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Neutrophil extracellular traps (NETs) are beneficial antimicrobial defense structures that
can help fight against invading pathogens in the host. However, recent studies reveal that
NETs exert adverse effects in a number of diseases including those of the lung. Many
inflammatory lung diseases are characterized with a massive influx of neutrophils into
the airways. Neutrophils contribute to the pathology of these diseases. To date, NETs
have been identified in the lungs of cystic fibrosis (CF), acute lung injury (ALI), allergic
asthma, and lungs infected with bacteria, virus, or fungi. These microbes and several host
factors can stimulate NET formation, or NETosis. Different forms of NETosis have been
identified and are dependent on varying types of stimuli. All of these pathways however
appear to result in the formation of NETs that contain DNA, modified extracellular histones,
proteases, and cytotoxic enzymes. Some of the NET components are immunogenic
and damaging to host tissue. Innate immune collectins, such as pulmonary surfactant
protein D (SP-D), bind NETs, and enhance the clearance of dying cells and DNA by
alveolar macrophages. In many inflammatory lung diseases, bronchoalveolar SP-D levels
are altered and its deficiency results in the accumulation of DNA in the lungs. Some of the
other therapeutic molecules under consideration for treating NET-related diseases include
DNases, antiproteases, myeloperoxidase (MPO) inhibitors, peptidylarginine deiminase-4
inhibitors, and anti-histone antibodies. NETs could provide important biological advantage
for the host to fight against certain microbial infections. However, too much of a good
thing can be a bad thing. Maintaining the right balance of NET formation and reducing the
amount of NETs that accumulate in tissues are essential for harnessing the power of NETs
with minimal damage to the hosts.
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INTRODUCTION
Although neutrophils are critical to our immune system in the
event of microbial infections, an overabundance of neutrophils
in circulation or in tissues has been implicated to be a prob-
lem in a number of lung diseases. Patients with inflammatory
lung diseases such as cystic fibrosis (CF), severe asthma, chronic
obstructive pulmonary disease (COPD), acute lung injury (ALI),
acute respiratory distress syndrome (ARDS), and emphysema all
exhibit various degrees of neutrophil influx; these neutrophils
are a major contributor to these diseases (Downey et al., 2009;
Grommes and Soehnlein, 2011). A massive influx of neutrophils is
seen in acute pulmonary infections, pneumonia, and sepsis. Many
of these lung conditions lead to ALI and tissue damage (Grommes
and Soehnlein, 2011). Neutrophils and neutrophil extracellular
traps (NETs) found in these inflammatory conditions cause tis-
sue injury and severe inflammation in the lung (Villanueva et al.,
2011; Saffarzadeh et al., 2012). NETs are extracellular DNA com-
plexed with antimicrobial proteins, and help to fight infectious
agents. However, an excess of NETs contributes to the pathology
of a number of diseases. In the lungs, NETs have been identi-
fied in conditions of CF (Manzenreiter et al., 2012), ALI (Thomas
et al., 2012), and infections with bacteria (Douda et al., 2011b),

fungi (Bruns et al., 2010), and viruses (Narasaraju et al., 2011; Ng
et al., 2012). In this review, neutrophil and NET functions during
inflammation and infection will be discussed, followed by their
contribution to tissue injury, autoimmunity, ALI, CF, and asthma.
Lastly, we will discuss the targeting of NETs in therapy.

NEUTROPHIL FUNCTION AND RECRUITMENT DURING
INFLAMMATION AND INFECTION
Neutrophils are an important component of our host defense
against invading pathogens, often referred to as the immune sys-
tem’s first line of defense against infection. The neutrophil is the
most abundant leukocyte comprising approximately 60% of all
leukocytes found in circulating blood in humans. They are eas-
ily identified by their banded or multi-lobed nuclear structure,
thus giving them their synonymous name of polymorphonuclear
leukocytes (PMNs) (Nathan, 2006). Many of these neutrophils
enter the lungs during infections and form NETs. Dysfunctions in
NETosis and NET clearance can severely damage this vital organ.

ANTIMICROBIAL MECHANISMS OF NEUTROPHILS
The general dogma was that neutrophils fight against microor-
ganisms by directly phagocytosing the targets or by releasing
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toxic components via degranulation. Phagocytosis is one of the
mechanisms identified in neutrophils that can directly engulf
and digest potential pathogens as well as cell debris. Internalized
pathogens are contained in phagosomes, where antimicrobial
peptides from cellular granules and reactive oxygen species (ROS)
produced by NADPH oxidase work together to create a toxic
environment for most pathogens (Underhill and Ozinsky, 2002).
Degranulation is the release of toxic ROS and antimicrobial
granular proteins into the extracellular space. Neutrophil gran-
ules are categorized into three different types based on their
contents: primary (azurophilic), secondary (specific), and ter-
tiary (gelatinase). The presence of different types of granules
in the neutrophils is dependent on the time of granule for-
mation relative to the neutrophil maturation stage. This starts
with the formation of primary granules, followed by secondary
and tertiary granules (Gullberg et al., 1997). Primary granules
contain MPO, elastase, cathepsin G, proteinase 3, defensins,
and lysozyme; secondary granules contain collagenase, gelati-
nase, cystatin, lysozyme, and lactoferrin; tertiary granules contain
gelatinase, lysozyme, and arginase. As such, a neutrophil will
accumulate all three types of granules by the end of maturation.
Collectively, these granules contain many antimicrobial proteins
that function to fight infection in the lungs and other organs
(Borregaard et al., 2007).

