary central
nervous system lymphoma revealed
by lineage tree and mutation analy-
ses. Int. Immunol. 22, 875–887.

Conflict of Interest Statement: The
authors declare that the research
was conducted in the absence of any
commercial or financial relationships
that could be construed as a potential
conflict of interest.

Received: 31 July 2012; paper pending
published: 05 September 2012; accepted:
30 November 2012; published online: 28
December 2012.
Citation: Michaeli M, Noga H,
Tabibian-Keissar H, Barshack I
and Mehr R (2012) Automated
cleaning and pre-processing of
immunoglobulin gene sequences from
high-throughput sequencing. Front.
Immun. 3:386. doi: 10.3389/fimmu.
2012.00386
This article was submitted to Frontiers in
B Cell Biology, a specialty of Frontiers in
Immunology.
Copyright © 2012 Michaeli, Noga,
Tabibian-Keissar, Barshack and Mehr.
This is an open-access article dis-
tributed under the terms of the Creative
Commons Attribution License, which
permits use, distribution and repro-
duction in other forums, provided
the original authors and source are
credited and subject to any copyright
notices concerning any third-party
graphics etc.

Frontiers in Immunology | B Cell Biology December 2012 | Volume 3 | Article 386 | 16

https://github.com/jstjohn/SeqPrep
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
http://code.google.com/p/adapterremoval/
http://code.google.com/p/adapterremoval/
http://sourceforge.net/apps/mediawiki/theflexibleadap/
http://sourceforge.net/apps/mediawiki/theflexibleadap/
http://sourceforge.net/apps/mediawiki/theflexibleadap/
http://dx.doi.org/10.3389/fimmu.2012.00386
http://dx.doi.org/10.3389/fimmu.2012.00386
http://dx.doi.org/10.3389/fimmu.2012.00386
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/B_Cell_Biology
http://www.frontiersin.org/B_Cell_Biology
http://www.frontiersin.org/B_Cell_Biology/archive

	Automated cleaning and pre-processing of immunoglobulin gene sequences from high-throughput sequencing
	Introduction
	Materials and Methods
	Ig-HTS-Cleaner Input and Output
	Ig-HTS-Cleaner Algorithm
	MID tag finding
	Primer identification
	Length check
	Quality check

	Ig-Indel-Identifier Input and Output
	Ig-Indel-Identifier Algorithm
	Creating a simulated dataset for testing Ig-Indel-Identifier

	Results
	Ig-HTS-Cleaner—Performance and Validation
	Ig-Indel-Identifier—Performance and Validation
	Testing Ig-Indel-Identifier on Simulated Data

	Discussion
	Acknowledgments
	References