Neutrophils also indirectly defend the host against microbes
by participating in elaborate cell signaling networks involving
cytokines, chemokines, survival and growth factors that cause
downstream pro-inflammatory effects. Neutrophils can secrete
pro-inflammatory cytokines (e.g., TNF-α, IL-1β), CC and CXC
chemokines (e.g., IL-8, IFN, IP-10, MIP-1α). The secretion itself
is regulated by immunoregulatory cytokines (e.g., IFN-γ, IL-4,
IL-13, IL-10) (Kasama et al., 2005). These factors can increase the
production of various chemokines and cytokines to further regu-
late neutrophil functions (Kato and Kitagawa, 2006). Importantly,
some of these factors can participate in recruiting more neu-
trophils or other leukocytes to the site of infection or sterile
inflammation (Cassatella et al., 1997).

NEUTROPHIL MIGRATION INTO THE LUNGS
Typically, neutrophils are found in higher concentrations in
the pulmonary capillaries compared to systemic blood even in
the absence of inflammatory stimuli. This phenomenon allows
neutrophils to readily migrate into the lungs in response to
inflammatory stimuli. Neutrophils undergo cellular deforma-
tion in order to emigrate between endothelial cells of the pul-
monary capillaries to reach the alveolar air space (Doerschuk
et al., 1999). During inflammation, neutrophils become activated
upon stimulation and may undergo processes of ROS production,
degranulation, NETs formation, or other functions. Activation
of neutrophils is required before migration into the lungs (Ley
et al., 2007). Neutrophil activating factors may be derived
from host [e.g., platelet activating factor (PAF), leukotriene B4,
IL-8] or from pathogens [e.g., formylated peptide (fMLP) and
lipopolysaccharide (LPS) (Krause et al., 1985; Martin et al., 1989;
Anderson et al., 1991; Corteling et al., 2002; Mukaida, 2003)].
The chemokines that are most critical for neutrophil recruit-
ment in the lungs include IL-8 (CXCL8) in humans, and MIP-2

(CXCL2) and KC (CXCL1) in rodents (Kobayashi, 2008). These
chemokines are secreted by neutrophils themselves, epithelial
cells, or macrophages (Cassatella et al., 1997; Matsukawa and
Yoshinaga, 1999; Yamashiro et al., 2001; Kasama et al., 2005; Kato
and Kitagawa, 2006).

NETs
Aside from the more traditional mechanisms of phagocyto-
sis and degranulation, neutrophils can also generate NETs to
directly combat microbes during inflammation and infection
(Brinkmann et al., 2004). Takei et al. first described this novel
form of neutrophil cell death to be distinct from apoptosis
and necrosis in 1996 (Takei et al., 1996). This was later stud-
ied by Brinkmann et al. (2004), who coined the term NETosis
for this cell death process. NETs are cast as decondensed chro-
matin fibers coated with antimicrobial histones and granular
proteins (Brinkmann et al., 2004) (Figure 1). To date, NETs and
NET-like structures have been identified by several labs as a
host defense mechanism in many organisms including humans
(Manzenreiter et al., 2012), mice (Ermert et al., 2009a), chickens
(HETs) (Chuammitri et al., 2009), cats (Wardini et al., 2010), cat-
tle (Aulik et al., 2010), fish (Palić et al., 2007b), insects (Altincicek
et al., 2008), and even plants (Wen et al., 2009). Conservation of
NET function across species suggests an evolutionary advantage
of NETs in immune defense.

NET INDUCTION
The formation of NETs (NETosis) is stimulated by a variety of
agents (Table 1). Microorganisms such as protozoa (Guimarães-
Costa et al., 2009; Abi Abdallah et al., 2012), fungi (Urban et al.,
2006, 2009; Ermert et al., 2009b), viruses (Narasaraju et al., 2011;
Ng et al., 2012; Saitoh et al., 2012), bacteria (Brinkmann et al.,
2004; Crotty Alexander et al., 2010), and bacterial component
LPS (Douda et al., 2011b) can induce NETosis. Host-derived
factors such as granulocyte/macrophage colony-stimulating fac-
tor (GM-CSF) with complement factor 5a (Yousefi et al., 2009),
activated platelets (Clark et al., 2007; Caudrillier et al., 2012)
and singlet oxygen (Nishinaka et al., 2011) also induce NETosis
(Table 1). The pharmacological agent phorbol-12-myristate-13-
acetate (PMA), a protein kinase C activator, is a known strong
inducer of NETosis that is routinely used in studies of NETs. The
potent neutrophil chemoattractant, IL-8, has also been shown to
induce NETosis (Brinkmann et al., 2004; Gupta et al., 2005), but
there has been some uncertainty regarding its ability to trigger
NETosis in CF airways (Marcos et al., 2010, 2011).

NETosis MECHANISM
The process of NETosis requires mature neutrophils (Martinelli
et al., 2004) and the presence of enzymes MPO, neutrophil elas-
tase (NE), and peptidylarginine deiminase type IV (PAD4) (Neeli
et al., 2008; Wang et al., 2009; Papayannopoulos et al., 2010;
Metzler et al., 2011). Upon stimulation of the neutrophil, the
nuclear envelope disintegrates to allow mixing of chromatin with
granular proteins (Brinkmann et al., 2004; Fuchs et al., 2007).
NE and MPO degrade histones and promote chromatin decon-
densation (Papayannopoulos et al., 2010). PAD4 mediates chro-
matin decondensation by hypercitrullinating positively charged
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FIGURE 1 | NETs in infected and inflamed airways. Lungs respond to
sterile injury or infection by secreting various signaling molecules. During
infection and inflammation, various cells (e.g., endothelial, epithelial,
immune cells) express inflammatory cytokines, chemokines, and growth
factors to recruit monocytes (e.g., MCP-1) and neutrophils [e.g., IL-8
(KC/MIP-2)] into the airway lumen. Neutrophils can be stimulated by a
variety of agents (e.g., bacteria, viruses, fungi, protozoa, LPS, singlet
oxygen, PMA, GM-CSF+C5a) to undergo NETosis. Release of cytotoxic
DNA–protein complexes [e.g., citrullinated histone (CitH3), neutrophil
elastase (NE), myeloperoxidase (MPO), cathelicidin, other neutrophil
proteases] not only increase mucus viscosity, but also contribute to
lung damage that can perpetuate the vicious cycle of lung injury and
inflammation. NETs are considered to be degraded by DNase enzymes.

Macrophages can also internalize and remove DNA, as well as other
cellular debris. A balance between NETosis and NET clearance is
essential for effectively clearing infectious agents with minimal damage
to the lungs. Dysregulation in these two processes can lead to lung
injury and exacerbation of lung diseases. Innate immune collectins could
help to maintain healthy lungs with minimal inflammation. SP-A,
pulmonary surfactant protein A; SP-D, pulmonary surfactant protein D.
PMN, neutrophils; M�, macrophages. Inflamed airways also have excess
mucus. The putative sequence of NETotic events in the lungs are
numbered as 1, 2, and 3. Note: Cytokines, chemokines, and growth
factors are placed near their most probable source of secretion.
However, the source and/or degree of cytokine secretion varies
depending on the stimuli.
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Table 1 | NETosis-inducing agents.

NETosis inducer In vitro In vivo Reference(s)

BACTERIA

Escherichia coli (P4 strain) 10 MOI; bovine – Clark et al., 2007; Grinberg et al.

0.01 MOI; human – 2008; Yost et al., 2009

Pseudomonas aeruginosa (PA01) 0.1–10 MOI; human 1 × 106 CFU/mouse Douda et al., 2011b; Young
et al., 2011

Staphylococcus aureus 0.01–10 MOI; human – Brinkmann et al., 2004; Pilsczek
et al., 2010

Shigella flexneri 0.01 MOI; human 2.5–3.0 × 1010/rabbit Brinkmann et al., 2004

Salmonella enteric 0.01 MOI; human – Brinkmann et al., 2004

Group A Streptococcus 0.1 MOI; human 5 × 107–2 × 108 CFU/mouse Buchanan et al., 2006; Crotty
Alexander et al., 2010

Streptococcus pneumonia 0.01 MOI; human 1 × 107/mouse Beiter et al., 2006

Mycobacterium tuberculosis 0.1–10 MOI; human – Ramos-Kichik et al., 2009

PROTOZOA

Leishmania amazonensis 10 MOI; human – Guimarães-Costa et al., 2009

Leishmania donovani 10 MOI; human – Gabriel et al., 2010

Toxoplasma gondii 250 mU/ml; human, mouse 5 × 107/mouse Abi Abdallah et al., 2012

Eimeria bovis 0.2 (sporozoites) MOI; bovine – Behrendt et al., 2010

FUNGI

Aspergillus fumigates 5 (conidia) MOI; human – Bruns et al., 2010

Candida albicans 0.01 MOI; human – Urban et al., 2006

Aspergillus nidulans 0.5 (conidia) MOI; human – Bianchi et al., 2009

VIRUS

Human immunodeficiency virus (p24 antigen) 1.0–2.4 ng/ml; human – Saitoh et al., 2012

Influenza A virus H1N1 20 MOI; human 100–500 PFU/mouse Narasaraju et al., 2011

Influenza A virus H3N2 2 MOI; mouse 2 × 105 PFU/mouse Ng et al., 2012

HOST FACTORS

GM-CSF + C5a 25 ng/ml GM-CSF + 10−7 M C5a – Yousefi et al., 2009

IL-8 (CXCL8) 2.5–10 ng/ml; human – Gupta et al., 2005

MIP-2 (CXCL2) 100 nM; human – Marcos et al., 2010, 2011

Singlet oxygen 10 μg/ml Photofrin; human – Nishinaka et al., 2011

Platelet activating factor (PAF) 10−10 − 10−7 M; human – Yost et al., 2009

Syncytiotrophoblast microparticles (STBM) 150 μg/ml; human – Gupta et al., 2005

OTHERS

Glucose oxidase 200–1000 mU/ml; human – Yost et al., 2009

Calcium ionophore (ionomycin) 5 μg/ml; zebrafish
4 μM; human

– Palić et al., 2007a; Neeli et al.,
2008

Phorbol-12-myristate-13-acetate (PMA) 25–100 nM; human – Brinkmann et al., 2004;
Remijsen et al., 2011

Bacterial component LPS, Panton-Valentine
leukocidin

100 ng/ml; human 5–25μg/mouse Brinkmann et al., 2004; Clark
et al., 2007; Pilsczek et al., 2010;
Douda et al., 2011b

arginines of specific histones to relieve electrostatic coiling of the
chromatin (Wang et al., 2009; Li et al., 2010; Leshner et al., 2012).
These DNA–protein complexes are then released extracellularly
as NETs.

As the discovery of NETs is relatively new, the mechanism of
NETosis is not clearly understood. The majority of studies reveal
that NETosis is dependent on the generation of ROS by NADPH
oxidase; however, a few studies show that NETosis may also
occur in a ROS-independent manner, for instance by stimulation
with Staphylococcus aureus (Pilsczek et al., 2010). Patients with

chronic granulomatous disease (CGD) have congenital defects in
different subunits of NADPH oxidase (Nox2) that prevent their
ability to generate ROS. Hence, the neutrophils of these patients
are unable to perform phagocytic killing and NETosis, making
them highly susceptible to life-threatening infections (Fuchs et al.,
2007). The restoration of NADPH oxidase function and NET
formation in these patients effectively protected them against
microbial infections (Bianchi et al., 2009). Singlet oxygen is a
member of the ROS family that has been shown to be essen-
tial for the formation of NETs. Singlet oxygen itself can trigger
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NETosis independent of NADPH oxidase (Nishinaka et al., 2011).
In addition to superoxide, autophagy has also been shown to
be required for the generation of NETs (Remijsen et al., 2011).
Recent evidence shows that the NETosis pathway requires cell
signaling, of which p38 MAP kinase and Raf-MEK-ERK kinase
pathways are involved (Hakkim et al., 2011; Keshari et al., 2012).
Nonetheless, depending on the stimulus, the key components
involved in the generation of NETs can vary (Parker et al., 2012)
(Table 2).

ALTERNATIVE TYPES OF EXTRACELLULAR TRAPS
Extracellular DNA traps have been more recently documented to
be not exclusive to only neutrophils. Extracellular DNA traps can
also be generated from macrophages (METs) (Hellenbrand et al.,
2013), eosinophils (EETs) (Yousefi et al., 2008; Dworski et al.,
2011), and mast cells (MCETs) (von Köckritz-Blickwede et al.,
2008; Lin et al., 2011). Nonetheless, all extracellular DNA traps are
of an immune cell origin that contains a plethora of antimicro-
bial components. Most consider NETosis as a form of cell death
distinct from classical apoptosis and necrosis since it requires
histone hypercitrullination; however, the term “cell death” may
not be entirely appropriate. In the late 1980’s, Malawista et al. of
Yale showed that enucleated neutrophils (i.e., cytoplasts) remain
viable and are capable of killing microbes (Malawista et al.,
1989). Recent studies also corroborate that cells do not neces-
sarily die after the release of extracellular DNA traps (Yousefi
et al., 2009; Pilsczek et al., 2010). Yipp et al. recently showed that
neutrophils that undergo NETosis without lysis are viable and
retain their ability to phagocytose bacteria (Yipp et al., 2012). In
another study, neutrophils were viable after being primed with
GM-CSF, then stimulated with LPS or C5a to release NETs of
mitochondrial origin (Yousefi et al., 2009). A similar study by
the same group showed that eosinophils were also viable after
the release of EETs of mitochondrial origin (Yousefi et al., 2008).
The reasoning for the viability of these cells after the release
of extracellular DNA traps is thought to be caused by the type

Table 2 | Neutrophil components involved in NETosis.

Component Function Reference(s)

Neutrophil elastase
(NE)

Chromatin
decondensation

Papayannopoulos et al.,
2010

Myeloperoxidase
(MPO)
HOCl

Chromatin
decondensation;
hypochlorite
generation

Papayannopoulos et al.,
2010; Metzler et al.,
2011; Akong-Moore
et al., 2012

Peptidylarginine
deiminase type IV
(PAD4)

Chromatin
decondensation;
histone modification

Li et al., 2010; Leshner
et al., 2012

Autophagy NETosis pathway Remijsen et al., 2011

NADPH oxidase
H2O2

Singlet oxygen

NETosis pathway
Substrate for MPO
Essential NETosis
inducer

Fuchs et al., 2007
Akong-Moore et al., 2012
Nishinaka et al., 2011

Raf-MEK-ERK NETosis pathway Hakkim et al., 2011

ERK, p38 MAPK NETosis pathway Keshari et al., 2012

of DNA released; only mitochondrial DNA was extruded while
nuclear DNA remained intact within the nucleus of the cell to
allow neutrophils to continue its function. However, recent stud-
ies challenged this idea (Pilsczek et al., 2010; Yipp et al., 2012).
In these studies, neutrophils remained viable after the release of
NETs that are of nuclear origin. Once these neutrophils were
stimulated with S. aureus, the neutrophils underwent a novel
mechanism of rapid NETosis. NETs were released via a vesicular
mechanism, in which vesicles budding from the neutrophil con-
tained nuclear DNA (Pilsczek et al., 2010). However, the stimuli
used for these studies were different. Depending on the stimulus,
neutrophils can undergo a different form of NETosis (Parker et al.,
2012).

NET-MEDIATED TISSUE INJURY AND DISEASES
Despite the advantageous properties of NETs, their ineffective
clearance and regulation can have pathological effects (Figure 1).
The antimicrobial histones and peptides coating the NET-DNA
are directly cytotoxic to tissue, and ineffective clearance of NETs
causes deleterious inflammation of host tissue. NETs, and in par-
ticular extracellular histones, can directly cause epithelial and
endothelial cell death (Xu et al., 2009; Saffarzadeh et al., 2012).
Histone administration in vivo resulted in neutrophil margina-
tion, vacuolated endothelium, intra-alveolar hemorrhage, and
macro- and microvascular thrombosis (Xu et al., 2009). Impaired
degradation and clearance of NETs has also been shown to be
linked to autoimmunity in patients with atherosclerosis (Döring
et al., 2012), rheumatoid arthritis (Rohrbach et al., 2012), small-
vessel vasculitis (SVV) (Kessenbrock et al., 2009), systemic lupus
erythematosus (SLE) (Hakkim et al., 2010; Lande et al., 2011;
Leffler et al., 2012; Liu et al., 2012), and Felty’s syndrome
(Dwivedi et al., 2012). PAD4 citrullinated histones in particu-
lar are highly immunogenic (Neeli et al., 2008). Autoantibodies
against these modified histones are seen in patients with SLE (Liu
et al., 2012), Felty’s syndrome (Dwivedi et al., 2012) and a mouse
model of rheumatoid arthritis (Rohrbach et al., 2012). The pres-
ence of autoantibodies in chronic inflammatory lung diseases has
not been investigated, but the prolonged presence of NETs in the
lungs may potentially elicit autoimmune responses.

In SLE patients, the self-DNA and antimicrobial peptides of
NETs are immunogenic complexes that can activate plasmacy-
toid dendritic cells (pDCs) and serve as autoantigens to B cells in
their production of anti-NET autoantibodies (Lande et al., 2011).
Both anti-NET antibodies and DNase 1 inhibitors were found in
the sera of SLE patients; these inhibitors prevented DNase 1 to
access NETs for degradation (Hakkim et al., 2010). C1q deposited
on NETs have also been shown to prevent NET degradation by
directly inhibiting DNase 1 (Leffler et al., 2012). The deposition
of C1q on NETs can activate complement to cause further neu-
trophil recruitment (Stokol et al., 2004; Leffler et al., 2012), which
can further exacerbate the disease. Similarly in atherosclerosis,
self-DNA and antimicrobial peptides of NET structures are auto-
antigenic and stimulate pDC-driven autoimmunity via TLR7/9
and production of type I IFN (Döring et al., 2012). As NETs
derive autoantibodies, they can also form soluble immune com-
plexes (ICs), which is hallmark of autoimmune diseases. Recently,
Chen et al. showed that ICs can induce NETosis in mice in vivo
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via FcγRIIA independent of NE, MPO, and NADPH oxidase
(Chen et al., 2012). This study implicates that FcγR may play an
important role in the NETosis pathway.

In SVV, anti-neutrophil cytoplasmic autoantibodies (ANCAs)
are strongly associated with the disease (Kallenberg et al.,
2006). Similar to ICs in SLE patients, ANCAs directed against
proteinase-3 (PR3) and MPO can stimulate neutrophils in SVV to
form NETs and promote autoimmunity (Sangaletti et al., 2012).
These neutrophil proteins (PR3, MPO) are found attached to
the chromatin scaffold of NETs and may be the host antigen
source for the generation of ANCAs. The enhanced deposition
of antimicrobial peptide LL37 (cathelicidin) onto NET-DNA was
also observed in SVV (Kessenbrock et al., 2009). The binding
of LL37 to NET-DNA can protect it from degradation (Lande
et al., 2011) and has been shown to drive the autoimmune
response and pathogenesis of SLE and psoriasis (Lande et al.,
2007). As such, LL37 may have a role in the autoimmunity
and pathogenesis of SVV as well as other NET-related diseases.
All in all, these highly immunogenic NET structures result in
the production of autoantibodies, further neutrophil recruitment
and triggering of NETosis, which create a perpetuating cycle of
autoimmune combat. Clearance of NETs from the lungs and
other sites are essential for preventing NET-associated tissue and
organ damage.

NETs AND SURFACTANT PROTEIN D (SP-D)
The lungs are lined with a pulmonary surfactant layer that con-
tains surfactant proteins (SP-) A and D. These proteins help to
prevent the lungs from infection and inflammation, especially
because airways are constantly exposed to microorganisms and
debris. SP-A and SP-D are innate immune collectins that can
opsonize pathogens, and apoptotic and necrotic cells to signal
their clearance by alveolar macrophages in the lungs and mod-
ulate pulmonary inflammation (Nayak et al., 2012). Specifically,
SP-A and SP-D contain carbohydrate recognition domains and
collagenous domains that can bind carbohydrate ligands of bac-
teria and DNA, respectively (Palaniyar et al., 2003a, 2004; Litvack
and Palaniyar, 2010). The binding of these surfactant proteins
to DNA and apoptotic cells enhances their clearance by alveo-
lar macrophages (Schagat et al., 2001; Palaniyar et al., 2003a,b,
2005). SP-D in particular has a role in reducing apoptosis of alve-
olar macrophages and pro-inflammatory cytokines (Clark et al.,
2002, 2003). As such, SP-A and SP-D have important roles in
maintaining infection- and inflammation-free airways.

Recently, our lab showed that SP-D could simultaneously bind
both NET-DNA and bacteria to help microagglutinate bacteria
and promote bacterial trapping by NETs (Douda et al., 2011b).
Currently, the factors that can suppress NETosis and promote
the clearance of NETs are unknown. The binding of SP-D to
DNA enhances the clearance of DNA by macrophages (Palaniyar
et al., 2005); however, the role of SP-D on NET-DNA clearance
is not clear. Preliminary studies from our lab suggest that SP-D
can augment the clearance of NETs by alveolar macrophages
(Douda et al., 2011a). There are a number of human inflam-
matory lung diseases that are characterized by decreased levels
of bronchoalveolar SP-D. SP-D deficiency can lead to the accu-
mulation of dying cells and increased production of anti-DNA

auto-antibodies (Palaniyar et al., 2005). These studies suggest that
SP-D is one of the important proteins for maintaining a balance
of NETs in the lungs.

ACUTE LUNG INJURY (ALI) AND ACUTE RESPIRATORY
DISTRESS SYNDROME (ARDS)
Infection-related conditions such as pneumonia, sepsis, and pul-
monary infections with viruses, bacteria, or fungi can directly
injure the lungs and cause ALI or ARDS. Non-infectious causes
(sterile injury) such as high-tidal ventilation, hyperoxia, and pul-
monary contusions also lead to ALI and ARDS (Matthay et al.,
2012). ALI is described as a lung disease with acute onset and dis-
ruption of the alveolar-capillary interface that leads to increased
microvascular permeability. As a result, protein-rich fluid from
the capillaries leaks into the alveolar space causing pulmonary
edema. ALI and ARDS have many different causes, but epithe-
lial injury is the basis of ARDS, and it is a more severe form of ALI
(Zhou et al., 2012). ALI/ARDS is characterized by a massive influx
of neutrophils into the lungs causing neutrophilic inflammation.
Excessive activation and migration of neutrophils into the lung is
a hallmark of ALI. Neutrophils are important contributors to the
progression of ALI/ARDS, and higher neutrophil concentration
in the BAL fluid of patients with ARDS is often associated with
greater severity of the disease (Grommes and Soehnlein, 2011).
Excessive neutrophils and NETs contribute to the pathology of
ALI, where NETs can directly induce lung epithelial cell death
(Saffarzadeh et al., 2012).

NETs are also found in infection-related ALI models of
influenza virus (Narasaraju et al., 2011; Ng et al., 2012), bacteria
or bacterial component LPS (Li et al., 2010; Douda et al., 2011b;
Barletta et al., 2012), and fungi (Urban et al., 2006, 2009; Hosogi
et al., 2008; Bruns et al., 2010). Toll-like receptor 4 (TLR4) is a
well-characterized pathogen recognition receptor that recognizes
pathogen-associated molecular patterns found on pathogens such
as viruses, fungi, and bacteria to initiate an immune response
(Noreen et al., 2012). LPS is an important ligand of TLR4 that
has been routinely shown to cause NETosis (Douda et al., 2011a;
Barletta et al., 2012). In the presence of LPS, activated platelets
containing TLR4, but not TLR4-deficient platelets migrate into
the lungs (Andonegui et al., 2005). These activated platelets can
bind to neutrophils to elicit neutrophil activation and induce
NETosis (Clark et al., 2007; Caudrillier et al., 2012).

NETs can also be found in ALI models of sterile injury such as
transfusion-related ALI (TRALI) (Caudrillier et al., 2012; Thomas
et al., 2012). Plasma NETs are found in both ALI and TRALI
patients. In addition to NETs, TRALI patients also have the
antibody against human neutrophil alloantigen-3a (HNA-3a) in
their blood. HNA-3a causes the most severe TRALI and has
been shown to promote NETosis in human neutrophils in vitro
(Thomas et al., 2012). Activated platelets have been shown to
induce NETosis not only in TRALI, but also in severe sep-
sis and deep vein thrombosis (Clark et al., 2007; Brill et al.,
2012; Caudrillier et al., 2012; Fuchs et al., 2012). NETs pro-
vide a platform for platelets to promote coagulation, thrombosis,
and inflammation in vascular diseases such as atherosclerosis,
sepsis, and thrombotic diseases (e.g., cancer-associated throm-
bosis) (Demers et al., 2012). As activated platelets can trigger
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NETosis, the histone/DNA complexes of NETs too can acti-
vate platelets that further promote NETosis, thrombosis, and
coagulation (Semeraro et al., 2011).

Neutrophils and platelets are both key players to the ALI
pathology. In a TRALI mouse model, depletion of either
neutrophils or platelets was protective (Looney et al., 2009).
Comparably, the use of either aspirin or a glycoprotein IIb/IIIa
inhibitor to target platelet activation effectively decreased NET
formation and lung injury. To target NETs, a histone-blocking
antibody and DNase 1 were used and shown to be protective
against TRALI (Caudrillier et al., 2012). DNase 1 treatment alone
during TRALI was able to improve blood oxygenation and pre-
vent alveolar accumulation of NETs (Thomas et al., 2012). As
such, targeting NETs may be a promising therapeutic approach
in the treatment of ALI.

The extracellular DNA found accumulated in the airways of
LPS-induced ALI and TRALI mice in vivo are attributed to NETs
(Douda et al., 2011b; Caudrillier et al., 2012; Thomas et al., 2012).
SP-D levels in BALF are reduced in patients with ARDS, children
with respiratory syncytial virus (RSV) infection, and LPS-induced
ALI mouse models (Hartl and Griese, 2006; Douda et al., 2011b).
Decreased levels of SP-D may play a contributing factor to the
impaired clearance of DNA from these lungs (Palaniyar et al.,
2005; Douda et al., 2011b).

CYSTIC FIBROSIS (CF)
Another lung disease featuring chronic airway infections is CF.
CF is caused by mutations in the CF transmembrane conduc-
tance regulator (CFTR) gene (Riordan et al., 1989), of which
CF lung disease is the major cause of morbidity and mortal-
ity in these patients (Ratjen and Grasemann, 2012). CFTR is
responsible for the modulation of bicarbonate and chloride secre-
tion across airway epithelial cells, as well as for the regulation of
sodium absorption via epithelial sodium channel (ENaC) (Stutts
et al., 1997; Coakley et al., 2003; Berdiev et al., 2009). Patients with
CF have impaired ion transport across the epithelium that ulti-
mately leads to dehydration of the airway surface liquid (Matsui
et al., 1998). Consequently, there is increased mucus viscosity and
impaired mucociliary clearance (Henke and Ratjen, 2007). There
are vast amounts of free DNA that accumulate in CF lungs that
contribute to the increased mucus viscosity found in their air-
ways (Henke and Ratjen, 2007). The DNA levels in their airways
correlates with neutrophil count, and can be used as an index
to inflammation and lung disease severity (Kirchner et al., 1996;
Ratjen et al., 2005). Severe neutrophilic inflammation and dying
of neutrophils is characteristic of CF lung disease. The origin
of the DNA found in CF airways has been traditionally con-
sidered to be from necrotic neutrophils (Lethem et al., 1990).
Studies conducted after the discovery of NETs have challenged
this idea suggesting that the DNA is attributed to NETs as opposed
to necrotic neutrophils (Marcos et al., 2010, 2011; Manzenreiter
et al., 2012). Understanding the mechanisms that regulate neu-
trophil death in these airways will facilitate the identification of
new therapeutic targets.

Although neutrophils and NETs play vital beneficial roles
against infection, their success in host defense in CF patients
is significantly compromised as patients often suffer chronic

bacterial infections in their lungs. The microbiota present in CF
airways is diverse, but eventual chronic pulmonary infections
are dominated by opportunistic pathogens Pseudomonas aerug-
inosa and Burkholderia cepacia (Razvi et al., 2009; Fodor et al.,
2012). In addition to the inability of neutrophils and NETs to
eradicate bacteria, the DNA released from neutrophils can pro-
mote bacterial colonization and biofilm formation (Parks et al.,
2009; Fuxman Bass et al., 2010). CF neutrophils can cast NETs
against P. aeruginosa. However, evidence reveals that clinical
strains of P. aeruginosa can acquire resistance to NET-mediated
killing over the course of infection in CF airways (Young et al.,
2011). The accumulation of bacteria, extracellular DNA and
NET-associated enzymes such as MPO and elastases (neutrophil
elastase, Pseudomonas elastase) worsen lung inflammation and
tissue damage (Elizur et al., 2008; Voynow et al., 2008; Gupta et al.,
2010; Xu et al., 2011; Dubois et al., 2012; Saffarzadeh et al., 2012).
NE in the lungs can further exacerbate inflammation by induc-
ing IL-8 expression for the recruitment of even more neutrophils
(Nakamura et al., 1992). Neutrophils in CF airways exhibit a
dysfunctional phenotype (Tirouvanziam et al., 2008). The gene
expression profile and activation states of CF neutrophils and
wild-type neutrophils are different (Adib-Conquy et al., 2008;
Tirouvanziam et al., 2008; McKeon et al., 2010; Su et al., 2011),
but the implications of these differences on neutrophil or NET
function are not clearly understood.

Why more NETosis occurs in CF airways is unknown. Early
stage CF lung disease is predominated by inflammation in the
absence of any detectable infectious agents. At this stage, NETs
are likely induced by host factors. As the lungs of CF patients
are chronically infected with bacteria at later stages, it is likely
that the source of NETosis stimulation may also be derived from
bacterial components. The common pathogens (e.g., S. aureus,
P. aeruginosa, A. fumigatus, C. albicans) that colonize the lungs of
CF patients have been shown to be effective inducers of NETosis
(Urban et al., 2006; Bruns et al., 2010; Pilsczek et al., 2010; Young
et al., 2011). However, there is still debate on whether inflam-
mation is secondary to chronic infection or vice versa (Becker
et al., 2004; Verhaeghe et al., 2007). A number of studies reveal
that inflammation and accumulation of neutrophils is seen early
on in CF airways prior to the presence of any apparent infec-
tion (Tirouvanziam et al., 2000; Verhaeghe et al., 2007). Early
CF airways have increased NF-κB activation and inflammatory
cytokines such as IL-8, TNF, and GM-CSF (Khan et al., 1995;
Rosenfeld et al., 2001; Verhaeghe et al., 2007). NF-κB is an
inducible transcription factor that plays a key role in the reg-
ulation of cytokines and chemokines, cell adhesion molecules,
acute phase proteins, and anti-microbial peptides during pul-
monary inflammation (Batra et al., 2011). The contribution
of these host-derived molecules on NETosis is unknown. IL-8
has been previously shown to induce NETosis in other studies
(Brinkmann et al., 2004; Gupta et al., 2005, 2010), but its abil-
ity to induce NETosis in CF airways is uncertain (Marcos et al.,
2010, 2011).

SP-A and SP-D levels are decreased in CF patients, where
their concentration is inversely related to the degree of inflam-
mation in early CF disease (Postle et al., 1999; Noah et al., 2003).
Additionally, there is an inverse relationship between SP-D level
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and neutrophil count in BALF (Griese et al., 2004). The lack of
SP-D may have implications to the ineffective clearing of DNA
in their lungs. The accumulation of NETs in the lung may lead
to lung damage and exacerbate the disease by thickening the
mucus layer. Aerosolized recombinant human DNase (rhDNase)
is a therapeutic option used to treat patients with moderate to
severe CF lung disease (Shak et al., 1990). It is used to break
down polymerized DNA in the CF airways in order to reduce
mucus viscosity. rhDNase treatment has shown to effectively
reduce pulmonary exacerbations and improve lung function in
some patients (Paul et al., 2004; Ratjen et al., 2005; Henke and
Ratjen, 2007). However, DNase treatment does not help with the
severe neutrophilic inflammation, chronic bacterial infection, and
further deterioration of the lung. Neutrophils in CF lungs release
uncontrolled extracellular proteases that destroy lung tissue, and
exogenous protease inhibitors are ineffective in inhibiting these
proteases (Griese et al., 2008; Voynow et al., 2008; Greene and
McElvaney, 2009; Dubois et al., 2012). DNase can disrupt the
ultrastructure of NETs, but DNase treatment can also dramat-
ically increase the proteolytic activities of neutrophil enzymes
(NE, cathepsin G, protease 3) bound to NETs (Dubois et al.,
2012). Ultimately, NETs can harbor active proteases and protect
these enzymes from exogenous protease inhibitors (Dubois et al.,
2012). SP-D can be proteolytically degraded by active proteases
HNE, Pseudomonas elastase, cathepsin G, and protease 3 in vitro
(von Bredow et al., 2003). In CF lungs, SP-D is proteolytically
damaged (Griese et al., 2003; von Bredow et al., 2003; Hirche
et al., 2004), suggesting impaired host defense mechanisms of
SP-D, which may contribute to the accumulation of NET-protein
complexes and lung disease.

ASTHMA
Asthma is a chronic disorder characterized by heterogeneous
inflammation of the airways involving eosinophilic and non-
eosinophilic phenotypes. Patients with neutrophilic asthma (i.e.,
greater proportion of neutrophils than eosinophils in sputum)
usually have greater disease severity with reduced response to
corticosteroid therapy (Simpson et al., 2006; Haldar and Pavord,
2007). A recent study showed that the only biomarkers that could
distinguish severe or moderate asthma from mild asthma are
neutrophil count and IL-8, out of the eight potential biomark-
ers (IL-8, neutrophils, eosinophils, IL-1Rα, IL-1α, IL-5, IL-6,
and RANTES) investigated in BALF (Sur et al., 2012). IL-8 is a
known chemoattractant for neutrophils. The neutrophilic inflam-
mation observed in severe asthmatics may be attributable to the
increased expression of IL-8 in airway smooth muscle cells, and
the increased number of IL-8 positive cells found in epithelia
(Pepe et al., 2005; Shannon et al., 2008).

Recently, extracellular DNA traps have been identified in aller-
gic asthmatic airways (Dworski et al., 2011). In the atopic asth-
matic airways, eosinophils predominated and were the source of
extracellular DNA traps (EETs) observed. Similar to an earlier
study on EETs (Yousefi et al., 2008), the DNA were of mito-
chondrial origin, not nuclear (Dworski et al., 2011). Subjects
with neutrophilic asthma had higher neutrophil counts and NETs
than eosinophils and EETs. IL-8, neutrophil count, and NETs are
all increased in neutrophilic asthma, and their contribution to

disease severity is not clearly understood. The cause of NETosis
in asthmatic airways is unknown. IL-8 is a potential trigger of
NETosis in these airways as it has been previously shown to
induce NETosis in other studies (Brinkmann et al., 2004; Gupta
et al., 2005, 2010). Plasma levels of activated platelets also increase
during seasonal allergic rhinitis and asthma (Kasperska-Zajac
et al., 2008). Since activated platelets are known inducers of
NETosis, their elevated levels in plasma may imply a role in their
contribution to NETs.

TARGETING NETs IN THERAPY
The effective targeting of NET structures in therapy could benefit
a multitude of diseases. The list of diseases associated with NETs
has been constantly expanding since the discovery of NETs. This
list includes SLE (Leffler et al., 2012), multiple sclerosis (Naegele
et al., 2012), thrombotic diseases [cancer-associated thrombosis
(Demers et al., 2012), deep vein thrombosis (Brill et al., 2012)],
appendicitis (Brinkmann et al., 2004), sepsis (Clark et al., 2007),
pre-eclampsia (Gupta et al., 2005), psoriasis (Lin et al., 2011), and
HIV-1 (Saitoh et al., 2012). Current development of therapies
to target NETs in inflammatory lung diseases include DNase
(Shak et al., 1990; Hakkim et al., 2010), anti-histone antibodies
(Xu et al., 2009, 2011; Semeraro et al., 2011), and antiproteases
(Greene and McElvaney, 2009). DNase treatment is used for
patients with ALI and CF to reduce pleural fluid viscosity by
depolymerizing the DNA that accumulates in the lungs (Huggins
et al., 2011). However, Dubois et al. showed that treating CF
sputum with DNase could increase elastase activity (Dubois et al.,
2012). Chronic inflammatory lung diseases already have elevated
levels of proteases, which lead to lung damage and increased
inflammation. Antiproteases are used in therapy to dampen the
activity of these proteases (Greene and McElvaney, 2009). The
use of exogenous protease inhibitors alone has been shown to
be ineffective in CF sputum because NETs serve as a reservoir of
these active proteases and protect them from inhibition (Dubois
et al., 2012). As such, the combined use of DNase and antipro-
teases may be potentially helpful in controlling NET-mediated
lung damage. The use of anti-histone antibodies has also been
shown to be protective of NET-mediated lung damage in a TRALI
mouse model (Caudrillier et al., 2012). This approach has yet
to be investigated in humans; however, the use of anti-histone
antibodies raises some concerns. Because extracellular histones
are highly immunogenic and induce the production of autoan-
tibodies (Liu et al., 2012), the use of anti-histone antibodies in
therapy may promote autoimmunity. As an alternative, others
have suggested using anionic polymers such as polysialic acid to
neutralize histones (Saffarzadeh et al., 2012). MPO inhibitors
have also been considered (Papayannopoulos et al., 2010). SP-D
is another protein candidate that could regulate NETosis and
NET clearance, and prevent autoantibody generations. Although
an excess of NETs may lead to pathologies, moderate amounts are
beneficial in protecting hosts against infections. Since NETosis
involves components common to other essential pathways in
the body (e.g., ERK pathway, p38 kinase pathway, autophagy
pathway and intracellular microbial killing NADPH oxidases),
careful consideration is required to design drugs to regulate
NETosis.
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CONCLUSION
Neutrophil function and NETs are critical components of our
immune defense. Patients with CGD have impaired neutrophil
function and cannot form NETs, making them highly suscepti-
ble to lethal infections. Although NETs are important, an excess
due to the dysregulation of NETosis can lead to many patholo-
gies. Exaggerated neutrophil recruitment, activation, and NET
formation are characteristic of inflammatory lung diseases like
CF and ALI. The prolonged presence of NETs is extremely dele-
terious to host tissue and can stimulate autoimmune responses
due to its high immunogenicity. The effective clearance of these
NET structures in the lungs may be important to the mainte-
nance of healthy airways. Surfactant proteins A and D are innate
immune proteins in the lungs that have shown to be impor-
tant in the clearance of DNA and may also be important in
the clearance of NETs. SP-D is also important in minimizing
the production of anti-DNA autoantibodies, which may be pro-
tective against NET-mediated autoimmunity. While SP-D can

bind to NETs, its role in NET clearance and in treating NET
accumulated lungs is unknown. At present, DNase is the only
clinically used treatment in targeting the NET structures of these
NET-filled inflammatory lung diseases. The homeostasis between
NET formation and clearance is essential in sustaining a healthy
immune defense against potential pathogens that are constantly
in contact with our lungs. The discovery and development of
compounds that can help regulate NET formation and clear-
ance would be highly beneficial in designing therapies for these
diseases.
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